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Simple Summary: Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has
emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-
American (AA) women. In this article, we review molecular distinctions in Black/AA and White/
European-American (EA) QNBC biology as well as address potential non-genetic risk factors that
could be underlying this racially disparate burden. We aim to provide deeper insight and provide
a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to
improve outcomes for Black/AA QNBC patients.

Abstract: Black/African-American (AA) women, relative to their White/European-American (EA)
counterparts, experience disproportionately high breast cancer mortality. Central to this survival
disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such
as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well
characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative
subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar
to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role
in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the
racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive
biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention
and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into
reducing the breast cancer survival burden experienced by Black/AA women.

Keywords: quadruple negative breast cancer; triple-negative breast cancer; androgen receptor;
African-American; racial disparity; epigenetic modifications

1. Introduction

In the United States (US), breast cancer is the leading cancer diagnosis and the second
cause of cancer-related death in women [1]. Breast cancer is a heterogeneous disease that can
be subdivided into 4 major intrinsic molecular subtypes—either by immunohistochemical
(IHC) staining or PAM50 gene expression profiling [2]. The four breast cancer subtypes are:
(1) luminal A (ER+/PR+/HER−), (2) luminal B (ER+/PR+/−/HER2+), (3) HER2-enriched
(ER−/PR−/HER2+), and triple-negative breast cancer (ER−/PR−/HER2−, TNBC); these
breast cancer subtypes are used to identify targeted therapeutic treatment and potential
prevention options.

Breast cancer incidence and mortality rates differ significantly by race/ethnicity in
the US. Black/African-American (AA) and White/European-American (EA) experience
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notably higher incidence and mortality rates of female breast cancer across all ages com-
pared to American Indian/Alaskan Native (AI/AN), Hispanic, and Asian Pacific Islander
(API) subpopulations, with rates being the lowest among APIs [3,4]. These racial/ethnic
differences have been suggested to be primarily driven by higher rates of luminal A and B
molecular subtypes observed among AI/AN, Hispanic, and API women but higher rates of
TNBC observed among Black/AA and White/EA women [3]. Furthermore, White/EA and
API women display the highest rates of localized breast cancers (64–66%) but lowest rates
of regional stage breast cancer (27–30%). Whereas Black/AA and Hispanic women display
the lowest rates of localized disease (56–60%) but highest rates of regional disease (35%) [4].
Distant-stage (metastatic) breast cancer contributes to 8% of diagnoses in Black/AA women
compared to only 5–6% of diagnoses reported among other racial/ethnicities [4].

Among Black/AA and White/EA women, breast cancer disproportionately impacts
Black/AA patients. Although the incidence rates between Black/AA and White/EA
women are similar (126.7 vs. 130.8 per 100,000, respectively), Black/AA women experi-
ence a 40% higher death rate than White/EA women (28.4 vs. 20.3 per 100,000, respec-
tively). Black/AA women are significantly more likely to present clinically with aggres-
sive breast cancer subtypes such as TNBC, that lack an effective targeted therapy [3,5,6].
Black/AA women are twice as likely to be diagnosed with TNBC than White/EA women
(38 vs. 19 per 100,000, respectively). In contrast, White/EA women are more likely to
present with the least aggressive breast cancer subtypes, particularly luminal A breast
cancer, that is effectively targeted with current therapies [3,4]. Thus, Black/AA women
have fewer targeted treatment options compared to White/EA women, which has been
suggested to underlie the racially disparate burden in breast cancer. Additionally, among
all breast cancer subtypes, Black/AA women have the highest rate of recurrence and the
lowest survival [5–7]. Within TNBC, even after adjusting for age, stage, grade, and poverty
index, Black/AA patients experience significantly shorter survival (HR = 2.1, 95% CI:
1.1–4.0) compared to White/EA patients [8].

Recently a new molecular TNBC subtype has been identified —quadruple-negative
breast cancer (QNBC) [9–12]. Similar to TNBC, QNBC lacks expression of ER/PR and
does not overexpress HER2. In addition, QNBC lacks expression of the androgen receptor
(AR) [13]. The absence of AR expression in TNBC is linked to more aggressive clinical
features upon presentation, younger age at diagnosis, and shorter disease-free survival.
QNBC more frequently occurs in Black/AA women (relative to White/EA women) and is
emerging as a highly aggressive breast cancer subtype [10,13–16].

In this review, we examine and survey the current landscape of the racial health
disparity in QNBC and review unique molecular features that distinguish racially dis-
tinct QNBC tumors. We aim to encourage the discovery of novel targets for therapeutic
intervention in QNBC. Since QNBC frequently impacts Black/AA women and is highly
aggressive, improving the therapeutic targeting and prevention of QNBC has the potential
to substantially reduce Black/AA breast cancer disparities.

2. TNBC—The Triple Threat

TNBC is frequently referred to as a “triple threat” due to the absence of all three
major therapeutic breast cancer targets—ER, PR, and HER2. [17,18]. In addition, TNBC is
inherently more clinically aggressive than the other breast cancer subtypes as evidenced by
the higher frequency of metastasis and recurrence within 5 years of diagnosis [17,19,20].
Linked with these poor survival statistics, TNBC is characterized by the highest inter-
patient and intra-tumoral heterogeneity among the breast cancer subtypes [21,22]. Multiple
groups have dissected the heterogeneity of TNBC starting with Lehmann and colleagues,
who subdivided TNBC into six distinct molecular subtypes [23,24]. These subtypes in-
clude two basal-like subtypes (BL1 and BL2), immunomodulatory (IM), mesenchymal
(M), mesenchymal stem–like (MSL) and luminal androgen receptor (LAR). Liu et al., re-
cently integrated both long coding RNAs and mRNAs to classify TNBCs into 4 distinct
subtypes, (1) immunomodulatory (IM)—enriched with immune cell and cytokine signaling;



Cancers 2022, 14, 4484 3 of 15

(2) luminal androgen receptor (LAR)—enriched with AR signaling; (3) mesenchymal-like
subtype (MES)—enriched with growth factor signaling, and (4) basal-like immunosup-
pressed (BLIS)—enriched with cell cycle and DNA repair processes and downregulated
immune response [25].

TNBC subtypes differ in their aggressive biological potential. The two basal-like
subtypes (BL1 and BL2 or BLIS) and immunomodulatory (IM) subtypes carry a worse
prognosis, while the AR+ LAR subtype carries a more favorable prognosis. Black/AA
women more frequently have aggressive TNBC subtypes (BL1, BL2, and IM) and White/EA
women more frequently present with the less aggressive LAR subtype [7,10,26].

3. AR Signaling/Pathway

AR is a type I nuclear receptor that is expressed in multiple tissue types in both
sexes, including in the breast [27]. Although widely known to be instrumental in male
biology as ER is in female biology, AR also plays a critical role in female biology [28]. AR
is indispensable for both female fertility and breast growth [29]. The androgen, testos-
terone, is synthesized in the ovaries and adrenal glands in women and is converted to
dihydrotestosterone (DHT) or 17β-estradiol (E2) in breast tissue. DHT or E2 binds to the
AR or ERα to stimulate or inhibit cell proliferation [30–32]. When AR is not bound to its
ligand, it is located in the cytoplasm, bound to heat shock proteins. Upon ligand binding,
AR undergoes a conformational change, disassociates from heat shock proteins, becomes
activated, and dimerizes with another activated AR [27]. These AR dimers translocate
to the nucleus to bind to androgen-responsive elements (AREs) within target genes to
modulate transcription. This AR-mediated gene transcription can result in differentiation,
proliferation, apoptosis, or angiogenesis [33]. AR can also be activated independent of its
ligand via crosstalk with key signaling pathways such as PI3K/Akt, ERK, mammalian
target of rapamycin (mTOR), Wnt/β-catenin or via interaction with FOXA1 [34].

4. AR Pathway as a Therapeutic Target for TNBC

Nuclear AR is expressed in approximately 12–35% of TNBCs and has emerged as a
promising therapeutic target [35]. AR inhibitors and antagonists, such as enzalutamide and
bicalutamide, have elicited a promising response in vitro and in clinical testing. LAR TNBC
cell lines had a higher sensitivity to bicalutamide [23]. In AR-positive TNBC models, both
in vitro and in vivo, enzalutamide reduced proliferation, blocked invasion, and increased
apoptosis [36–38]. In women with metastatic AR-positive TNBC treated with enzalutamide,
in a nonrandomized phase II clinical trial, Traina and colleagues observed a clinical response
rate of 25% at 24 weeks and a median progression-free survival (PFS) of 14.7 weeks to [39].
Similarly, in AR-positive metastatic TNBC, bicalutamide elicited a clinical benefit rate of
19% at 24 weeks and a median PFS of 12 weeks [40].

Apalutamide is structurally similar to enzalutamide but does not induce AR nuclear
translocation or DNA binding [41]. Darolutamide antagonizes AR mutants such as F876 L,
W741L, and T877A [42]. Apalutamide and darolutamide are currently under evaluation
as promising new-generation AR inhibitors in phase III clinical trials for non-metastatic
castration-resistant prostate cancer (NCT01946204 and NCT02200614, respectively) [43].
Thus, these new AR inhibitors may be tested in AR-positive TNBC patients in the future.
Agents that target intracrine and adrenal androgen biosynthesis, such as the CYP17 in-
hibitors, abiraterone acetate and seviteronel, are also promising alternative treatments for
AR-positive TNBC. In a phase II multicenter trial with metastatic or inoperable locally
advanced AR-positive TNBC patients, abiraterone acetate (in combination with prednisone
to offset aldosterone production) elicited a clinical benefit rate (CBR) of 20.0% at 6 months
and median PFS at 2.8 months. Preliminary pharmacokinetic data from a phase I/II trial
with seviteronel showed a significant reduction in testosterone in AR-positive TNBC pa-
tients [44]. Preclinical studies also demonstrate that seviteronel may sensitize AR-positive
TNBC patients to radiotherapy [45]. Furthermore, since compensatory pathways often
crosstalk with the AR pathway, the future of AR inhibition will likely require the inclusion
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of targeted therapies that impair these alternative pathways. Cyclin D1 and Rb protein
expression is often upregulated in AR-positive TNBCs [46]. Thus, clinical trials are already
underway that combine AR inhibitors with CDK4/6 inhibitors, such as palbociclib and
ribociclib [44]. AR-positive TNBC biology is also characterized by PIK3CA mutations and
p-AKT [23,47,48]. A multi-institutional phase I/II study (TBCRC032) has commenced to
determine the safety and efficacy of combining AR inhibitors such as enzalutamide with
the PI3K inhibitor, taselisib, in metastatic AR-positive BC patients [49]. The combination
resulted in a significant increase in the CBR among AR-positive TNBC patients.

5. A Double-Edged Sword: Controversial Role of ARs in ER+ Breast Cancer and TNBC

Similar to ERs and PRs, the AR is a member of the nuclear steroid hormone receptor
family and transcriptionally regulates target genes. Testosterone and dihydrotestosterone
are androgens that directly or indirectly (as prohormones) stimulate AR-signaling [50,51].
Upon binding of androgens to an AR, the receptor translocates into the nucleus and binds
to the promoter of target genes to enhance transcriptional activity [51]. AR-signaling
plays an important role in both the development of normal breast tissue and in breast
tumorigenesis and progression [52,53]. Several studies have defined androgens as potential
tumor suppressors in ER-positive breast cancer with anti-proliferative activities. The
anti-proliferative activity of ARs in ER-positive breast cancer is thought to be the result
of crosstalk between AR and ER signaling pathways [54]. ERs promote proliferation
by binding to estrogen response elements (EREs) in cis-regulatory elements of estrogen-
regulated genes [51,55]. ARs can competitively bind to EREs to suppress estrogen-mediated
tumor proliferation [52,56].

In contrast to ER-positive breast cancer, ARs promote proliferation of ER-/PR-negative
breast cancer cell lines [57]. This finding is supported by studies by Garay et al. and
Doanne et al. who raised the possibility of therapeutic targeting of the androgen pathway
in TNBC [47,58]. Mechanistic studies in TNBC cell lines provide evidence that the AR
interacts with AREs and stimulates tumor cell proliferation in an androgen-dependent
manner [51].

Despite mechanistic studies in ER-/PR-negative cell lines, the role of AR signaling in
TNBC is controversial [59–61]. AR expression in TNBC has been reported to range from
as low as 7% to as high as 75% [61–65]. Studies investigating the prognostic role of the
AR in TNBCs have similarly reported diverse results. Multiple groups have reported that
negative AR status confers an aggressive disease course in TNBCs [12,63,64,66,67]. Loss of
AR expression has been associated with younger age at presentation, lower stage, grade,
mitotic scores, Ki-67, and lymphovascular invasion [60,61,63,68]. Additionally, several
groups have reported that lack of AR expression in TNBC is associated with an increased
risk of recurrence, distant metastasis, shorter DFS and shorter OS [63,69–74]. Paradoxically,
some other studies have shown the opposite trend where AR positivity has been associated
with younger age at diagnosis, higher nuclear grade, higher tumor stage, greater lymph
node metastases and increased mortality [38,61,63,64,68,69,75–77].

The controversy over the AR is attributed to multiple factors, including variation
in sample preservation (e.g., cold hypoxia time), use of different AR antibodies, staining
methods, scoring methods, cut off values, lack of external validation, confounding effects
of patient selection, and the existence of 15 different AR splice variants [78]. But perhaps
one of the most significant contributors to this controversy is biogeographic ancestry. In a
multi-institutional study, AR in TNBC was found to be a positive prognostic biomarker in
US and Nigerian (West African) cohorts but a negative prognostic biomarker in women
from Norway and Ireland [9]. This finding suggests that AR expression may confer a poor
prognosis in TNBC that occurs in women of European ancestry but a favorable prognosis
in women of West African ancestry. Differences in AR signaling networks in women of
different genetic ancestry, however, is poorly understood.
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6. QNBC—The Quadruple Threat

While some TNBC express AR, approximately 65–88% of TNBC lack AR expression.
AR-negative TNBC is called quadruple-negative breast cancer (QNBC: ER−/PR−/HER2−/
AR−) and is considered a “quadruple threat”. Accumulating evidence suggests that QNBCs
are significantly more aggressive than AR-positive TNBCs. QNBC has also been linked to
the clinically aggressive basal-like molecular phenotype; in contrast, AR-positive TNBCs
are linked with a less aggressive luminal phenotype [10,13]. Thus, QNBC is increasingly
recognized as an aggressive, hard-to-treat breast cancer subtype.

7. A New Racial Disparity in Breast Cancer: Characterization of QNBC Disparity in
Women of African versus European Ancestry

Recent studies provide evidence that the AR is differentially expressed in TNBC from
women of African- versus European-ancestry. Gasparini et al. showed that the frequency
of AR-positive TNBC was greater in White/EA versus Black/AA women (25.5% versus
16.7%, respectively) [12]. In a US cohort, it was revealed that among Black/AA compared
to White/EA TNBC patients, the percentage of patients negative for AR expression was
significantly higher (80.1% vs. 70.3%, respectively) [9]. Davis et al. corroborated these
findings by showing that in multiple publicly available cohorts, AR mRNA expression
was lower in TNBCs from Black/AA versus White/EA women, irrespective of ER and PR
status [10]. In the same study, 100% of Black/AA women with TNBC were shown to be
AR-negative. Several groups have also reported that QNBC is even more prevalent among
native West African than Black/AA women. In TNBC from East African and White/EA
women, AR expression levels were similar [9,11,79]. These findings suggest that low AR
expression in TNBC is strongly associated with West African-ancestry as opposed to East
African- or European-ancestry.

Emerging evidence suggests that QNBC is clinically more aggressive in Black/AA
versus White/EA women. PAM50 subtyping of AR-negative TNBC in TCGA, showed that
Black/AAs have a higher percentage of basal-like tumors than White/EAs (77% versus
70%, respectively) [10]. In addition, subtyping of the same AR-negative tumors, showed
that Black/AA women (compared to White/EA) have a higher percentage of aggressive
TNBC subtypes such as BL1 (24% versus 16%), BL2 (16% versus 12%), and IM (24% versus 19%)
subtypes but a lower percentage of the LAR (0% versus 2%) subtype [10,26]. Furthermore, among
women with AR-negative basal-like TNBC, Black/AA women exhibited a significantly
shorter time of progression than White/EA women [10].

8. Black/AA versus White/EA QNBC Biology: Novel Therapeutic Strategies to Reduce
the Racially Disparate Burden in QNBC

Accumulating evidence suggests that QNBC is a highly aggressive breast cancer
subtype and disproportionately impacts Black/AA women. Many groups have identi-
fied unique genes and pathways differentially regulated in QNBCs versus AR-positive
TNBCs for targeted therapeutic intervention. Consistent with the basal-like phenotype
associated with QNBCs, some studies have discovered that QNBCs are highly upregulated
in proliferative markers such as EGFR, Ki-67, CDK6, and topoisomerase 2a (TOPO2A)
compared to AR-positive TNBCs [12]. This evidence suggests QNBCs would be highly
susceptible to inhibitors of proliferation such as EGFR, CDK6, and TOPO2A inhibitors. The
cellular metabolic marker, long chain acyl-CoA synthetase 4 (ASCL4), was also found to be
significantly upregulated in TNBCs absent of AR expression, suggesting ASCL4 inhibitors
may be another viable therapeutic candidate [80]. Furthermore, as aligned with the highly
immunogenic biology of QNBCs versus AR-positive TNBCs, QNBCs have also been found
to be highly upregulated in T cell markers (CD4 and CD8), immune checkpoints (PD1,
PD-L1, and CTLA4), and immune signaling pathways (ILR2B, CCR5, NFKBII2) compared
to AR-enriched tumors [10]. These findings suggest that QNBCs may be highly sensitive to
immunotherapeutic strategies, such as PD-L1 inhibitors.
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However, with reports suggesting that QNBC is more aggressive in Black/AA than
White/EA women, there is an urgent need for therapeutic targets specifically associated
with QNBC disease in Black/AA women. Although limited, evidence suggests that dif-
ferentially expressed genes and pathways in Black/AA versus White/EA QNBC exist as
illustrated in Figure 1. Specifically, genes involved in immune cell signaling were found to
be differentially expressed between Black/AA and White/EA women with QNBC, such as
E2F1, NFKBIL2, CCL2, TGFB2, CEBPB, PDK1, IL12RB2, IL2RA, and SOS1 [10]. Further-
more, the CD4 T-cell marker and immune checkpoint genes PD-1, PD-L1, and CTLA-4,
were found to be significantly upregulated in Black/AA compared to White/EA QNBC.
Thus, QNBCs in Black/AA women may be highly susceptible to immunotherapeutic
intervention, which could aid in reducing the racially disparate burden in QNBC.
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Figure 1. Distinctions in QNBC molecular cell biology among Black/AA and White/EA patients.
Black/AA QNBCs have been shown to exhibit significantly upregulated levels of the T cell marker
antigen, CD4, and immune checkpoint genes, PDL-1, PD1, CTLA-4 compared to White/EA QNBCs.
In addition, Black/AA QNBCs have been reported to display significantly lower levels of CBL and
significantly higher levels of E2F1, NFKBIL2, and CCL2 gene expression. CBL negatively regulates
immune checkpoints; thus, downregulation of CBL in Black/AA QNBC cells can result in increased
immune checkpoint activity. Observed upregulation of E2F1 in Black/AA QNBCs may be a result
of increased IL2R signaling which can lead to hyperphosphorylation of Rb and thus, release of the
E2F1 transcription factor. Upregulation of NFKBIL2 in Black/AA QNBCs can lead to increased
transcription of cytokines and chemokines, such as CCL2. Abbreviations: PD-L1, programmed
death-ligand; PD-1, programmed cell death protein 1; CTLA-4, cytotoxic T-lymphocyte-associated
antigen 4; CBL, casitas B-lineage lymphoma; E2F1, E2 promoter binding factor 1; NFKBIL2, nuclear
factor kappa B subunit 2; CCL2, chemokine (C-C motif) ligand 2; CD4, cluster of differentiation 4;
IL2R, interleukin-2 receptor; JAK, Janus kinase; Rb, retinoblastoma.
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9. Spotlight on KIFC1: A Promising Target for QNBC in Women of West African Descent

Kinesin family member C1 (KIFC1) is a microtubule binding protein that confers the
survival of cancer cells with centrosome amplification, which is when a cell consists of
more than 2 centrosomes per cell or has abnormally voluminous centrosomes [81,82]. Cen-
trosome amplification is a hallmark of aggressive cancer as centrosome numbers are highly
conserved in normal cells [83]. When cancer cells are burdened with extra centrosomes,
they undergo erroneous multipolar spindle mitoses. These mitotic cell division errors
can lead to improper segregation of chromosomes into each daughter cell, resulting in
apoptotic cell death. KIFC1 blocks the apoptotic cell death program from occurring by
clustering the extra centrosomes at opposite poles of the cell via crosslinking microtubules.
This crosslinking allows cancer cells to undergo “pseudobipolar” spindle mitoses [82,84].
Thus, KIFC1 facilitates the persistence of genomically unstable cells and the expansion of
aggressive cellular clones. Therefore, KIFC1 has emerged as a biomarker of aggressive
breast cancer. Primary breast tumors overexpress KIFC1 relative to matched normal breast
tissue, while KIFC1 is expressed higher in TNBCs compared to non-TNBCs [85,86]. Nuclear
KIFC1 expression is associated with an advanced tumor grade as well as poorer OS and
progression-free survival in breast cancer [86]. In TNBC, KIFC1 is among the top 1% of
genes that are upregulated in TNBCs versus non-TNBCs and its overexpression is associ-
ated with a survival rate of <5 years [87]. Overexpression of KIFC1 in MDA-MB-231 and
MDA-MB-468 TNBC cell lines conferred enhanced cell survival versus vector controls [88].

It was shown that nuclear KIFC1 expression is an independent biomarker of poor
prognosis for Black/AA but not White/EA women with TNBC [89]. Furthermore, KIFC1
inhibition hindered proliferation and migration of Black/AA-derived TNBC cell lines to a
greater extent compared to White/EA-derived TNBC cell lines [89]. These findings suggest
that KIFC1 may be specifically critical for the progression of Black/AA TNBC biology
and that targeting KIFC1 in Black/AA women may help reduce the racially disparate
burden in TNBC. Since emerging evidence suggest that QNBCs are more aggressive in
Black/AAs versus White/EAs, we hypothesize that KIFC1 may also be a promising target
for Black/AA women with QNBC.

Furthermore, KIFC1 has been identified as the top hit among centrosome clustering
genes in a genome-wide Drosophila screen, suggesting it may be the best centrosome
clustering protein to target [82]. In TNBC, KIFC1 has also been identified as a malignant
cell-specific dependency factor, which supports KIFC1 inhibition as a highly effective
pharmacological strategy for aggressive TNBC [87]. Additionally, KIFC1 is non-essential
for healthy cells with 2 centrosomes but indispensable for proper cell division of cancer
cells with supernumerary centrosomes. Thus, KIFC1 inhibitors can selectively kill can-
cer cells burdened with extra centrosomes unlike standard chemotherapies [90]. Hence,
KIFC1 inhibition may be a promising anti-cancer strategy for QNBC women of West
African ancestry.

10. Black/AA versus White/EA QNBC Epigenomics: The Potential Role of Epigenetic
Modifications in the Racially Disparate Burden in QNBC

Epigenetic modifications such as DNA methylation, microRNA (miRNA)-mediated
gene silencing, histone posttranslational modifications and associated alterations in chro-
matin structure have long been shown to be key players in aggressive breast pathogenesis.
An increasing body of evidence suggests that differential epigenetic patterns exhibited
between Black/AA and White/EA women may be underlying the racially disparate burden
in breast cancer [91–95]. Specifically, certain epigenetic markers have been linked to the
predisposal of more aggressive breast cancer subtypes, such as TNBC and QNBC [96].
Recent evidence has identified distinct epigenomic profiles between TNBC and QNBC
tumors as both DNA and RNA epigenetic modifications have been known to modulate
androgen receptor expression. In particular, a molecular switch has been suggested to be
responsible for the transition of TNBC to QNBC, or inactivation of the AR in TNBC, via
hypermethylation of the AR promoter and/or miRNA-mediated transcriptional repression
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of the AR gene [97]. This transition has been suggested to promote more aggressive TNBC.
These epigenetic changes can also alter genes involved in critical processes such as DNA
repair, metabolism, and invasion/metastasis. Thus, differential epigenetic profiles could be
conferring increased prevalence of QNBC and more aggressive QNBC disease in Black/AA
compared to White/EA women.

Although limited, emerging evidence has begun to dissect the role of DNA methylation
and miRNA-mediated gene regulation in conferring increased QNBC incidence and aggres-
siveness. Differential DNA methylation patterns in oncogenes and tumor suppressor genes
among Black/AA and White/EA women have been observed to occur more frequently
among ER-/PR-negative as opposed to ER-/PR-positive breast cancers, which could be un-
derlying the increased incidence of TNBC and QNBC in Black/AA women [91,94]. miRNA
regulatory networks have been suggested to alter the expression of genes in signaling
pathways associated with QNBC and Black/AA QNBC, such as PD-1, PD-L1, CTLA-4, epi-
dermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), ACSL4,
S-phase kinase associated protein 2, and engrailed homobox1 [98]. Specifically, overexpres-
sion of miR-17-5p has been shown to downregulate PTEN, also suppressed in QNBC, via
targeting the 3′-untranslated mRNA region [99]. Overexpression of ACSL4, observed in
QNBC, has been discovered to occur via differential transcriptional mechanisms in the
ACSL4 gene and downregulation of miR-211-5p [100,101]. Overexpression of the EGFR, ob-
served in QNBC, was associated with downregulated miR-133a [102]. Increased miR-135b
expression was associated with AR-negativity in TNBC as well as a high proliferation index,
which occurs in QNBC, and suggested to promote QNBC pathogenesis via targeting the
TGF-β, WNT, and ERBB signaling pathways [103]. In an unpublished study, Angajala and
colleagues discovered miRNAs differentially expressed between Black/AA and White/EA
QNBC patients in The Cancer Genome Atlas (TCGA), which also correlated with AR ex-
pression, such as hsa-mir-135b, has-mir-18a, and has-mir-577, hsa-mir-500a, has-mir-181a-2,
has-let-7d, has-mir-92a-2, has-mir-150, has-mir-17, hsa-mir-92a-1, has-mir-30a, has-mir-210,
has-mir-455, hsa-mir-455, hsa-mir-130a, and has-mir-20a. The Women’s Circle of Health
Study identified single nucleotide polymorphisms (SNPs) in miRNAs in Black/AA women
that were associated with an increased risk for ER-negative and/or TNBC, specifically in
hsa-mir-219, hsa-mir-595, hsa-mir-204, and hsa-mir-513a-2 [104]. Hence, epigenetic repro-
gramming via DNA methylation inhibitors or miRNA mimics/inhibitors in Black/AA
women may help reduce QNBC incidence and aggressiveness in this patient subpopulation.

11. Black/AA versus White/EA QNBC Non-Biology: The Potential Role of Non-Genetic
Risk Factors in the Racially Disparate Burden in QNBC

Disparities in non-genetic risk factors have long been reported to contribute to the
gap in survival rates between Black/AA and White/EA women with breast cancer. These
non-genetic risk factors include lifestyle (i.e., diet, physical activity, sleep), socioeconomic
status (i.e., income level, education), access to quality oncological care (i.e., screening, health
insurance, transportation), reproductive factors (i.e., parity, age at menarche, breastfeeding),
anthropometrics (i.e., body mass index, waist/hip ratio), and comorbidities (i.e., obesity,
diabetes, hypertension) [7,105–107]. Black/AA women experience disproportionately
poorer access to adequate foods, physical activity, sleep patterns, breastfeeding, income
levels, education, healthcare/screening, and health insurance compared to their White/EA
counterparts [105,108]. Additionally, Black/AA women experience a greater burden of
co-morbid diseases than White/EA women [109]. These unequal living standards and
increased prevalence of co-morbid illnesses have also been suggested to underlie the
acquisition of more aggressive subtypes, such as TNBC, in Black/AA versus White/EA
women [7,105,108].

The Carolina Breast Cancer Study (CBCS) identified an association between increased
waist/hip ratio and an increased risk of developing the basal-like subset of TNBC [110].
Other non-genetic risk factors such as co-morbid conditions, poor sleep patterns, lack of
physical activity, stress, and lack of breast feeding have been linked to increased devel-
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opment of TNBC versus other subtypes via increased tumor-promoting inflammation.
Specifically, poor sleep can suppress the immune system, cause alterations in the methy-
lation of inflammatory genes such as IFN and tumor necrosis factor (TNF), as well as
upregulate cancer-stimulatory cytokines [111,112]. Physical activity can boost the anti-
tumoral immune response as well as prevent a high body mass index and waist/hip
ratio [113]. A lack of breastfeeding postpartum can lead to the mammary gland undergoing
involution, which can result in increased tissue inflammation [114,115]. Higher rates of
residence in low SES neighborhoods among Black/AA communities may lead to increased
psychological distress, which has been reported to elevate levels of inflammatory markers
such as interleukin 6 (IL-6) [105,116]. Lastly, co-morbid diseases such as obesity, diabetes
mellitus, and hypertension have all been reported to increase tissue inflammation. Obesity
can upregulate circulating levels of insulin, inflammatory cytokines such as IL-6, IL-8, TNF,
leptin, chemokines, and transforming growth factor beta (TGF-β) [105,117,118]. These
inflammatory markers can activate signaling networks that promote cell proliferation and
genomic instability, such as PI3K-AKT, signal transducer and activator of transcription
3 (STAT3), nuclear factor-KB (NFKB), EZH2 and Wnt signaling. Diabetes and hypertension
can also promote the upregulation of inflammatory cytokines [7,105]. Since the basal-like
and immunogenic subsets of TNBC are reflective of QNBC and Black/AA QNBC biology,
we postulate that these non-genetic risk factors may also play a role in the greater inci-
dence of QNBC and more aggressive QNBC disease among Black/AA women compared
to White/EA women as shown in Figure 2. Thus, further investigation into this link is
warranted to adequately address the racially disparate burden in QNBC.
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patterns, lack of physical activity, stress, low socioeconomic status (SES), and lack of breast feeding
has been linked to aggressive basal-like TNBC biology, which reflects QNBC, via upregulating
tumor-promoting inflammation and downregulating antitumor immunity. Abbreviations: IFN,
interferon; TNF, tumor necrosis factor; IL-6, interleukin-6; IL-8, interleukin-8; TILs, tumor infiltrating
lymphocytes; TCR, T cell receptor.

12. Conclusions and Future Perspectives

Addressing the racial disparity in the highly aggressive breast cancer subtype, QNBC,
could significantly contribute to reducing the racially disparate burden in breast cancer.
We assert that successfully addressing this subtype disparity would require a multifaceted
approach. Particularly, the US and worldwide racial disparity in QNBC is still poorly
defined and documented. We suggest large cancer statistics programs such as the Surveil-
lance, Epidemiology, and End Results (SEER), Center for Disease Control and Prevention
(CDC) as well as predominately Black/AA cohorts such as the CBCS and Women’s Circle
of Health Study (WCHS) investigate current statistics on the prevalence and impact of
QNBC. Within these studies, we recommend controlling for non-genetic confounding
factors such as SES and access to care. We also suggest increasing the pool of Black/AA
women in publicly available datasets to better define the impact of AR expression in TNBC
tumors of West African descent, and thorough investigating potential molecular targets
for racially distinct QNBC tumors. Furthermore, we propose increased investigation of
AR IHC-based expression for identification of optimal staining methodologies and cut-off
values to successfully incorporate AR evaluation into routine clinical practice for QNBC
women of West African descent. We strongly advocate for high-granularity genetic ancestry
typing in these studies to refine risk-stratification of subpopulations most susceptible to
specific therapeutic strategies for QNBC.

In addition, we recommend increased research into the molecular and biological
mechanisms underlying increased QNBC incidence and mortality among individuals of
West African descent, as well as how AR signaling differs between TNBC from Black/AA
and White/EA women for optimal therapeutic intervention. We propose investigations
into the role of KIFC1 as a potential therapeutic target for QNBCs of West African ancestry.
Our overview of preliminary evidence suggesting that epigenetic modifications may be
predisposing Black/AA women to QNBC pathogenesis suggest increased investigation
into the role of other epigenetic modifications in the racially disparate burden in QNBC
as well as into novel treatment strategies targeting these modifications. Furthermore, we
encourage addressing the previously mentioned non-genetic risk factors, such as lifestyle
and SES, in order to adequately address this new clinical challenge.
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