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Abstract: Intercellular communication occurring by cell-to-cell contacts and via secreted messengers
trafficked through extracellular vehicles is critical for regulating biological functions of multicellular
organisms. Recent research has revealed that non-coding RNAs can be found in extracellular
vesicles consistent with a functional importance of these molecular vehicles in virus propagation and
suggesting that these essential membrane-bound bodies can be highjacked by viruses to promote
disease pathogenesis. Newly emerging evidence that coronaviruses generate non-coding RNAs and
use extracellular vesicles to facilitate viral pathogenicity may have important implications for the
development of effective strategies to combat COVID-19, a disease caused by infection with the novel
coronavirus, SARS-CoV-2. This article provides a short overview of our current understanding of
the interactions between non-coding RNAs and extracellular vesicles and highlights recent research
which supports these interactions as potential therapeutic targets in the development of novel
antiviral therapies.
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1. Introduction

Non-coding RNAs (ncRNAs) constitute ~90% of the human transcriptome. Despite the ubiquitous
nature of ncRNA expression, most early research into their functions focused on large ribosomal
RNAs (rRNAs). These conserved non-coding components of ribosomes are crucial for the binding of
messenger RNAs (mRNAs), recruitment of aminoacylated transfer RNAs (tRNAs), and catalyzation of
the peptide bond between two amino acids [1,2]. However, as next-generation sequencing technologies
revolutionized the exploration of transcriptomes, a diverse array of novel ncRNAs have been rapidly
characterized. It is now apparent that ncRNAs regulate a myriad of important functions in cell
differentiation and development and that functional defects in genome-encoded ncRNAs are associated
with a wide spectrum of cancers and infectious diseases [3,4].

Non-coding RNAs are arbitrarily categorized into classes comprised of small ncRNAs and
long ncRNAs (lncRNAs). Small ncRNAs are a diverse group of molecules composed of less than
200 nucleotides and exemplified by species such as transfer RNAs (tRNAs), tRNA-derived fragments
(TFs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), promoter-associated small
RNAs (PASRs), PIWI-interacting RNAs (piRNAs), small interfering RNAs (siRNA), and microRNAs
(miRNAs). To date, miRNAs and tRNAs are the most extensively studied members of this class of
ncRNAs. They are composed of 22 and ~75 ribonucleotides, respectively. In contrast, lncRNAs are
very heterogeneous in size with species in this class ranging from several hundred to tens of thousands
of ribonucleotides. Currently, GENCODE (v. 35) has annotated 10,671 lncRNA gene loci in humans
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and these can be transcribed from both the sense and antisense strands to produce tens of thousands of
transcripts [5,6]. According to some estimates, more than 60% of transcribed RNAs have antisense
complements generated through this mechanism [7–9].

Importantly, miRNAs and lncRNAs can also serve as potent regulators of the pathogenic
mechanisms underlying host–virus interactions. For instance, viruses can successfully compete for
the metabolic resources of the host needed to facilitate viral reproduction by exquisitely modifying
host cellular metabolism through generating exogenous ncRNAs that cause dysregulated expression
of tens to hundreds of host genes involved in metabolic control [10,11]. Additionally, some of the
affected genes encode ncRNAs that appear to be important components of the switch to a virus-induced
pathogenic transcriptome within the host. Recently Xu and co-workers [12] explored these interactions
by RNA-seq analysis of transcriptomes in cells experimentally infected by human foamy virus and
identified 4729 lncRNAs that were upregulated and 6588 that were downregulated in response to
infection illustrating the significant impact that this virus has upon the host transcriptome.

A novel mechanism for the transport of viral ncRNAs appears to involve the subversion of
membrane-bound extracellular vesicles (EV) that are secreted by eukaryotic cells into the extracellular
milieu [13,14]. When first discovered during the 1980s, these EVs, ranging in size from tens to thousands
of nanometers, were believed to function primarily in the cellular debris removal. However, it is now
known that EVs transport large cargos of proteins, RNAs, lipids, and small molecular regulators and
play crucial roles in intercellular communication. More recently, viruses have been shown capable of
exploiting EVs to traffic in and out of cells and a rapidly growing literature implicate EVs as important
mediators of the mechanisms orchestrating the viral manipulation of the host’s immune system.
Intriguingly, newly emerging findings suggest that coronaviruses can generate their own ncRNAs
and involve host ncRNAs in virus infection [15–19]. Moreover, cells infected with coronaviruses may
produce exosomes that can transfer angiotensin converting enzyme 2 (ACE2), the receptor for the
SARS-Cov-2 entry, to other cells and thereby make them susceptible to virus docking [20]. Finally,
it has been suggested that exosomes may play an important role in the COVID-19 reinfection [21].
An in vitro study on SARS-CoV-1 cultured in AT2 cells revealed that the virions can be seen within the
double membrane vesicles [22].

Given the emerging roles of ncRNAs and EV trafficking in viral pathogenesis, especially in
the context of the current renewed impetus to search for novel strategies that could prevent global
pandemics such as COVID-19, a disease caused by infection with the novel coronavirus, SARS-CoV-2,
we review studies that provide a clearer understanding of the interactions between ncRNAs and EVs
and highlight the potential that such trafficking may represent a novel target for the development of
effective antiviral therapies.

2. Emerging Role of miRNAs in Promoting Viral Diseases

The first known miRNA, lin-4, was discovered in the nematode Caenorhabditis elegans [23].
This 22-nucleotide transcript forms complementary base-pairs with sequences in the 3′ untranslated
region (3′UTR) of mRNA encoding the LIN-14 protein. Although the interaction involves only 10 out
of 22 nucleotides, the so-called seed sequence, the binding of lin-4 miRNA to seven sites in the targeted
mRNA significantly decreases production of LIN-14 protein and reprograms the timing of larval
development. Since, the discovery of lin-4, thousands of miRNAs have been characterized in plant,
animal, and viral genomes. The miRNA database (miRDB) currently lists 2656 annotated human
miRNAs with 1,610,510 gene targets [24]. These miRNAs have been shown to regulate a diverse array
of cellular processes during normal eukaryotic cell function by binding to targeted mRNA species and
inducing mRNA degradation and/or translational repression [25–32]. Importantly, miRNAs have also
been revealed as key mediators of tumorigenesis and cardiovascular, neurological and many infectious
diseases [33–36]. Some viruses (e.g., Kaposi’s sarcoma-associated herpesvirus (KSHV)) have been
shown to produce miRNAs that induce glycolysis in the host as a mechanism to acquire necessary
energy for successful infection [11,37].
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A canonical pathway for cellular miRNA biogenesis has evolved as a potent defense against
viruses allowing infected organisms to unleash RNA interference (RNAi) mechanisms and modify
their non-coding transcriptomes [38]. In this pathway, cellular miRNAs are generated from the primary
miRNA (pri-miRNA) transcripts, which are synthesized in the nucleus by RNA polymerase II, with the
help of an ATP-dependent RNase named Drosha. The resulting precursor miRNAs (pre-miRNAs) are
then exported to the cytoplasm where they are trimmed by another RNase, Dicer, to ~22 nucleotide (nt)
double-stranded miRNA duplexes composed of guide and passenger strands. Guide strands associate
with multi-subunit protein assemblies known as RNA-induced silencing complexes (RISCs). The guide
RNAs recruit the RISC complex to mRNAs with the complementary sequences. Finally, an RNase III
component of RISC known as Argonaute (AGO) cleaves the mRNAs targeted by guide RNAs [39].

It is now clear that this canonical pathway can also be subverted by viruses as the host cellular
machinery is utilized to produce exogenous, viral miRNAs that appear to be an important component
of the mechanism of infection. Many studies demonstrate that viruses use miRNAs to modify both
cellular and viral gene expression [40]. Most of them refer to miRNAs encoded by DNA viruses
such as adenoviruses, ascoviruses, polyomaviruses, and herpesviruses which have access to the
nuclear processing factors. For example, KHSV encodes 25 miRNAs. In KSHV-associated cancers
they can account for as much as 20% of all mature miRNA species within an infected cell. Fourteen
KSHV-encoded miRNAs can be readily detected in patient exosomes [41] (see Table 1). Given that
RNA viruses reproduce in the cytoplasmic space, only a few miRNAs encoded by these viruses are
known [18]. As such, viral miRNAs constitute an efficient tool for modifying the host cell environment
to enhance virus propagation given a single miRNA may post-transcriptionally regulate tens to
hundreds of host protein-coding transcripts and lncRNAs.

Illustrating the importance of miRNA in the mechanism of infection, viral miRNAs can regulate
expression of both viral and host genes to coordinately regulate host-virus transcriptomes in ways that
allow the virus to successfully suppress the host’s immune defenses. For example, the Epstein–Barr
virus (EBV)-encoded BART6 miRNA targets genes of the retinoic acid-inducible gene I (RIG-I) signaling
pathway to inhibit the induction of antiviral immune responses [42].

Alternatively, through the acquisition of unique binding sites allowing interaction with a specific
host miRNA, some viruses mimic the canonical action of endogenous cellular miRNAs within the
host as a novel strategy to defeat the host’s immune response whereby normally miRNA binding to
3′UTR would destabilize transcripts or repress translation. For example, binding of the myeloid-cell
derived miR-142-3p to the 3′UTR of the mosquito-borne North American eastern equine encephalitis
virus (EEEV) is actually associated with reduced induction of the host innate immune response [43].
Less frequently, as exemplified by the interaction of the liver-specific miR-122A RNA with the hepatitis
C virus (HCV), miRNAs bind to the 5′UTRs of viral RNA genomes [44]. Another interesting mode of
virus-endogenous cellular miRNA interaction takes place during bovine viral diarrhea virus (BVDV)
replication. The sequestration of host-expressed miR-17 RNA by this pestivirus confers a functional
de-repression of multiple cellular miR-17 targets and extensively modifies the host transcriptome [45].
Most recently, a computational study predicted that six human miRNAs (miR-21-3p, miR-195-5p,
miR-16-5p, miR-3065-5p, miR-424-5p, and miR-421) may be able to bind to genomic RNAs of all seven
human coronaviruses [15]. Because miR-21-3p expression is upregulated 8-fold in the lungs of mice
infected with SARS-CoV-1, such proposed interactions with the virus appear very likely to affect
the course of SARS-CoV-2 infection. At present, it is unclear why coronaviruses do not eliminate
the binding sites for the host miRNAs. The authors speculate that the miR-21-3p might slow down
coronavirus replication in the early stages of infection and thus delay the activation of host’s immune
response [15]. Nonetheless, viral interaction with endogenous host miRNA represents an important
aspect of viral pathogenesis that warrants much greater attention and study.

In that regard, according to the miRBase depository, miRNAs have been identified in 237 organisms
and 34 viruses with most of the listed miRNAs being expressed by DNA viruses [46]. Whether RNA
viruses such as coronaviruses and flaviviruses encode miRNAs is controversial and under cautious
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investigation [47]. Currently most insight into SARS-CoV-1 and SARS-CoV-2-encoded miRNAs has
been acquired primarily by computational approaches [17,48]. For example, Fulzele and co-workers
found almost 900 human miRNAs that are predicted to bind to genomic RNAs of both SARS-CoV-1 and
SARS-CoV-2 [16]. Saçar Demirci and Adan predicted that 30 SARS-CoV-2 miRNAs could potentially
target 1367 human genes and that many known human miRNAs may be able to target genes encoding
viral structural and non-structural proteins [17]. Such studies suggest a significant interaction between
SARS viruses and genomic RNAs in humans.

Several rodent studies generally point to this link as well. Next-generation deep sequencing
studies discovered the presence of three small ncRNAs in lung cells of SARS-CoV-1-infected mice [18].
These three molecules, composed of 18–22 ribonucleotides, are named svRNA-nsp3.1, svRNA-nsp3.2,
and svRNA-N as they are derived from the genomic RNA regions encoding SARS-CoV-1 non-structural
protein 3 (nsp3) and nucleocapsid protein (N), respectively. Because SARS-CoV-1 replicates in
cytoplasm, the svRNAs are believed to be generated by Drosha-independent process. Alternatively,
they might be processed by Drosha re-localized to the cytoplasm [49]. Loss-of-function studies
using antisense oligonucleotides suggest that svRNAs do not significantly contribute to SARS-CoV-1
replication. However, administration of anti-svRNA-N locked nucleic acids (LNAs) prior to infection
with SARS-CoV-1 reduced pulmonary inflammation and production of pro-inflammatory cytokines in
mice [18]. The latter observation is very interesting as it suggests that svRNA-N contributes to lung
pathology by regulating mRNAs involved in the inflammatory response via the RNAi mechanism.
If independently confirmed, the investigations of the svRNA-N roles may lead to novel therapeutic
treatments to ease suffering caused by COVID-19.

3. lncRNA: Potent Regulators of the Viral Life Cycle and Host Responses to Infection

Some lncRNAs are transcribed by polymerase III, however, the majority of lncRNAs are transcribed
by RNA polymerase II [50]. They are frequently 5′-capped, spliced and have 3′-terminal poly(A)
tails. In many ways, lncRNAs structurally relate to mRNA except that they do not encode peptides.
In infected cells, lncRNAs are often involved in the transcriptional regulation and remodeling of
chromosomes, suppressed repression of target mRNAs, and the generation of miRNAs [51–54].
Moreover, they interact with host proteins and miRNAs, leading to profound yet unexpected effects
on virus replication [55,56]. For example, when infecting cells with vesicular stomatitis virus (VSV),
Wang et al. identified a lncRNA that, when depleted, inhibited replication not only of VSV, but also
herpes simplex virus 1 and vaccinia virus. This study implies that unrelated viruses might use the
same host lncRNA to boost their replication. Moreover, it indicates that there are scores of lncRNAs
which might use novel unpredictable approaches to enhance their chances of survival in the hostile
environment of the host cells [56].

The use of lncRNAs during viral infections is an energy-efficient strategy that likely evolved as an
alternative to protein synthesis given the typically small size of viral genomes. Next generation deep
sequencing studies indicate that a focus solely on protein coding genes leads to greatly underestimating
the true breadth of the human transcriptome. While protein coding transcripts are annotated for only
~2% of genome, a broad spectrum of lncRNAs that do not code for proteins are transcribed across
the remaining ~90% of the genome or “dark matter” [57]. It is estimated that the number of lncRNA
transcripts produced by human cells could approximate 200,000 [58]. Importantly, the rich sequence
information and structural potential collectively inherent in these abundant host and viral lncRNA
populations is sufficient to support all mechanisms necessary to regulate cellular processes and viral
life cycles either directly as naked RNAs or indirectly via their protein ligands. The interactions
between host and viral lncRNAs generally occur in the cytoplasm and the nucleus of the host.
However, recent studies demonstrate that these interactions also take place in the extracellular space as
lncRNAs are constantly shuttled between cells further suggesting that the biology of these RNA species
is diverse enough to accommodate ample opportunity for adaptation in response to evolutionary
pressures [59–62].
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It is challenging to organize a lncRNA taxonomy of clearly defined, discrete functional categories
given the diversity of lncRNA species and their inherent potential to regulate cellular processes.
One useful albeit broad strategy is to classify lncRNAs as either infectious or non-infectious species
largely based upon their influence upon the host transcriptome. Cytoplasmic lncRNAs generally
regulate cellular homeostasis while in contrast, viral lncRNAs dysregulate cellular metabolism and
promote an “infection” transcriptomic signature that alters normal cellular function by directing key
pathways toward the production of viral progeny within the host independent of normal cellular
responses to homeostatic signals [63–65]. Readers wishing to learn more about functions of human
lncRNAs that are not directly implicated in virus propagation are advised to study excellent reviews by
Guttman and Rinn [66], Engreitz et al. [67], Rinn and Chang [68], and Villegas and Zaphiropoulos [6].

Viruses have developed sophisticated mechanisms to evade the multi-pronged antiviral responses
mounted by the host cell in response to infection. One of the most potent of these viral strategies
utilizes error-prone polymerases to synthesize viral lncRNAs that display only modest sequence
conservation in contrast to endogenous cellular lncRNAs which are transcribed primarily by the
high-fidelity RNA polymerase II [69]. Thus, these viral lncRNAs elude selective pressures endured
by cellular lncRNAs. This error-prone “sloppy” transcription mechanism highlights an advantage
inherent in the lncRNA-based strategy compared to protein-based approaches. To improve virus
viability, viral lncRNAs may both bind to host mRNAs to facilitate their degradation and to viral
transcripts to stabilize them [70]. These actions coordinately shut-off host cell protein synthesis and
trigger selective translation of viral mRNAs, a coordinate regulation not easily accomplished by
protein-based mechanisms.

A diverse array of other evasive viral mechanisms utilizing lncRNAs have been characterized.
For instance, some lncRNAs like subgenomic flaviviral RNAs (sfRNAs) play crucial roles in packaging
viral genomes and boosting the release of virions [10]. Experiments with yellow fever virus
demonstrated that sfRNAs may also play crucial roles in increasing efficiency of viral replication and
cytopathicity in infected cells [71]. In another strategy, lncRNAs are used to maintain viral latency and
block apoptosis of infected cells [54,72]. Several studies have likewise demonstrated that lncRNAs help
in establishing virus-assisted malignant transformation [73,74]. Moreover, viral lncRNAs can impart
resistance to the host antiviral responses by affecting differentiation and functions of T cells [75,76].
Finally, it appears that viruses may also be able to direct expression of endogenous lncRNA transcripts
encoded by the host genome. While SARS-CoV-2 itself is unlikely to produce lncRNA, researchers
discovered 504 differentially regulated lncRNAs in the transcriptome analysis of SARS-CoV-1-infected
mouse lung tissue [19]. As our knowledge of lncRNA functions is still very limited, it is presently not
clear which of the 504 lncRNAs may help the virus to usurp the host metabolic resources or which of
them are being used to defend the host.

4. Extracellular Vesicles: Their Structure and Functions in Intercellular Communication

Efficient and highly controlled cell-to-cell communication is vital to maintain cellular homeostasis
and overall physiological health of multicellular organisms. This communication is achieved
through diverse cellular mechanisms. The best characterized of these mechanisms involve conveying
information either via direct cell-to-cell contacts or through indirect signaling by the local secretion
of molecules. In the early 1980s, another communication mechanism was discovered involving
extracellular membrane-bound vesicles (EVs) [77,78]. Based upon their sizes and provenance, EVs can
be separated into two distinct groups [79]. Exosomes, the smallest group, are approximately 100 nm
in diameter while microvesicles (MV) or ectosomes, the largest group, may reach 1000 nm in
diameter [13,80]. Though exosomes have endocytic origin, ectosomes are produced by the outward
budding of plasma membranes directly into the extracellular space and thus, in contrast to exosomes,
the release of ectosomes into the extracellular space does not entail exocytosis [81]. Apoptotic bodies
(ABs) and large oncosomes (LO) that are produced by blebbing from apoptotic and non-apoptotic
membranes, respectively, are often considered extosomal [82–84].
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Importantly, almost all cells can secrete EVs, thus, potential viral interaction with EVs is a
largely ubiquitous opportunity present across a diverse array of cell types [85]. Given their size, EVs
are capable of packaging a broad array of molecules and molecular complexes. The packaging of
cargo is EV class dependent as exosome cargo is preferentially selected using diverse processes that
involve highly conserved components such as Rab GTPases and the endosomal sorting complexes
required for transport (ESCRTs) proteins [86,87]. Recent evidence suggests that at least some ESCRT
components participate in the selection and accumulation of cargo components in the ectosome lumen.
Once released, EVs can either bind neighboring cells to modify the local microenvironment or travel
passively through body fluids such as blood, lymph, and spinal fluid to reach distant target cells, which
take them up by multiple mechanisms [88–90]. The structure of exosome and ectosome membranes
and composition of cargo which these EVs are transporting reflects the metabolic status of cells from
which these EVs originated. Recently, some viruses have been shown capable of exploiting EVs to
traffic in and out of cells suggesting that EVs serve as important carriers of viral cargo as well [91].
Therefore, both exosomes and ectosomes represent promising targets for research that aims to improve
disease diagnosis and drug delivery as well as potential trafficking mechanisms that can be hijacked
by opportunistic viruses.

5. Circulating Small and Long ncRNAs

The discovery that viruses can exploit exosomes to their benefit initiated a search to identify viral
signatures in EVs [92,93]. The best characterized ncRNA species identified as EVs cargo are miRNAs
transported by exosomes. The latest release of miRBase, the largest public repository of miRNAs, lists
48,860 mature miRNAs across 271 organisms [94]. Within the human genome, 2654 mature miRNAs
have thus far been identified. Computational studies suggest that such a cohort of miRNAs would be
sufficient to regulate a majority of human protein-coding genes given that single miRNAs are often
predicted to be able to target as many as 300–600 different mRNA transcripts [95]. Most human miRNAs
have been implicated in controlling molecular pathways which regulate cellular differentiation, growth,
homeostasis, responses to stress, and the initiation of immune defenses against pathogens. Importantly,
the list of human miRNAs that have been found in exosomes is growing steadily. In terms of exosomal
signatures, the best characterized to date represent exosome-packaged miRNAs that are implicated
in tumorigenesis because they may be useful for early cancer diagnosis. Much less is known about
miRNAs implicated in viral infection.

The miRNAs related to viral infection can be divided into two categories. The largest includes
miRNAs that are produced by the host in response to viral infection. The second, much smaller category
includes virus-encoded miRNAs (vmiRNAs). Work to better understand these miRNAs is hampered
by the current lack of public repositories dedicated for vmiRNAs while, unfortunately, the Vir-Mir and
VIRmiRNA databases that were established in 2008 and 2014, respectively, are not currently updated
by their founders [96,97]. However, despite these structural limitations, advances in our understanding
of vmiRNA are being made. For instance, the miRBase (Release 22.1) lists ~200 vmiRNAs encoded in
genomes of 21 DNA viruses [94]. Ten human pathogens—Esptein–Barr virus (EBV), Herpes simplex
viruses (HSV-1 and HSV-2), Cytomegalovirus (hCMV), Kaposi’s sarcoma-associated herpes virus
(KSHV), Herpes B virus (HBV), Torque teno virus 1 (TTV1), human papillomavirus (HPV), human
T-lymphotropic virus (HTLV), and polyomaviruses—have been shown to collectively express 67
vmiRNAs. This group is dominated by herpesviruses which after the initial infection often remain
latent within specific host cells and may subsequently reactivate. Some of these viruses cause human
malignancies (EBV, KSHV), birth defects (hCMV), and a wide array of generally non-overlapping
clinical syndromes (HSV1 and 2, HBV, and TTV1). The interplay between cellular miRNAs and HSV-1
and HSV-2 seems to be crucial for establishing latency in infected cells. Furthermore, a human torque
teno virus encodes a microRNA that inhibits interferon signaling suggesting that a diverse array of
pathogenic functions for vmiRNA will likely be ascribed to vmiRNAs [98].
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Importantly, the list of vmiRNAs found in exosomes is also growing. The first vmiRNAs excreted
via exosomes were identified in studies involving EBV-infected cells [99,100]. The EBV exploits
an miRNA-mediated mechanism to stimulate malignant growth of neighboring cells and weaken
the immune system of the infected host and the observation that EBV vmiRNAs are present in
exosomes suggests that exosomal trafficking may be one mechanism by which the virus delivers
these critical miRNA to the host to facilitate viral propagation. Presently, we know that KSHV [11,
41), HSV-1 [101,102], HSV-2 [103,104], and hCMV [105–107] also produce vmiRNAs that can travel
in exosomes. Interestingly, KSHV-encoded miR-K12-11 shares a 100% seed sequence homology with
human ortholog miR-155. Both miRNAs are able to attenuate TGF-β signaling and thus facilitate viral
infection and tumorigenesis [108].

Despite their small size, exosomes can entrap whole non-enveloped viruses like hepatitis E virus
(HEV) facilitating the non-lytic exit of these viruses and enabling the virus to evade host’s immune
system [109]. Moreover, exosomes can incorporate full-length genomic RNA from hepatitis C virus
(HCV) and hepatitis A virus (HAV) [110–112]. These observations clearly indicate that exosomal
trafficking is a viable mechanism that viruses can subvert further supporting the notion that identifying
viral signatures in EVs represents an important research focus.

Recent work indicated that lncRNAs can also be present in EVs [60,113]. Here again, most
information concerning the transportation of lncRNAs via EVs has been generated from studies
aimed at understanding the roles of lncRNAs in neoplastic transformation with the broader goal of
developing novel noninvasive diagnostic approaches [61,114]. However, while understanding of the
role that EVs-trafficked lncRNAs play in viral infection is lagging, recent research supports such a role.
For instance, the trans-activation response element (TAR), a pre-microRNA, and full-length genomic
RNAs have all been identified as cargo present in exosomes isolated from HIV patients [115–118].
Interestingly, exosomes can cross the blood–brain barrier [119]. This raises the possibility that
HIV-associated neurocognitive disorders (HAND) which enigmatically are not prevented by
antiretroviral therapy may in fact result from an ability of HIV to infect cells in the absence of
the CD4 receptor and the chemokine CCR5 and CXCR4 co-receptors by exploiting exosomes to traffic
viral agents [120–122]. Yet another example of RNA transport facilitated by exosomes involves a
tick-borne Langat virus (LGTV), a flavivirus like tick-borne encephalitis virus (TBEV) [62]. This RNA
virus induces the release of exosomes from tick cells, which are then taken up by neuronal cells.
Interestingly, the infected neuronal cells are also able to release exosomes containing LGTV RNAs.
Collectively, these observations support the hypothesis that EVs are able to transport not only small
RNAs but also large RNA molecules. Future research is therefore likely to uncover extracellular viral
lncRNAs important for pathogenesis.

Table 1. Virus-encoded miRNAs detected in extracellular vesicles.

Virus Exosomal Cargo References

KSHV
miR-K2, miR-K12-1, miR-K12-2, miR-K12-3, miR-K12-3p, miR-K12-4-5p,

miR-K12-5, miR-K12-6-3p, miR-K12-6-5p, miR-K12-7, miR-K12-9,
miR-K12-10a, miR-K12-10b, miR-K12-11, miR-K12-12

[41]

EBV BART1, BART2, BART4, BART4, BART5, BART7, BART9, BART11,
BART12, BART13, BART16, BHRF1, BHRF1-2, BHRF1-3, BHRF1-5p [99,100]

HSV1 miRH3, miRH5, miR-H6, miR-H28, miR-H29 [102,123]

hCMV miR-UL59 [124]

6. Conclusions and Future Prospects

The functions of viral lncRNA, in contrast to vmiRNA, remain largely unexplored. The discovery
that viral RNAs can be transported by extracellular vesicles to distant targets in the host organisms
provides a new, potentially game changing dimension to our understanding of how viruses conquer
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the myriad defenses of infected hosts. Given that these new insights on the mobility of viral and
host non-coding RNAs reveal extracellular vesicles as intriguing candidate antiviral targets, better
understanding the biology underlying EV-based intercellular transport of viral RNAs must now take
on greater importance. Doing so may allow the development of novel, effective EV-based diagnostics
and therapeutics which allow greater protection against global pandemics.
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