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Abstract: Background and Objectives: Breast cancer is a heterogeneous disease categorized into four
subtypes. Previous studies have shown that copy number alterations of several genes are implicated
with the development and progression of many cancers. This study evaluates the effects of DNA
copy number alterations on gene expression levels in different breast cancer subtypes. Materials
and Methods: We performed a computational analysis integrating copy number alterations and gene
expression profiles in 1024 breast cancer samples grouped into four molecular subtypes: luminal
A, luminal B, HER2, and basal. Results: Our analyses identified several genes correlated in all
subtypes such as KIAA1967 and MCPH1. In addition, several subtype-specific genes that showed a
significant correlation between copy number and gene expression profiles were detected: SMARCB1,
AZIN1, MTDH in luminal A, PPP2R5E, APEX1, GCN5 in luminal B, TNFAIP1, PCYT2, DIABLO
in HER2, and FAM175B, SENP5, SCAF1 in basal subtype. Conclusions: This study showed that
computational analyses integrating copy number and gene expression can contribute to unveil the
molecular mechanisms of cancer and identify new subtype-specific biomarkers.

Keywords: copy number alteration; gene expression; breast cancer subtypes

1. Introduction

Breast cancer (BC) is a heterogeneous disease categorized into four subtypes: luminal
A (LumA), luminal B (LumB), HER2-enriched (HER2), and basal-like (basal). The different
BC subtypes can be distinguished based on the expression level of four significant biomark-
ers by immunohistochemistry: estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), and Ki-67. Indeed, luminal A is characterized
by ER positive and/or PR positive and Ki-67 < 14%, lumB by ER positive and/or PR posi-
tive and Ki-67 ≥ 14%, Her2-enriched by ER negative and PR negative and Her2 positive,
and triple negative by ER negative and PR negative and Her2 negative [1]. The molecular
classification, such as PAM-50, which considers the expression levels of mRNAs, defines
the triple negative subtype with the term basal [2]. However, previous studies reported that
there is an overlap of 80% between basal BC defined by molecular classification and triple
negative BC defined by immunohistochemistry [3]. Different BC subtypes have different
clinical outcomes, such as patient survival, prognosis, and relapse [1].

A correct and early diagnosis of BC subtypes is essential to give effective treatments
for patients. Huge volumes of biological data derived by high-throughput sequencing
technologies are publicly available in databases, such as The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO). With the availability of these data, many methods
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that combined multi-omics data were developed to identify biological patterns and reveal
new biological processes [4,5].

Genomic instability, including copy number alteration (CNA), characterizes many
cancers, such as BC. Copy number alterations are changes in the DNA where the number
of copies of a segment DNA can result in an amplification or deletion of a specific gene.

Recently, more and more studies showed that genomic aberrations are key events in the
progression from normal to tumoral tissue [6,7]. In addition, to investigate the crucial role
of genomic alterations and gene expression profiles in disease progression, some studies
reported novel candidate genes by integrating gene expression and CNA profiles [8,9].

To date, different computational methods based on such integration detected driver
genes [10–12]. One example is HIT’Ndrive: its aim was to identify patient-specific altered
genes that when combined can change the expression levels of transcripts [13]. HIT’Ndrive
was applied to 2200 tumors in a pan-cancer study and detected some important driver
genes [13]. A probabilistic model is used by another approach to investigate how mutated
genes can influence the expression of other genes [14]. Similarly, Suo et al. defined
driver genes as those genes that showed a mutation and interacted with a high number of
differentially expressed genes in a gene network [15]. However, only some of the current
methods can discover driver genes, as many of them are optimized to identify de-regulated
biological modules. In addition, none of them to our knowledge is applied to the BC
molecular subtypes. Indeed, the novelty of our study is the integrative analysis of copy
number alteration and gene expression profiles to identify genes commonly modulated in
all BC subtypes and subtype-specific genes.

CNAs can promote tumor development via the changes of gene expression levels.
However, the effects of CNAs on gene expression levels are difficult to study, as gene
expression profiling is often performed on biopsies containing tumor and normal cells.
Therefore, gene expression levels, which are the average expression of all cell types, are
often overshadowed by the influences of non-tumor cells [16,17]. A solution is the use of
genomic and gene expression profiles derived from the same patient. Previous studies
reported that the integration of mutation and gene expression profiles from the same patient
could explain the genetic heterogeneity of cancer [18,19]. As gene expression profiles can
detect crucial genes whose expression dynamically changes, for example during the cell
cycle, the integration of genomic data from the same patient can give more solid results
and reduce the variability of data.

In this study, we analyzed a large dataset of copy number and gene expression profiles
to identify BC subtype-specific driver genes. We performed a computational analysis
correlating DNA copy number alterations and gene expression profiles in BC samples from
the TCGA database. We identified the genes that showed a correlation in all BC subtypes,
and BC subtypes-specific genes. Furthermore, we used two other GEO datasets to identify
subtype-specific genes that were altered in at least 50% of the samples in TCGA and GEO
datasets. Finally, we investigated the biological role of these subtype-specific genes through
pathway enrichment analysis.

2. Materials and Methods

The present work introduces an analysis of copy number and gene expression profiles
of paired BC samples derived by the TCGA database. We performed a correlation analysis
between copy number alterations and gene expression levels for each gene, and we obtained
a list of correlated genes for each BC subtype. Furthermore, we selected those genes from
the list that are specific for each subtype in TCGA, namely that show a correlation in
only one subtype. To validate the results and to obtain a robust signature we included in
the study two independent datasets from GEO. Indeed, the final list of correlated genes
contained those genes that showed an alteration in at least 50% of the samples in the two
GEO datasets and TCGA.

Figure 1 shows the analysis performed.
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Figure 1. Workflow of the proposed analysis. TCGA: The Cancer Genome Atlas; CNA: Copy number alteration.

2.1. Data

We downloaded and pre-processed, using TCGABiolinks package [20], paired BC
samples of copy number and gene expression profiles from TCGA. Copy number and gene
expression data contained 548 lumA, 206 lumB, 82 HER2-positive, and 188 basal samples.

Copy number profiles of the BC samples from TCGA were downloaded using the
getGistic function of the TCGABiolinks R package. The copy number matrix contained
altered genes for each patient indicated with positive and negative numbers that showed
amplification and deletion, respectively.

In the validation step, copy number profiles for two independent datasets from the
GEO dataset (GSE87048 and GSE26232) were calculated using the package aroma.affymetrix
with CRMAv2, the Circular Binary Segmentation model, and the GISTIC tool. Copy num-
ber profiles from TCGA and two GEO datasets were estimated for the whole genome.
The data derived by bulk sequencing and CNAs were an average of copy numbers from
thousands of cells for sample. The number of samples for each subtype is presented in
Table 1. Molecular subtypes of BC samples from TCGA and GEO were established by
molecular classification PAM50.

Table 1. Number of samples for each breast cancer subtype from The Cancer Genome Atlas (TCGA)
and from two Gene Expression Omnibus (GEO) datasets.

Molecular Subtype TCGA GSE87048 GSE26232

LumA 548 37 12
LumB 206 20 6
Her2 82 12 2
Basal 188 8 17
Total 1024 77 37

2.2. Integrating Copy Number and Gene Expression

We performed a Pearson correlation test between copy number alterations and gene
expression levels for each gene in the TCGA data. Pearson and Spearman correlations are
widely used methods to assess the influence of copy number alterations on gene expression
profiles in cancer [21,22]. However, we used Pearson’s correlation because it assumes that
the variables have a linear relationship and derive from a normal distribution [23]. p-values
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were adjusted with the False Discovery Rate (FDR) method. We considered two genes
correlated if the correlation coefficient was >0.6 or <−0.6 and p-values adjusted <0.05. The
correlation analysis was performed separately for each subtype.

2.3. Identification of Subtype-Specific CNAs

We analyzed the genes that showed a correlation between copy number alterations
and gene expression levels in TCGA data, and we selected the subtype-specific genes and
those common among different subtypes. For the visualization of the data, we used a Venn
diagram with the R package, pheatmap.

Furthermore, we evaluated the subtype-specific genes in TCGA, and we selected those
genes that were altered through copy number analysis in at least 50% of the samples in
TCGA data, GSE87048, and GSE26232. We used 50% as a cut-off because it is a commonly
used threshold in previous studies [24,25]. Additionally, in this step we considered the
samples grouped by subtype.

2.4. Survival Analysis

A Kaplan–Meier plotter was used to perform a survival analysis [26]. The tool uses
gene expression data and relapse free survival information of datasets downloaded from
public datasets, such as GEO and TCGA.

To examine the prognostic value of a gene, the samples were divided into two groups
according to median expressions of the proposed biomarkers. The differences between
survival curves were estimated using the log-rank test.

We performed the analysis considering all BC samples for the common genes among
BC subtypes and BC samples separately for each subtype for subtype-specific genes.

2.5. Pathway Analysis

We performed a pathway enrichment analysis to obtain pathways enriched with
subtype-specific genes. Specifically, we used Reactome pathway enrichment analysis to
obtain the enriched pathways (p-value < 0.01). The Reactome tool is based on a statistical
test (hypergeometric distribution) that revealed Reactome pathways that are significantly
enriched with subtype-specific genes [27].

3. Results
3.1. Correlation Analysis in TCGA Data

Pearson correlation tests between copy number alterations and gene expression levels
for each gene were performed. We found that 439 genes showed statistically significant
correlations between DNA copy number and gene expression for the lumA, 970 for the
lumB, 1189 for HER2, and 1029 for the basal subtype (correlation coefficient ≥0.6 or ≤−0.6,
p-values adjusted <0.05). Figure 2 shows the heatmaps of the results of correlations.

In the next steps, we focused on how the genes that showed a correlation between
copy number alterations and gene expression levels in TCGA data were distributed among
the various BC subtypes. Figure 3 shows with a Venn diagram the common genes among
subtypes and the subtype-specific genes.

3.1.1. Correlation Analysis: Common Genes among Breast Cancer Subtypes

In this step we presented the genes commonly correlated between copy number and
gene expression profiles in all BC molecular subtypes.

We focused on two genes, KIAA1967 and MCPH1, because, as reported in Figure 2,
they obtained a high correlation coefficient in all BC subtypes. KIAA1967, a tumor sup-
pressor gene, has a high correlation coefficient in all BC subtypes (0.8647 in LumA, 0.849
in LumB, 0.839 in Her2, and 0.778 in basal). Figure 3 shows the distribution of the copy
number alterations of KIAA1967 in the 4 BC subtypes. We noticed that the gene was mostly
deleted. Indeed, it was deleted in 50% of LumA samples, and in 35% of the samples, there
were no alterations. Only a small fraction of samples (15%) showed a gene amplification.
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As in lumA, also in other BC subtypes, KIAA1967 was mostly deleted: 59% of the lumB
samples, 66% of the HER2 samples, and 60% of the basal samples.
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Another gene that, like KIAA1967, showed a high correlation value (0.795 in LumA,
0.834 in LumB, 0.789 in Her2, and 0.763 in basal) was the MCPH1 gene. Like KIAA1967,
MCPH1 was mostly deleted: 47% of the lumA samples, 56% of the lumB samples, 66% of
the HER2 samples, and 59% of the basal samples.

Figure S1 shows the distribution of the copy number alterations of KIAA1967 and
MCPH1 in the various BC subtypes.

3.1.2. Correlation Analysis: Subtype-Specific Genes

We obtained 58 subtype-specific genes exclusive for the lumA. Among these, we
focused on those genes that had high correlation values in the Pearson test, such as
SMARCB1 (corr = 0.67, p-value < 0.001), AZIN1 (corr = 0.66, p-value < 0.001), and MTDH
(corr = 0.63, p-value < 0.001). We performed the same procedure for lumB, HER2, and basal.

For the lumB, we obtained 256 genes including the genes with a high correlation
PPP2R5E (corr = 0.76, p-value < 0.001), APEX1 (corr = 0.7, p-value < 0.001), and GCN5
(corr = 0.7, p-value < 0.001); for the HER2 we identified 447 genes including TNFAIP1
(corr = 0.80, p-value < 0.001), PCYT2 (corr = 0.77, p-value < 0.001), and DIABLO (corr = 0.71,
p-value < 0.001); and for basal we obtained 390 genes such as FAM175B (corr = 0.76,
p-value < 0.001), SENP5 (corr = 0.72, p-value < 0.001), and SCAF1 (corr = 0.71, p-value < 0.001).

3.2. Survival Analysis

Survival analysis was applied to genes that showed a significant correlation between
copy number and gene expression profiles (Figure 4). KIAA1967 and MCPH1, mostly
deleted in all BC subtypes, also demonstrated a prognostic role. Indeed, the low expression
of KIAA1967 and MCPH1 was associated with a poor prognosis.

Survival analysis was performed on SMARCB1, AZIN1, and MTDH, which are lumA-
specific genes. Low expression of SMARCB1 and high expression of AZIN1, and MTDH
were correlated with a recurrence free survival in patients with lumA. PPP2R5E, APEX1,
and GCN5, lumB-specific genes, were associated with a poor prognosis; high expression of
PPP2R5E and APEX1, and low expression of GCN5 showed poor recurrence free survival
in patients with lumB. FAM175B, one of the basal-specific genes, was correlated with
recurrence free survival in basal BC patients.

3.3. Analysis of GEO Datasets

As we obtained copy number alterations of TCGA, GSE87048, and GSE26232 samples,
we focused on the subtype-specific genes that have an alteration in at least 50% of the
samples for each of the 3 datasets. Although RNA-Seq used in TCGA data and microarray
used in GEO datasets are different technologies, they showed a high degree of concordance.
This suggests that the identification of driver genes that show a consistency of results from
different technologies is an important aspect of our study.

We found that 29 out of 58 genes in lumA, 90/256 in lumB, 40/447 in HER2, and
23/390 in basal were altered in at least 50% of the samples in all three datasets. Table
S1 shows the list of these genes. We obtained a good percentage of consistency in the
three datasets (29/58, 50%) in lumA; 35% (90/256) of genes were reproducible in the three
datasets for lumB.

3.4. Pathway Enrichment Analysis

We examined the biological pathways associated with subtype-specific genes. Table 2
shows the top 3 pathways enriched with the genes.
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Figure 4. Survival analysis applied to genes whose expression is significantly correlated with the
presence of copy number alterations in all breast cancer subtypes (A,B) KIAA1967 and MCPH1;
and subtype-specific genes (C–I) SMARCB1 (C), AZIN1 (D), MTDH (E) in lumA breast cancer
patients, PPP2R5E (F), APEX1 (G), GCN5 (H) in lumBC samples, and FAM175B (I) in basal breast
cancer patients.

We obtained for lumA the following pathways: SUMOylation of SUMOylation pro-
teins, SUMOylation of ubiquitinylation proteins, and defective intrinsic pathway for apop-
tosis due to p14ARF loss of function.

The pathways cellular senescence, oxidative stress induced senescence, and disassem-
bly of the destruction complex and recruitment of AXIN to the membrane were identified
by the analysis for the lumB.

The pathways enriched with 40 HER2-specific genes were aryl hydrocarbon receptor
signaling, VxPx cargo-targeting to cilium, and amplification of signal from the kinetochores.

The pathways enriched with 23 basal-specific genes were regulation of cholesterol
biosynthesis by SREBP (SREBF), activation of gene expression by SREBF (SREBP), and
metabolism of steroids.
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Table 2. Pathways enriched by subtype-specific genes using Reactome.

Pathway p-Value

29 Luminal A-Specific Genes

SUMOylation of SUMOylation proteins 0.003
SUMOylation of ubiquitinylation proteins 0.004
Defective intrinsic pathway for apoptosis
due to p14ARF loss of function 0.004

90 Luminal B-Specific Genes

Cellular senescence 0.005
Oxidative stress induced senescence 0.001
Disassembly of the destruction complex
and recruitment of AXIN to the membrane 0.001

40 HER2-Specific Genes

Aryl hydrocarbon receptor signaling 0.0003
VxPx cargo-targeting to cilium 0.003
Amplification of signal from
the kinetochores 0.004

23 Basal-Specific Genes

Regulation of cholesterol biosynthesis by
SREBP (SREBF) 0.0002

Activation of gene expression by SREBF
(SREBP) 0.004

Metabolism of steroids 0.004

4. Discussion

In this study we performed an analysis pipeline integrating copy number, gene
expression, and clinical data. This analysis allowed for the identification of common genes
among BC subtypes and subtype-specific genes, which may be potential candidates for
personalized treatment. Unlike previous approaches, our analysis does not simply produce
gene drivers, but we studied the effect of DNA copy number alteration on gene expression
levels in the different stages of breast cancer progression defined by molecular subtypes.

In the first step of our study, we analyzed the correlation between copy number
alterations and gene expression levels for each gene and for each subtype in 1024 BC
samples of TCGA data. We obtained 439 genes correlated in lumA, 970 in lumB, 1189 in
HER2, and 1029 in basal subtype.

We focused on the genes with a high correlation obtained in all subtypes. Specifi-
cally, a high correlation coefficient in all subtypes was reported for two genes, KIAA1967
and MCPH1.

DBC1/KIAA1967 is a tumor suppressor gene that regulates p53-signaling through
the inhibition of SIRT1 deacetylase. However, although SIRT1 plays a vital role in car-
cinogenesis by regulating cell proliferation, survival, and death, its role in BC remains
controversial [28]. DBC1/KIAA1967 encodes a CCAR2 protein whose role is debated. It
was reported that in squamous cell cancer, the loss of CCAR2 in mice results in cell cycle
progression, suggesting that CCAR2 may function as a tumor suppressor. In addition, it
was hypothesized that CCAR2 plays a role in promoting the stability of the transcription
factors RFX1 and CREB1 required for proliferation [29].

However, the role of DBC1/KIAA1967 is controversial, as in some studies it has been
reported to be up-regulated and in others down-regulated within the same tumor [30].
A recent study investigated the clinical value of DBC1/KIAA1967 in hepatocellular car-
cinoma, analyzing its prognostic ability with survival analysis; a higher expression of
DBC1/KIAA1967 reduced overall survival and disease free survival [30].

Survival analyses performed in our study demonstrated the prognostic role of
DBC1/KIAA1967 in BC; its low expression is associated with a poor prognosis.
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The second gene with a high correlation in all subtype is MCPH1. Previous studies
demonstrated that the tumor suppressor gene MCPH1 is significantly associated with BC
susceptibility in hereditary and non-hereditary BC [31]. These data therefore suggested
that this gene is involved in the development of BC, despite its role needing to be fur-
ther analyzed. In addition, mutated MCPH1 down-regulates histone genes and leads to
migration and invasion of the cells [32]. Frequent deletions and methylation of MCPH1
were reported in many cancers, including BC, and were also associated with tumor stages
in BC [33]. An important clinical role of MCPH1 was demonstrated in our study; low
expression of MCPH1 is associated with a poor relapse free-survival.

Furthermore, in our study we focused on the subtype-specific genes that showed a
correlation between copy number alterations and gene expression levels in TCGA data.
Among 439 genes correlated in lumA, we found 58 lumA specific genes. The top three
genes with the highest correlation were SMARCB1 (corr = 0.67), AZIN1 (corr = 0.66), and
MTDH (corr = 0.63).

SMARCB1 was the lumA-specific gene with the highest correlation coefficient. It
encodes a member of the ATP-dependent family and plays an important role in chromatin
modelling, enabling the entry of transcription factors to DNA. A recent study demonstrated
that the most frequent alterations of SMARCB1 in human cancer are the deletions [34].
However, it is not completely clear what is the role of SMARCB1 in BC [34,35].

The second gene with a high correlation coefficient is AZIN1. A previous study an-
alyzed the role of AZIN1 in polyamine homeostasis and cell proliferation in BC cells.
Polyamines are an important pathway for different cellular functions, including cell
growth [36]. Their intracellular concentrations are controlled by a complex network of reg-
ulatory mechanisms, in which AZIN1 plays a key role. AZIN1 decreases cellular polyamine
by downregulating the enzyme that catalyzes the biosynthesis of polyamine, ornithine
decarboxylase (ODC), and the absorption of polyamines [36]. The activity of AZIN1 is
repressed by the binding of a protein, called Az inhibitor (AzI), which is an enzymatically
inactive homolog of ODC. Two forms of AzI have been described, namely AzI1, which is
omnipresent, and AzI2, which is expressed in the brain and testes. The overexpression
of AZIN1 increases cell proliferation with a simultaneous increase in ODC activity and
putrescine content [36].

MTDH, an oncogene, has been associated with an aggressive phenotype, poor progno-
sis, and chemo-resistance in BC [37]. A previous study described its possible mechanism
of action in cancer; HIF-1 can bind to the MTDH promoter and regulate MTDH expres-
sion [37]. Other studies reported that MTDH can regulate two biological pathways involved
in tumorigenesis and metastasis, the NF-κB and MAPK pathways [38].

For lumB we obtained 256 out of 970 specific genes. Additionally, in this case we
focused on the genes with the highest correlation, namely PPP2R5E, APEX1, and GCN5.

The PPP2R5E gene, encoding protein phosphatase 2A (PP2A), is an important cellular
phosphatase and plays key regulatory roles in growth, differentiation, and apoptosis [39].
Given the wide range of cellular functions of PP2A, its activity is tightly regulated to
maintain cellular homeostasis [39].

The second lumB-specific gene is APEX1. Genetic alterations in genes that code for
proteins that play a role in DNA repair pathways and in homologous recombination of
DNA such as APEX1, BRCA1, BRCA2, XRCC2, XRCC3, ATM, CHEK2, PALB2, RAD51, and
XPD have been implicated in BC [40]. APEX1 is a multifunctional protein that plays a
central role in the base excision repair pathway. The APEX1 gene is highly polymorphic in
cancer patients and has a role in the accumulation of the apurine/apyrimidine site in DNA
and consequently may lead to an increased risk of cancer development [41].

GCN5, also known as KAT2A, a prototype of histone acetyltransferase (HAT), is
involved in a variety of cellular processes and regulates downstream target genes by
acetylation of different lysine residues (H3K9, H3K14, H3K18, and H3K23) in the core of
histone H3 [42]. Furthermore, GCN5 modulates the function of non-histone proteins, such
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as transcription factors, by transferring an acetyl group to lysine residues. GCN5 is also
involved in cell cycle progression [42].

For HER2 we identified 447 genes, including TNFAIP1, PCYT2, and DIABLO.
A gene highly correlated and specific for the HER-2 tumor subtype is the TNFAIP1

gene (corr = 0.8). Previous studies suggested that the CSAGA, TNFAIP1, and POLDIP2
complex represents a gene module significantly associated with the amplification of the
genomic region on 17q11.2 and correlated with the expression of ERBB2 in BC [43]. The co-
expression pattern of this complex correlates with histological grades and a poor prognosis
in BC when overexpressed [43].

A second gene analyzed, for the same reasons as the previous one, was the PCYT2
gene (corr = 0.77). A previous study, based on metabolome analyses, demonstrated that
glutamine deprivation leads to the accumulation of phosphoethanolamine (PEtn) in cancer
cells through downregulation of cytidyltransferase PEtn (PCYT2) [44]. Accumulation of
PEtn was correlated with tumor growth in nutrient-deficient conditions. PCYT2 suppres-
sion was partially mediated by downregulation of the transcription factor ELF3. Further-
more, PCYT2 overexpression reduced PEtn levels and tumor growth [44]. PCYT2 could
represent a target in novel metabolic strategies for cancer [45].

Another gene with a high correlation was the DIABLO gene (corr = 0.71).
Since the Smac/DIABLO protein is involved in the mechanisms of apoptosis, it might

be expected that the expression of this protein decreases with tumor development. A
previous study confirmed this hypothesis, as Smac/DIABLO protein expression was
significantly lower in stage 2 and stage 3 of BC than in stage 1 [46]. Furthermore, there was
a weak correlation between low Smac/DIABLO protein expression and cancer embolism in
minor blood and lymphatic vessels. In conclusion, the study indicated that Smac/DIABLO
expression is inversely related to the tumor stage, which may suggest that this protein may
play an important role in BC development [46].

For basal subtypes, we obtained 390 specific genes such as FAM175B, SENP5, and SCAF1.
The function of FAM175B, also known as ABRO1 and KIAA0157, is largely unknown.

Recent studies have revealed that ABRO1 is a novel tumor suppressor by regulating the
stability and functionality of p53 signaling. It plays an important role in tumor suppression
and DNA damage response [47]. A recent study demonstrated that ABRO1 overexpression
stabilizes p53 and inhibits the growth of p53-expressing wild-type tumor cells, suggesting
that the inhibition of cell growth by ABRO1 upregulation is dependent on p53 status [47].
Furthermore, it was shown that ABRO1 overexpression causes cell cycle arrest in the G1
phase, which is p53-dependent. These results suggest that ABRO1 can suppress tumori-
genesis. The role of ABRO1 may be clinically relevant, because ABRO1 protein levels are
reduced in several cancerous tissues, including liver, kidney, breast, and thyroid cancers,
and a higher ABRO1 expression level correlates with better survival in patients [47].

A second important gene for the basal subtype is the SENP5 gene. The downregulation
of SENP5 expression is associated with a good prognosis among BC patients. A previous
study reported that the silencing of SENP5 leads to the inhibition of growth, proliferation,
and invasion in BC cell lines [48]. These changes are driven by the regulation of TGFβRI
levels. One of TGFβRI target genes, MMP9, which plays a key role in degrading the
extracellular matrix and contributes to invasion, is dramatically under-regulated by the
silencing of SENP5. These data suggested the involvement of the SENP5-TGFβ-MMP9
cascade in BC [48].

SCAF1 is one of the basal-specific genes with a higher correlation coefficient between
copy number alteration and gene expression levels in TCGA data. Elevated expression of
SCAF1 was observed in a previous study in 31/81 (38.3%) BC tissues and was found to
be more frequent in patients with tumors of large size, as well as in patients with lymph
node invasion [49].

From the validation analysis using two GEO independent datasets, we found that
29 out of 58 genes in lumA, 90/256 in lumB, 40/447 in HER2, and 23/390 genes in basal
were altered in at least 50% of the samples in two GEO dataset and TCGA data. The lowest
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percentage of consistency for HER2 and basal can be explained by the low number of
samples for the two GEO datasets. Indeed, GSE26232 contains only two HER2 samples,
and genes found altered in 50% of the two samples may have affected the results. The same
applied for the GSE87048 dataset, although it contained a few more samples (eight basal
samples); this aspect could have influenced the obtained results.

We examined the biological pathways associated with 29 lumA-specific genes, and we
obtained the following pathways: SUMOylation of SUMOylation proteins, SUMOylation
of ubiquitinylation proteins, and defective intrinsic pathway for apoptosis due to p14ARF
loss of function.

SUMO proteins are involved in different biological processes such as protein stability,
cell growth, and apoptosis. It was previously reported that SUMO proteins are associated
with advanced BC [50].

p14 plays a role in the cell cycle and apoptosis. A recent study demonstrated an
association between the deletion of p14 and p53 signaling pathway disruption [51].

The pathways cellular senescence, oxidative stress induced senescence, and disassem-
bly of the destruction complex and recruitment of AXIN to the membrane were identified
by the enrichment analysis of 40 specific genes for the lumB.

40 HER2-specific genes were involved in 3 main pathways: Aryl hydrocarbon receptor
signaling, VxPx cargo-targeting to cilium, and amplification of signal from the kinetochores.

The pathways enriched with 23 basal-specific genes were regulation of cholesterol
biosynthesis by SREBP (SREBF), activation of gene expression by SREBF (SREBP), and
metabolism of steroids. Previous studies reported that the under-expression of SREBP
leads to a downregulation of several enzymes of fatty acids signaling. However, SREBP is
upregulated in BC and associated with poor prognosis [52].

5. Conclusions

In conclusion, this study demonstrated the strong correlation between copy number
alterations and gene expression levels of several known tumor suppressors and oncogenes.
Thus, we revealed that integration analysis is crucial in discovery of therapeutic target
genes in BC cancer subtypes.
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