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Comparison of AI-integrated pathways with
human-AI interaction in population
mammographic screening for breast cancer

Helen M. L. Frazer 1,2,3,14 , Carlos A. Peña-Solorzano 4,5,14,
Chun Fung Kwok 4,5,14, Michael S. Elliott 4,5,14, Yuanhong Chen6,
Chong Wang 6, The BRAIx Team*, Jocelyn F. Lippey1,7,8, John L. Hopper9,
Peter Brotchie10, Gustavo Carneiro6,11 & Davis J. McCarthy 4,5

Artificial intelligence (AI) readers of mammograms compare favourably to
individual radiologists in detecting breast cancer. However, AI readers cannot
perform at the level of multi-reader systems used by screening programs in
countries such as Australia, Sweden, and the UK. Therefore, implementation
demands human-AI collaboration. Here, we use a large, high-quality retro-
spective mammography dataset from Victoria, Australia to conduct detailed
simulations of five potential AI-integrated screening pathways, and examine
human-AI interaction effects to explore automation bias. Operating an AI
reader as a second reader or as a high confidence filter improves current
screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity,
achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in
human reads. Automation bias degrades performance in multi-reader settings
but improves it for single-readers. This study provides insight into feasible
approaches for AI-integrated screening pathways and prospective studies
necessary prior to clinical adoption.

Breast cancer is the world’s most common cancer and a leading cause
of cancer death in women1. BreastScreen Australia offers free mam-
mographic screening targeted to women aged 50–74 years, with those
over 40 years of age eligible to attend. Approximately 1millionwomen
are screened annually, and the programmehas achieved a reduction in
mortality of 41–52% for screening participants and a 21% reduction in
population-level breast cancer mortality2,3. However, there are chal-
lenges in accuracy, service experience, and efficiency.

In 2020, ~59 per 10,000 participants were diagnosed with breast
cancer and 16 per 10,000 participants were diagnosed with ductal
carcinoma in situ (DCIS)2. Despite a process of independent double
reading of all mammograms by radiologists, and a third arbitration
read when there is discordance (henceforth called two readers with
arbitration system), in 2020 ~368 per 10,000 participants were recal-
led for assessment and later determined not to have breast cancer
(false positive). Also, ~18.6 per 10,000 participants aged 50–74 years
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(2015–2017) subsequently discovered they had an interval breast
cancer before their next scheduled screen after receiving an all-clear
result (false negative)2.

Using artificial intelligence (AI) to help readmammograms has the
potential to transformbreast cancer screening by addressing the three
key challenges of accuracy, service experience, and efficiency2. The
evidence base for AI readers in breast cancer screening has been
growing rapidly in recent years, with studies demonstrating the
potential of AI to detect breast cancer onmammographic images with
similar accuracy to radiologists4–12 and addressing key limitations of
earlier concern13. Many of these studies evaluated the integration of AI
into screening pathways via simulation, and they varied in the way
human readers interact with the AI, where the AI was positioned in the
screening pathway, and the specific screening pathway being simu-
lated. This included the complete replacement of current diagnosis
pathways by an AI system9,14, using the AI as a decision referral system
to diagnose low-risk non-cancer cases without human intervention,
while referring mid- and high-risk cases to human readers15–17, or using
a recall threshold to divide the cases into human review (mid-risk) and
direct recall of (high-risk) suspicious cases18. Another optionwas to use
AI inmultiple positions in the pathway: first to rule out a percentage of
the non-cancer cases without human intervention, then to rule in cases
to supplemental imaging after being cleared by a double reading and
consensus pathway19. Finally, in a double reading and consensus
pathway, one of the human readers could be replaced by the AI to
study the performance of the system before and after replacement17,20.

Previous studies have primarily focused on evaluating the feasi-
bility and effectiveness of incorporating AI into existing screening
pathways6,17,18,20–22. These studies have shown promising results, often
in terms of improved diagnostic accuracy and reduced workload, but
they have been limited in the number of scenarios they evaluate6,18,21

and typically avoid (statistically) simulating the arbitration read20,22 or
any direct human–AI interaction17. Testing cohorts were not always
representative or didn’t have interval cancer follow-up, and operating
points were not always set on a separate dataset13. They were also
primarily using commercial algorithms17,18,20–22, which varied between
studies and were assessed on different datasets, thereby precluding
direct comparisons of the AI readers’ effectiveness as well as the via-
bility of various AI-integrated scenarios. There is a need for a more in-
depth analysis of where and how AI is best positioned within the
screening pathway to maximise its benefits. This includes examining
whether AI should be used as a primary screening tool, to assist radi-
ologists in decision-making, or in a triage capacity to prioritise cases.
An ongoing randomised controlled trial in Sweden21, which has
reported a positive interim safety milestone, has limited retrospective
analysis of the reading pathwayunder test, inpart due to its reliance on
human–AI interaction. As human readers are likely to remain central to
the decision-making process, with concerns over the impacts of
automationon radiologist performanceover the short and long term23,
it is crucial to evaluate the potential impacts of human–AI interaction.

In this work, we conduct detailed simulation studies incorporat-
ing human–AI interaction effects along with reader-level analysis of AI-
integrated screening scenarios. We base our simulations on our ret-
rospective testing cohort comprising data from over 90,000 screen-
ing clients in Victoria, Australia and over 600,000 mammogram
images. As the AI reader, we use our in-house BRAIx AI Reader (v3.0.7),
a mammography classification model based on an ensemble of open-
source, image-based deep neural networks. We analyse and compare
five AI-integrated screening pathways with the current standard of
care. The scenarios range from AI as a standalone reader to advanced
collaborative integration scenarios blending AI support with human
expertise, aiming to increase screening accuracy and reduce the
workload of human readers. Our simulation studies investigate possi-
bilities for the positive, neutral and negative influence of AI integration
on human reader performance for each of the five AI scenarios and our

results highlight how the effectiveness of AI integration varies across
different screening pathways and roles. Taken together, our work
provides actionable information relevant to current directions for AI
implementation21, improves on previous simulation efforts15–17,19,20,22,
and offers insights into the optimal use of AI in enhancing screening
outcomes.

Results
Study design
We evaluated the AI reader on a representative, population screening
dataset collected fromwomenwho attended the BreastScreen Victoria
programme from 2016–2019 in Victoria, Australia. The screening
programme targets women aged 50–74 and typically collects four 2D
mammograms for each client (left and right mediolateral oblique,
MLO, andcraniocaudal, CC) every twoyears. Eachmammogramis read
independently by two breast imaging radiologists and a third, if there
is disagreement (two readers with arbitration) who has access to the
outputs of the first two readers. Readers flag clients for recall for fur-
ther assessment if they detect indications of breast cancer or return a
no-recall decision (all-clear) if not (Fig. 1). The comparison between
human readers and the AI reader was performed at the screening
episode level with the positive class defined as screen-detected can-
cers (biopsy-confirmed cancer at assessment within 6 months) and
interval cancers (clients who develop breast cancer between 6months
after a screen and the date of their next screen), and the negative class
defined as any clientwhodoes not develop cancerwithin the screening
interval (12 or 24 months). We summarised reader and system per-
formance on the test set with area under the receiver operating char-
acteristic (ROC) curve (AUC), and sensitivity and specificity of cancer
detection decisions at specific operating points.

With detailed simulation studies, we compare the standardof care
(two human readers with arbitration; Fig. 1A) to five AI-integrated
screening pathways. We examine the AI reader as a standalone reader
(AI standalone; Fig. 1B), as a reader aid for a single reader (AI single-
reader; Fig. 1C), as a replacement for the second reader in a two reader
with arbitration pathway (AI reader-replacement; Fig. 1D), as a filter for
high confidence recall and no-recall decisions (AI band-pass; Fig. 1E),
and as making a triage decision between a single reader and a two
reader with arbitration pathway (AI triage, Fig. 1F). In the simulations
our baseline reference point for system performance is the observed
standard of care results from the original reads, with arbitration reads
simulated from historical reader performance when needed. For each
AI-integrated scenario, we vary the AI reader operating points to
identify settings for optimal performance. We then select candidate
operating points for each scenario and vary the human reader per-
formancebymodelling an interaction effect of the AI reader on human
readers. We simulate these interaction effects by changing human
reader decisions to agree with the AI reader (varying the proportion
between 0% and 50%) when the AI reader is correct (positive interac-
tion), incorrect (negative interaction), and irrespective of correctness
(neutral interaction, typically referred to as automation bias). More
details on the datasets, screening scenarios, and the simulation design
can be found in the Methods.

AI as a standalone reader
We first evaluate the AI reader in the standalone scenario, assessing
its performance when it replaces all human readers in the standard
of care. The AI standalone scenario achieved an AUCof 0.932 (95%CI
0.923, 0.940) when evaluated on the retrospective test set (Fig. 2A).
The AI standalone operating point achieved higher performance
than the mean of individual radiologists (weighted by number of
reads), in both sensitivity (75.0 vs. 66.3%; P < 4.11 × 10−8) and speci-
ficity (96.0 vs. 95.6%; P < 1.11 × 10−9). However, operating as a sole
reader, the AI reader had lower sensitivity (75.0 vs. 79.8%;
P < 1.98 × 10−5) at non-inferior specificity (96.0 vs. 96.0%: P = 0.56)
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than the current standard of care (two readers with arbitration;
Supplementary Tables 1, 2).

To better understand how the AI reader ranked amongst the
reading cohort, we compared the AI reader against all individual
readers in the first or second reader position with at least 1000 reads
and found that with well-chosen operating points, the AI reader could
achieve higher sensitivity and/or specificity than 74 out of 81 human
readers (see Fig. 2B, C). When compared with the third readers on the
third read cohort, the AI reader performance was found to be lower
than that of the mean third reader (Supplementary Fig. 1). This result
supports the use of the AI reader only in the first or second position, as
we will explore in the other scenarios.

A key observation on AI reader performance was that the AI
standalone scenario ROC curve was above that of the current standard
of care for first-round episodes (that is, the first time a client attended
the screening service) and above theweightedmean reader for second
and subsequent rounds (Supplementary Fig. 2). Further comparisons
were performed across other breakdowns including age,

manufacturer, and radiologist morphology labels (Supplementary
Figs. 3, 4). We also investigated the AI reader scores by outcome class
label and found the top 10% of scores contained 92.7% of screen-
detected cancers and 42.2% of interval cancers (81.8% of all cancers;
Supplementary Table 3). Additionally, we benchmarked our AI reader
on external datasets (some publicly available), achieving state-of-the-
art performance (Supplementary Table 4).

Overall, the AI reader was a strong individual reader, out-
performing individual readers on average. The first-round screening
results highlight the strength of the AI readers when limited additional
information is available (specifically, prior screens or other reader
opinions), while the third reader and second and subsequent round
analysis shows how the human readers are able to make use of the
additional information to improve performance. The AI standalone
scenario did not outperform the standard of care but could offer
improvement in single-reader settings.

AI-integrated scenarios without human–AI interaction effects
Integrating the AI reader within a multi-reader pathway offers a more
practical and clinically viable option than AI as a standalone reader,
with multiple prospective trials underway globally21,24,25. We conduct
detailed simulation studies of theAI reader-replacement, AI band-pass,
and AI triage scenarios compared against the current standard of care
in breast cancer screening in Australia, two independent readers with
arbitration (Fig. 1; Methods). In this section, we vary only the AI reader
operating points and simulate arbitration reads as required based on
historical performance (Methods). For the AI band-pass and AI triage
scenarios, we assume the human readers are blinded to AI reader
outputs, and in the AI reader-replacement scenario, the first reader is
also assumed to be blinded.

The AI reader-replacement scenario produced higher system
sensitivity (82.3%; 95% CI 81.5–83.1, P <0.0025) and higher specificity
(96.3%; 95% CI 96.2–96.3, P < 4.3 × 10−6) than the current standard of
care system (Fig. 3A and Supplementary Table 2). Across 149,105
screening episodes in our retrospective testing set, the AI reader-
replacement scenario had 354 fewer unnecessary recalls (−6%, false
positives) and detected 33 more cancers (+3.1%, true positives) with a
reduction of 147,959 human reads (−48%), but required 11.6% more
third (arbitration) reads (Table 1 and Supplementary Fig. 5). The
modelled reading and assessment cost reduction was 15%.

The AI band-pass screening scenario also achieved both higher
system sensitivity (81.7%, P <0.0058) and specificity (96.6%,
P < 2.2 × 10−25) than the current standard of care system (Fig. 3A and
Supplementary Table 2). The AI band-pass screening scenario had 779
fewer unnecessary recalls (−13.3%) and detected 25 more cancers
(+2.4%) with a reduction of 248,638 human reads (−80.7%), while also
providing a 67.9% reduction in third reads (Table 1 and Supplementary
Fig. 6). The modelled reading and assessment cost reduction
was 28.3%.

The AI triage screening scenario, without modelled AI-human
interaction, produced lower sensitivity (77.2%) and specificity (95.7%)
than the current reader system (Fig. 3A). Using an operating point to
shift 90% of reads to a single-reader pathway, the AI triage screening
scenario had 425 more unnecessary recalls (+7.3%) and detected 35
fewer cancers (−3.3%)with a reduction of 141,799 human reads (−46%),
including a 77.0% reduction in third reads (Table 1 and Supplementary
Fig. 6). Themodelled reading and assessment cost reductionwas 7.5%.
This result is expected as AI triage allocates a proportion of reads to a
single-reader pathway, which will always result in reduced perfor-
mance in the absence of human–AI interaction.

Both the AI reader-replacement and AI band-pass scenarios offer
opportunities for improved performance relative to the current stan-
dard of care across different operating points, with AI reader-
replacement achieving the highest reduction in missed cancers
(−12.4%) and the AI band-pass having the highest reduction in

Fig. 1 | Screening episode flows for the current reader system and AI-
integration scenarios. A Standard of care scenario: Readers 1 and 2 see the same
episode and opt to recall or not-recall, if they disagree Reader 3 arbitrates. B AI
standalone scenario: all decisions are taken by the AI Reader without human
intervention. C AI single-reader scenario: Reader 1 takes the final decision using AI
Reader input. D AI reader-replacement: same as (A) but with AI Reader replacing
Reader 2. E AI band-pass scenario: AI Reader screens out episodes before Readers 1
and 2. Episodes with high scores trigger the recall decision directly, and episodes
with low scores trigger the no-recall decision directly. The other episodes continue
to the usual reader system. F AI triage scenario: AI reader triages the episodes
before Readers 1 and 2. Episodeswith high scores continue to the usual system, and
episodes with low scores go through the path with only 1 reader.
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Fig. 2 | Performance of the AI reader on the retrospective cohort. A The AI
reader ROC curve compared with the weighted mean individual reader and reader
consensus. The AI reader achieved an AUC of 0.932 (95% CI 0.923, 0.940,
n = 149,105 screening episodes) above the weighted mean individual reader per-
formance (95.6% specificity, 66.7% sensitivity) but below the reader consensus
performance (96.1% specificity, 79.8% sensitivity; standard of care). The weighted
mean individual reader (black circle; n = 125 readers) is the mean sensitivity and
specificity of all the individual readers (grey circles) weighted by their respective

total number of reads. B, C AI reader compared against 81 individual readers (min.
1000 reads). An optimal point from each AI reader ROC curve is shown for each
comparison. We show separately human readers for which both sensitivity and
specificity of the AI reader point was greater than or equal to the reader (B; 74
readers, 91.3% of readers; 253,328 reads, 88.3% of reads) and readers for which the
AI reader is less than or equal to the human reader in either sensitivity or specificity
(C; 7 readers, 8.6%; 33,525 reads, 11.7%). Source data are provided as a Source
Data file.

Fig. 3 | Comparison of AI-integrated scenarios. A Human reader consensus per-
formance compared with AI standalone, AI reader-replacement, AI band-pass and
AI triage on the retrospective cohort (n = 149,105 screening episodes) without
interaction effects. Representative points are shown for AI standalone (96.0%
specificity, 75.0% sensitivity), AI single reader (95.6% specificity, 67.3% sensitivity),
AI reader-replacement (96.3% specificity, 82.3% sensitivity), AI band-pass (96.6%,
81.7%) and AI triage (95.7% specificity, 78.0% sensitivity). Other potential operating
points are shownas a continuous line. BothAI reader-replacement andAIband-pass

improved performance over the human reader consensus (96.1% specificity, 79.8%
sensitivity). B AI-integrated scenarios when reader performance is varied with an
interaction effect when the human reader disagrees with the AI reader. From 0% to
50% of discordant decisions are reversed when the AI reader was correct (triangle,
positive effect), uniformly (circle, neutral effect) and incorrect (diamond, negative
effect). For AI triage tomatch human reader consensus performance, a 15%positive
interaction effect of the AI reader on human readers is required. Source data are
provided as a Source Data file.
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unnecessary recalls (−13.3%). The AI triage scenario offers good per-
formance with a large workload reduction while maintaining a human
decision-maker for all episodes (which AI band-pass lacks). These ret-
rospective simulations do not take into account the change in cancer
prevalence26 that both AI band-pass and AI triage would have on the
episodes diverted to different pathways, nor do they consider the
potential positive and negative impacts of human readers having
access toAI reader outputs.Human–AI interaction effects are explored
in the next section.

AI-integrated scenarios with human–AI interaction
We present three types of human–AI interaction by considering neu-
tral, positive, and negative interactions in the AI-integrated scenarios
(Fig. 3B and Supplementary Figs. 7–10). In the AI reader-replacement
scenario the interaction affects the arbitration reader only. Conversely,
in the AI band-pass and AI triage scenarios, the interaction affects all
readers. In the AI single-reader scenario, human–AI interaction affects
the single reader operating with decision support.

In all cases, we aremodelling the effect of human readers revising
their decision when in disagreement with the AI reader. We vary the
degree of how often the human reader revises their decision upon
disagreement, ranging from0 to 1, where0 refers to the human reader
never revising their decision, and 1 refers to the human reader always
revising their decision to agree with the AI (and 0.5 would refer to the
human reader revising the decision 50%of the time). In the special case
where the human reader changes their decisions to agree with AI fully,
the collaboration between the human reader and AI reader would
collapse to the AI standalone scenario. For all scenarios, we use the AI
standalone operating point when considering disagreement.

The neutral human–AI interaction case, in which a reader will
be inclined to agree with the AI model irrespective of the cor-
rectness of its outcome, models a general form of automation
bias. Automation bias is the tendency of humans to overly agree
or rely on an automated system (the AI reader in our case)27. The
positive human–AI interaction case refers to the human reader
changing their decision to agree with the AI reader only when the
AI reader is correct, simulating human readers accurately dis-
criminating between useful and spurious AI reader outputs. The
negative case refers to the human reader changing their decision
only when the AI reader is incorrect.

AI reader-replacement. In the AI reader-replacement scenario,
assuming positive human–AI interaction, AI improves the system’s
specificity but hasminimal impact on sensitivity (the green triangles in
Fig. 3B). This is because the AI reader operates with higher specificity

(96.0%) and lower sensitivity (75.0%) compared to the third reader
(56.3 and 97.5%). At this operating point, AI only correctly identifies a
few cases of cancer missed by human readers, and human readers do
not benefit much from it. Conversely, in the negative scenario, as
Reader 3 is highly sensitive and AI is highly specific, agreeing with AI
leads to a substantial loss of sensitivity but not specificity. With
negative interaction, Reader 3 is more prone to overlooking cancer
cases rather than misidentifying normal cases when learning from the
AI reader.

In the neutral case, agreeing with the AI would gradually reduce
the multi-reader system to a one-reader system, where the decision is
solely driven by the AI reader. As a result, the performancewould tend
towards the AI standalone scenario at (75.0 and 96.0%). Nevertheless,
in the AI reader-replacement scenario, roughly 30% or more of dis-
cordant decisions would need to be reversed in the neutral and
negative interaction cases for system sensitivity to drop below that of
the current standard of care (reader consensus). In other words, the AI
reader-replacement scenario, without interaction effects, is so effec-
tive that human readers could accept up to 30% of the AI’s mistakes
before its performance falls below the standard of care, making it
substantially robust to the downside risks of human–AI interaction.

AI band-pass. For the band-pass scenario with a positive human–AI
interaction effect, AI improves on specificity and sensitivity, more so
than in the AI reader-replacement scenario because all three readers
maybenefit fromAI outputs. In thenegative case, theopposite is true if
human reader performance suffers due to the mistakes made by AI.
The sensitivity decreases significantly, with most of the contribution
coming from Reader 3. The specificity also decreases slightly but
remains at ~96%. In general, the AI reader tends to return more false
negatives than false positives due to its high specificity.

In the neutral case, agreeing with AI would gradually lead to the
collapse of themid-band two-reader-and-consensus system into the AI
standalone scenario. As the interaction effect increases, the sensitivity
and specificity of the band-pass scenario will approach that of the AI
standalone scenario. But unlike the AI reader-replacement scenario,
the transition may not be complete, as the high-band and low-band
paths continue to function, even if they only contain a limited number
of episodes.

AI triage. The AI triage scenario shows the widest range in perfor-
mance of the multi-reader scenarios, depending on the nature of the
human–AI interaction. When there is a positive interaction, AI triage
would achieve the baseline consensus (standard of care) performance
when humans benefit from the AI’s ability to correct 15% of the

Table 1 | Comparison of the current reader system and the AI-integrated scenarios by the screening outcomes and workload

Variable Current reader system AI reader-replacement AI band-pass AI triage

Sensitivity (%) 79.8 82.3 (81.5, 83.1) 81.7 77.2

Specificity (%) 96.0 96.3 (96.2, 96.3) 96.6 95.7

No. of episodes 149,105 149,105 149,105 149,105

True positive 1061 1094 (+3.1%) 1086 (+2.4%) 1026 (−3.3%)

True negative 141,915 142,269 (+0.2%) 142,694 (+0.5%) 141,490 (−0.3%)

False positive 5861 5507 (−6%) 5082 (−13.3%) 6286 (+7.3%)

False-negative 268 235 (−12.4%) 243 (−9.3%) 303 (+13.1%)

Workload

Assessments 6922 6602 (−4.6%) 6168 (−10.9%) 7312 (+5.6%)

Human reads 30,8091 160,132 (-48%) 59,453 (−80.7%) 166,292 (−46%)

*Third reads 9881 11,027 (+11.6%) 3173 (−67.9%) 2276 (−77%)

*The third reads are part of the human reads. A separate entry is presented to show the workload impact on the third reader.
For theAI reader-replacement scenario,mean values basedon 1000simulations are presented (rounded to the nearest integer, and the95%confidence intervals (CI) arepresented for the sensitivity
and specificity). TheAI band-pass andAI triage scenarios donot require simulating the third reader, and the results are entirely based on the real data (i.e. noCI). Percentages in the bracketswith the
plus/minus sign indicate the percentage change compared with the current reader system.
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decisions in cases of disagreement. The potential benefits are sub-
stantial: if all human readers adopt 50% of the AI’s corrections, the
sensitivity could increase by 5.3 percentage points compared to the
baseline where there is no interaction between humans and AI. This
would result in a performance that exceeds the baseline standard of
care in terms of sensitivity by 3.4 percentage points, while also oper-
ating at 97.7% specificity. In the negative interaction case, however, the
potential downside is significant. The sensitivity can quickly drop by
5.6 percentage points to about 73.1% (6.7 percentage points lower than
the baseline standard of care) and the specificity can drop to 93.5%
when human readers follow themistakes made by the AI reader. In the
neutral case, agreeing with the AI reader does not change the perfor-
mance significantly, and so performance remains a little below the
standard of care in both sensitivity and sensitivity.

The performance of the AI triage scenario presents large varia-
tionswhen subject to positive or negative interactions, because human
readers are responsible for all the recall decisions, while the AI merely
supports them. When the AI offers beneficial assistance, the entire
scenario improves as all readers gain from it. Conversely, if the assis-
tance is negative, the scenario worsens in a similar way. In the neutral
case, the scenario does not improve because we know from the AI
standalone case that the AI reader is tuned to match the reader at
about the same specificity but with much-improved sensitivity. How-
ever, the one-reader pathway contains all the low-scoring and mostly
normal episodes, so improved sensitivity does not have an effect. And
since the three-reader pathway has high sensitivity, the AI assistance
does not detect more cancers. In this case, triage is not as susceptible
to automation bias, as agreeing with AI would not harm the system’s
performance.

The AI triage scenario provides a distinct contrast to the AI reader-
replacement scenario. The positive and negative interactions have less
impact in theAI reader-replacement scenario than in the triage scenario,
because the interaction applies to fewer human readers. Also, the AI
reader serves two roles in the reader-replacement scenario: as a
screening tool, where it improves the system beyond the consensus
performance, and as a diagnosis-assistive tool. Since it has already
delivered most benefits as a screening tool, the additional improve-
ments from its role as an assistive tool are relatively minor. The triage
scenario, on the other hand, receives the impact of human–AI interac-
tion for all human readers, and the structure of the pathwaymeans that
theAI has strong effects both as a screening tool and as an assistive tool.

AI single-reader. In the AI single-reader scenario, with positive inter-
action correcting up to 50% of the original decisions, the system can
achieve a sensitivity of 74.6%, on par with the AI standalone, but with
an additional 1.6% improvement in specificity (Fig. 3B). For the nega-
tive interaction case, with up to 50% of the discordant decisions
turning into errors, the sensitivity and specificity decrease to ~62.6 and
93.9%, respectively. There are more gains than losses in this scenario,
because disagreements occur more frequently when AI is correct than
when it is wrong. In the neutral case, as the human reader increasingly
agrees with the AI reader, the performance tends towards the AI
standalone scenario. The automation bias turns out to be favourable
here, because the AI reader outperforms the average reader by a siz-
able margin, and in a one-reader pathway, this directly translates to an
improved system performance. Across all scenarios, a single-reader AI
system is unable to match the performance of a multi-reader system
when it comes to screening outcomes. However, using AI significantly
narrows the gap between the single-reader system and the two-reader-
and-consensus system, making a compelling case for consideration in
settings limited to single-reader screening pathways.

Discussion
In this studywe used detailed simulations to evaluate how anAI reader
for breast cancer detection could perform in different single- and

multi-reader settings in population mammographic screening. We
explored positive, neutral, and negative human–AI interaction effects
and identified the major upside and downside possibilities for four AI-
integration scenarios depending on the nature and strength of the
interaction effects. The AI reader used was a strong individual reader
trained on the ADMANI training datasets28, with its performance
assessed on a carefully selected and unseen ADMANI testing dataset.
This AI reader achieved significantly higher sensitivity (+8.3%) and
specificity than the weighted mean individual human reader, and
better performance than 91% of individual human readers in our ret-
rospective testing dataset.

The AI standalone reader’s high performance and minimal run-
ning cost (it is fully automated, so it eliminates costs associated with
human readers) make a compelling case for its use in settings that
follow single-reader screening practices. Many countries currently
implement single-reader screening, whether for reasons of historical
choices to prioritise cost and operational efficiency, as in the United
States, or because the resources have not been available to establish a
multi-reader screening pathway integrated into healthcare systems, as
in many other countries. In such settings, AI readers could play an
important role in improving screening system performance while
minimising costs. However, despite the AI reader’s impressive per-
formance as a single reader, as a standalone system, the AI reader
cannot match the performance of the current standard of care (two
readers with arbitration) used in Australia and many other countries
including Sweden and the UK.

This performance gap necessitates some human–AI collaboration
to improve screening outcomes29 and, furthermore, practical, social
and legal considerations encourage retaining the human central to the
decision-making process23. We observe that the AI reader can outper-
form human readers in the first/second position, but not in the third
reader role. This observation suggests that there is a preferredposition
for the AI reader tomaximise its advantages relative to human readers:
it should serve in a more junior role where its excellent specificity
optimises the performance of the whole screening pathway. Relatedly,
the AI reader works notably well for first-round screening, out-
performing the standard of care in this study dataset.

We studied four collaborative AI-integrated scenarios for the
screening pathway: AI single-reader, AI reader-replacement, AI band-
pass, and AI triage. Without any human–AI interaction effects, both AI
reader-replacement and AI band-pass demonstrated significantly
superior sensitivity and specificity compared to the standard of care
two readers with arbitration system. Interestingly, these two approa-
ches achieve this superior performance with different characteristics.
The AI reader-replacement system gains the most from reducing
missed cancers (false negatives), while the AI band-pass system gains
the most from limiting unnecessary recalls to assessment (false posi-
tives). Both the AI single-reader and AI triage systems demonstrate
lower performance than the standard of care and other multi-reader
AI-integrated systems. However, if we assume that positive human–AI
interaction yields a 15% improvement in human reader decision-mak-
ing, then AI triage can match the current standard of care. Further-
more, the AI triage system has the highest possible upside if there are
strong positive human–AI interaction effects. Interim results from the
ongoing MASAI trial provide evidence that positive human–AI inter-
action is plausible21. For the AI single-reader, the superior performance
of the AI reader over human readers provides a safety net, leading to
improvedperformanceevenwith neutral relianceon theAI reader.The
relative gains from the use of AI are greater in the single-reader path-
way than in the multi-reader pathways thanks to the strong perfor-
mance of the AI reader as a single reader relative to single human
readers. The gap between the single-reader pathway and multi-reader
pathways is almost halved when AI is used in both.

The four AI-integrated scenarios present differing considerations
when it comes to implementation and clinical application. AI reader-
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replacement is conceptually straight-forward and is the least dis-
ruptive to the reader system as it retains a human decision-maker for
all episodes. As the overall reader structure is unchanged, every epi-
sode must have at least one human reader, the cancer prevalence for
the first reader remains the same, and only the third reader can viewAI
outputs. The limited exposure of readers to the AI reader outputs
mitigates the risks of negative human–AI interaction, but also limits
the upside of positive human–AI interaction. The AI band-pass sce-
nario offers perhaps the greatest potential for tuning the pathway,
allowing for improved performance while minimising the radiologist's
workload. However, having an AI reader make the final reading deci-
sion, without human involvement, faces challenges before clinical
adoption. Concerns relating to bias, quality assurance, and medico-
legal responsibility would need to be addressed23. With strong per-
formance, the AI reader-replacement and AI triage systems seemmost
promising for clinical implementation as their human-in-the-loop,
human-in-charge architectures minimise barriers to their adoption.

Our study features limitations based on constraints on what is
feasible in complex simulations using a retrospective cohort, andother
factors and considerations beyond the scope of this study. Here, we
did not account for the potential effects of a change in cancer pre-
valence that readers in both AI triage and AI band-passwill experience.
We also consider positive, neutral, and negative human–AI interaction
effects in isolation, and only for a single AI reader operating point.
Human readers are also likely to modulate their decisions based on
scores or other supporting information, which we did not consider.
Alongside prospective studies and further development of the data-
sets, translation into screening programmes will require, or be aided
by, other programmes of work not covered in this study, including (1)
Development of approaches to algorithm quality assurance to assess
bias and drift on an ongoing basis; (2) Deeper examination of AI
explainability for client and clinician, and their acceptance of AI reader
false negatives and positives; (3) Further development of algorithms to
focus on interval cancers (false negatives); (4) Utilising AI to predict
short-, medium- and long-term breast cancer risk and to support
personalised screening pathways. AI reader performance may be
improved by integrating a longitudinal view of episodes for a given
client overmultiple screening rounds, taking advantage of information
from prior screens as human readers do.

Taken together, we have shown, on a large retrospective dataset
under different scenarios and conditions, how an AI reader can be
integrated into breast cancer screening programmes to improve can-
cer detection, minimise unnecessary recall to assessment, and lower
human reader workload and cost. Our work extends previous research
by simulating arbitration reads and human–AI interaction, as well as
conducting thorough analysis and comparison across various AI-
integrated screening pathways using a common large retrospective
dataset and AI system. Our results provide insights into optimising
breast cancer screening outcomes throughAI positioning andpathway
design. Overall, our simulation results provide evidence that supports
the prospective evaluation of the AI-integration pathways studied here
and offers plausible approaches to the clinical implementation of AI
readers in breast cancer screening in the near future.

Methods
Inclusion and ethics
The conceptualisation, design and implementation of this study was
conducted with close collaboration between clinical staff working in
the organised populationbreast screening service in Victoria, Australia
and local academic researchers. This study was conducted using the
ADMANI datasets created from the state screening programme,
BreastScreen Victoria’s retrospective image and non-image database
which was accessed and governed under the executed license agree-
ment with BreastScreen Victoria and the BRAIx Project Multi-
Institutional Agreement. The study’s conduct was approved by the St

Vincent’s Hospital, Melbourne Human Research Ethics Committee
(SVHM HREC) approval numbers; LNR/18/SVHM/162 and LNR/19/
SVHM/123. All BreastScreen participants sign a consent form at
screening registration that provides for the use of the de-identified
data for research purposes. A unique identifier is used for the purposes
of the ADMANI datasets, with all image and non-image data de-
identified.

Screening programme
The BreastScreen Victoria screening programme is a population
screening programme targeted at women aged 40+ with those
between the ages 50–74 actively recruited. A typical BreastScreen
Victoria client has a mammogram taken with a minimum of four
standard mammographic views (left and right mediolateral oblique,
MLO, and craniocaudal, CC) every 2 years. Annual screening is offered
to a small proportion of high-risk clients (< 2%).

Every client undergoing screening through BreastScreen Victoria
experiences a standardised screening pathway and data generation
process (Supplementary Fig. 11). Each mammogram is read indepen-
dently by two breast imaging radiologists who indicate suspicion of
cancer, all-clear, or technical rescreen. If there is disagreement, a third
reader, with visibility of the original two readers’ decisions, determines
the final reading outcome. Clients with a suspicion of cancer are
recalled for assessment. At assessment, further clinical workup and
imaging is performed. Any clientwhohas a biopsy-confirmed cancer at
assessment (within six months of screening) is classified as a screen-
detected cancer (true positive). Any clients who are recalled but con-
firmed with no cancer after follow-up assessments are classified as
either benign or no significant abnormality (false positive). Clientswho
were not recalled at reading and do not develop breast cancer within
the next screening interval are classified as normal (true negative).
Clients who develop breast cancer between 6 months after a screen
and the date of their next screen (12 or 24 months) are classified as
interval cancers (false negative). The datasets we use are structured
around individual screening episodes of clients attending BreastSc-
reen Victoria. A screening episode is defined as a single screening
round that includes mammography, reading, assessment, and the
subsequent screening interval.

Study datasets
The datasets used in this study were derived from the ADMANI
datasets28. The ADMANI datasets comprise 2D screening mammo-
grams with associated clinical data collected from 46 permanent
screening clinics and two mobile services across the state of Victoria,
Australia. The entire datasets span 2013–2019, 2013–2015 were cancer
enriched samples and not used for testing, 2016–2019 were complete
screening years containing all episodes. Screening episodes that were
missing any of the standardmammographic views (left and right MLO
and CC), had incomplete image or clinical data, were were excluded
(Fig. 4). If a screening episode had multiple screening attempts only
the final attempt was used. Clients with breast implants or other
medical devices were included. After exclusions, a random number
generator was used to allocate 20%of all screening clients randomly to
the study cohort, only the complete screening years (2016–2019) were
included to ensure a representative sample. All screening episodes
associated with clients were then included in the study dataset. The
remaining 80% of clients and associated screening episodes were used
inmodel training anddevelopment. The study datasetwas further split
into testing (75% of clients in the study) and a development dataset
(25% of clients in the study) on which operating points were set. The
testing dataset comprised 149,105 screening episodes from 92,839
clients, and the development dataset 49,796 screening episodes from
30,946 clients (Table 2). The mammograms were processed using the
Python programming language version 3.6 using packages gdcm ver-
sion 2.8.9 and pydicom 2.1.2. The non-image datasets were processed
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using Python programming language version 3.11 using packages
numpy version 1.25.1 and pandas version 2.0.3.

The study dataset has strong ground truths for all cancers (screen-
detected and interval) and non-cancer (normal, benign, or no sig-
nificant abnormality (NSA) with no interval cancer). Cancer was con-
firmed by histopathology for screen-detected cancers or obtained
fromcancer registries for interval cancers. The histopathological proof
was predominantly from an assessment biopsy confirmed with sub-
sequent surgery. The ground truth for clients without cancer was a
non-cancer outcome after reading and no interval cancer (normal) or
non-cancer outcome after assessment and no interval cancer (benign
or NSA). Information on country of birth, whether or not the client
identifies as Aboriginal and/or Torres Strait Islander, and age was
collected at the time of screening. Responses for country of birth and
Aboriginal and/or Torres Strait Islander identification were aggregated
into categories of First Nations Australians and regions. No analysis on
sex or gender was performed as it was not available in the dataset.

Separately to the retrospective analysis a prospective dataset was
collected from December 2021 to May 2022. Data were collected in
real-time (daily) from a single reading and assessment unit (St Vin-
cent’s Breastscreen, Melbourne, Australia) using two mammography
machine manufacturers from December 2021 to May 2022. The pro-
spective dataset contains the same ground truth and demographic
information with the exception of interval cancer data as it was not yet

available at the time of publication. The prospective dataset consisted
of a total of 25,848 episodes and 108,654 images from 25,848 clients
with a total of 195 screen-detected cancers (Supplementary Table 5).

AI reader system
For this study, we used the BRAIx AI Reader (v3.0.7), a mammography
classificationmodel developedby theBRAIx researchprogramme. The
model is based on an ensemble of modern deep-learning neural net-
works and trained onmillions of screeningmammograms. We studied
and created an ensemble from ResNet30, DenseNet31, ECA-Net32,
EfficientNet33, Inception34, Xception35, ConvNext36 and four model
architectures developed specifically for our problem, including two
multi-view models that use two mammographic views of the same
breast concurrently37, and two single-image interpretable models that
provide improved prediction localisation and interpretability38. Each
model from the ensemble was implemented in PyTorch39 and trained
on data splits from the training set. Themodels were trained for 10–20

Table 2 | Summary and characteristics of data used in
the study

No. of episodes Test Development All

Age group

40 to 49 11,873 3874 15,747

50 to 59 58,835 19,596 78,431

60 to 69 54,491 18,284 72,775

70 to 74 19,482 6574 26,056

75+ 4424 1468 5892

Screening round

1 19,374 6474 25,848

2+ 129,731 43,322 173,053

Manufacturer

A 54,507 18,398 72,905

B 34,765 11,491 46,256

C 24,278 8118 32,396

D 16,702 5560 22,262

E 16,435 5425 21,860

Other 2418 804 3222

Country of birth

Australia 97,880 32,841 130,721

United Kingdom 9666 3133 12,799

Vietnam 3579 1182 4761

Italy 3340 1145 4485

Other 34,640 11,495 46,135

Risk category

None 34,325 11,499 45,824

Average 102,098 34,077 136,175

Moderate 7588 2532 10,120

High 5094 1688 6782

Personal history of breast cancer

Yes 683 250 933

No 148,422 49,546 197,968

Recalled for assessment 6871 2253 9124

Screening outcome

Screen-detected cancer 1042 316 1358

Interval cancer 287 100 387

Normal 141,968 47,449 189,417

Benign 3018 983 4001

No significant abnormality 2790 948 3738

Total 149,105 49,796 198,901

Fig. 4 | Screening episode exclusion criteria. Flow diagram of study exclusion
criteria for screening episodes from the standardised screening pathway at
BreastScreen Victoria.Missing data could be clinical data withoutmammograms or
mammograms without clinical data, clinical data could also be incomplete missing
assessment, reader or screening records. Earlier screening attempt refers to a client
returning for imaging as part of the same screening round, only the last attempt
was used. Failed outcome determination and failed outcome reduction refer to
being unable to confirm the final screening outcome for the episode. Missing
reader records refer to missing reader data. Inconsistent recall status refers to
conflicting data sources on whether episodes was recalled. Incomplete screening
years refers to years in which we did not have the full year of data to sample from
(2013–2015), these years were excluded from testing and development datasets as
they are not representative.
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epochs using the Adam optimiser40 with an initial learning rate of 10−5,
with weight decay of 10−6 and with the AMSGrad variant enabled41. The
training set was selected to have about a 10:1 ratio for non-cancers
(benign, no significant abnormality and normal) and screen-detected
cancers, respectively. To enforce a specific ratio, not necessarily all the
available non-cancer images in the dataset are used during the training
of the models. Images were pre-processed to remove text and back-
ground annotations outside the breast region, then cropped and
padded to keep the same height-to-width ratio of 2:1. Data augmen-
tation consisted of random affine transformations42.

The AI reader is image-based and produces a score associated
with the probability of malignancy for each image. Image scores are
combined to produce a score for each breast, and themaximumbreast
score is the episode score. Decision thresholds convert each episode
(or breast) score to a recall or no-recall decision. There are no mini-
mum number of images required. Elliptical region-of-interest annota-
tions are produced from the pixels that contribute most to the
classification score, and multiple regions are ranked by importance
(Supplementary Fig. 12). The reader has been evaluated on publicly
available international datasets and achieved state-of-the-art perfor-
mance (Supplementary Table 4). The distribution of episode scores
from the study dataset, useful for inter-study comparisons, are also
available (Supplementary Table 3).

Simulation design, operating points and evaluation metrics
To provide insights into the AI reader and its potential in clinical
application, we performed retrospective simulation studies, where we
evaluated the AI reader performance as a standalone reader and in
three AI-integrated screening scenarios. The simulation studies are
conducted using various packages in the R programming language
version 4.2.2, including dplyr version 1.1.0, tidyr version 1.3.0 and renv
version 0.15.543.

AI-integrated screening scenarios. Five scenarioswere considered to
evaluate the AI reader integrated in the screening pathway, AI stan-
dalone, AI single-reader, AI reader-replacement, AI band-pass, and AI
triage. In the one-reader pathway, the reader makes a decision on all
episodes, and the decision is final. This includes the AI standalone and
the AI single-reader scenarios. In the two-reader-and-consensus path-
way, the first two readers individually make a decision on whether or
not to recall the client for further assessment. If the two readers agree,
that is the final reading outcome. If they disagree, a third reader, who
has access to the first two readers’ decisions and image annotations,
arbitrates the decision. This pathway includes AI reader-replacement,
AI band-pass and AI triage scenarios.

In the AI standalone scenario, the AI reader replaces the (only)
human reader in the one-reader pathway andprovides the samebinary
recall or no-recall outcomeas the human readers on all episodes. In the
AI single-reader scenario, the AI reader acts as an assistive tool to
human readers. It provides the binary recall or no-recall outcome to
the human reader, but it does not make any decision on its own. The
human reader with access to the AI output would first make a decision
and then consider whether to revise its decision should there be dis-
agreement with the AI output.

In the AI reader-replacement scenario, the AI reader replaces one
of thefirst two readers in the screening pathway andprovides the same
binary recall or no-recall outcome as the human readers. The first and
second readers are replaced at random (with equal probability) for
each episode. As the AI reader could trigger a third read that did not
exist in the original dataset, the third reader was simulated for all
episodes even if an original third read was present. This approach is to
prevent unduly tying the result to the dataset and to obtain better
variability estimates. Sensitivity analysis, where the third reader uses
the real data when possible and where the replaced second reader is
used as the third reader, was also performed (Supplementary Table 6).

The third reader in our retrospective cohort operatedwith a sensitivity
of 97.5% and a specificity of 56.3%, and we simulated the third reader
with respect to this performance. Concretely, whenever an episode
reaches the simulated third reader, the reader will make a recall deci-
sion by first inspecting the actual episode outcomeand then using it as
a prediction 97.5% of the time if the outcome is cancer (and 2.5% of the
time using the opposite case as prediction), or 56.3% if the outcome is
normal. This is achieved by sampling from the uniform(0,1) distribu-
tion with the corresponding probability, and it ensures that the
simulated performance matches the real-world performance. Con-
fidence intervals were generated through 1000 repetitions of each
simulation.

As a remark, we emphasise that the simulation of the third reader
should be performed with reference to the real-world Reader 3, rather
than by reusing data of the earlier replaced readers (e.g. Reader 1 or
Reader 2)20,22. Reusing data is convenient, as the replaced readers have
seen all the episodes, and it avoids the simulation of the third reader.
However, this overlooks the fact that while Reader 1 and 2 make
independent judgements, they are conditionally dependent. In simple
terms, a difficult cancer case is difficult for any reader. In such cases,
the two readers would frequently miss together even when they make
independent judgement, and the overall sensitivity would drop if
either of them is used as an arbiter. In general, Reader 3 (the arbiter)
makes decisions differently than Readers 1 and 2 because Reader 3 has
access to their decisions and analyses. If Readers 1 and 2 were used in
place of Reader 3 for simulation, then the result would be distorted, as
we see in Supplementary Table 6.

In the AI band-pass scenario, the AI reader was used analogously
to a band-pass filter. The AI reader provided one of three outcomes:
recall, pass, and no-recall. All episodes with recall outcomes were
automatically recalled. All episodes with the no-recall outcome were
not recalled. All episodes with the pass outcomewere sent to the usual
human screening pathway. The AI reader made the final decision on
the recall and no-recall episodes with no human reader involvement,
and for all episodes that passed the human screening pathway, the
original reader decisions were used.

In the AI triage scenario, the AI reader triages the episodes before
the human readers. Episodeswith high scores continue to the standard
pathway, and episodes with low scores go through the pathway with
only 1 reader. For episodes sent to the standard pathway, the original
reader decisions were used, and for episodes sent to the single-reader
path, the reader decision is sampled randomly (with equal probability)
from the first and second readers. The AI readermade no final decision
on any of the episodes.

AI operating points. Three sets of operating points were used as part
of the study: theAI reader-replacement reader, theAI band-pass reader
and the AI triage reader. There are three sets for five scenarios because
the AI standalone reader and the AI single reader uses the same
operating point as the AI reader-replacement reader. All operating
points were set on the development set (Supplementary Fig. 13).

The AI reader-replacement operating point used a set of
manufacturer-specific thresholds to convert the prediction scores into
a binary outcome: recall or no-recall. The operating point was chosen
to improve on the weighted mean individual reader’s sensitivity and
specificity. The weightedmean individual reader was the weighted (by
number of reads) mean of the sensitivity and specificity of the indivi-
dual (first and second) radiologists when they were operating as a first
or second reader. For all operating points that improved on the
weighted mean individual readers sensitivity and specificity, the point
with the maximum Youden’s index44 was chosen.

The AI band-pass reader used two sets of manufacturer-specific
thresholds to convert the prediction scores into three outcomes:
recall, pass and no-recall. The AI band-pass simulationwas evaluated at
different AI reader thresholds via a grid search. At each evaluation, two
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thresholds for each manufacturer were set to a target high specificity
and high sensitivity point. All episodes with a score above the high
sensitivity point were given the recall outcome, all episodes below the
high specificity point the no-recall outcome, and all episodes in
between points were given the pass outcome. The final AI band-pass
reader thresholds were chosen from the simulation result with the
maximum Youden’s index of the points with non-inferior sensitivity
and specificity than that of the two readers with an arbitration system.

The AI triage reader used the 90% quantile of the prediction
scores as the threshold to convert the prediction scores into the triage
outcome: the standard pathway or the one-reader pathway. Episodes
with prediction scores less than the threshold are assigned to the one-
reader pathway; otherwise, they are assigned to the standard pathway.

When there is interaction between the AI reader and the human
reader, i.e. the humanmay revise their decision basedon theAI output,
the AI reader, in all cases, uses the reader-replacement operating point
(which is also the standalone operating point). To clarify, taking the AI
triage scenario as an example, the AI triage reader uses the triage
operating point to decide whether an episode should go to the stan-
dard pathway or the one-reader pathway. Once that is decided and the
episode reaches any reader, the reader would have access to an AI-
assist reading tool that operates at the reader-replacement operating
point. So overall, there would be two operating points functioning at
the same time.

Human–AI interaction. We simulate three interaction effects, the
positive, the neutral and the negative effect. All three interactions
involve an AI reader and a human reader. The AI reader first makes a
decision about recall (using the assistive operating point), and then the
human reader makes their decision with access to the AI output. The
human may adjust their decisions if they differ from the AI’s, and this
happens (100 × p)% of the time, where p is a parameter that varies
between 0 and 1 across multiple simulations. For example, when
p =0.1, human readers will adjust the decision 10% of the time when
their decisions differ from the AI, and when p = 1, human readers will
change all their decisions to align with the AI. This models the auto-
mation effect, which we refer to as the neutral interaction.

For positive interactions, the human readers would only adjust
the decision if the AI is correct. This models the situation where AI
enhances human readings by reducing occasionalmisses and assisting
in complex cases. And for negative interactions, the human readers
would change the decision only if the AI is incorrect. This models the
situation where human is confused by the AI reader’s output and
mistakenly changes their correct decision into an incorrect one.

Evaluation metrics. The AUC, based on the receiver operating char-
acteristic or ROC curve, is used to summarise the AI reader’s standa-
lone performance.

Sensitivity and specificity are used to compare the AI reader with
the radiologists and the AI-integrated screening scenarios with the
current screening pathway. Sensitivity, or the true positive rate (TPR),
is computed by dividing the number of correctly identified cancers
(the true positives) by the total number of observed cancers (all
positives, i.e. including both screen-detected cancers and interval
cancers). It measures the success rate of the classifier in detecting the
cancer. This is a key performance metric because early detection of
cancer leads to more effective treatment45, due to a timely interven-
tion, requirement for a less aggressive treatment, and improved sur-
vival rates. Specificity, or the true negative rate (TNR), is computed by
dividing the number of correctly identified non-cancer episodes (true
negatives) by the total number of observed non-cancer episodes (all
negatives). Itmeasures the success rate of the classifier in correctly not
recalling a client when cancer is absent in the client. This is a key
performance metric because unnecessarily recalling clients to the

assessment centre is costly and induces significant stress on clients
and their families46.

To compare the sensitivity and specificity of the AI-integrated
screening scenarios with the current screening pathway, McNemar’s
test (with continuity correction to improve the approximation of
binomial distribution by the chi-squared distribution) is used to test
for differences47, and the binomial exact test (one-sided) is used to test
for superiority. Both tests adhere to the correct design for McNemar’s
test, in which a 2-by-2 contingency table is constructed based on the
paired samples from the two comparison scenarios. The samples are
paired by the episode ID, and the tests are conducted once for each of
the sensitivity and specificity48,49 at a significance level of 5%. For the
effect size calculation, Cramér’s V (also known as Φ) is used for
McNemar’s test. It is calculated as

ffiffiffiffi
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, where χ2 is the test statistics and
N is the number of samples. For the binomial test, Cohen’s h is used,
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tics, and p2 is the expected proportion under the null hypothesis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data files are provided with this paper for all figures and tables.
The non-transformed image and non-image data that established the
ADMANI datasets were accessed under license agreement with
BreastScreen Victoria. Further details about the ADMANI datasets are
available in the data descriptor paper28. The three datasets used as
external validation are publicly available or available via request. The
ChineseMammography Dataset (CMMD) is publicly available from the
following website: https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=70230508. The Cohort of Screen-age
Women - Case-control (CSAW-CC) dataset is available via request
from the following website: https://snd.gu.se/en/catalogue/study/
2021-204. The BreastScreen Reader Assessment Strategy Australia
(BREAST Australia) is available via request from the following website:
https://breast-australia.sydney.edu.au/research/. Source data are pro-
vided with this paper.

Code availability
The codeused for training theBRAIxAI reader is basedonopen-source
algorithms and training techniques but is not able to be shared.We are
required to protect potentially commercially valuable project intel-
lectual property, which the source code constitutes, as part of our
multi-institution agreement and grant obligations. The description of
the model training procedure and models used are provided in the
Methods section and can be implemented with open-source frame-
works. Themain conclusions drawn in our work relate to our AI reader
simulation experiments. The code used to simulate the AI reader
operating within the screening programme and validate the external
results is available publicly43.
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