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Introduction

Bone defects can develop from different origins like infec-
tion, tumor, trauma, surgery, congenital etiology (Figure 1), 
and so on.1 For centuries, the idea of replacing missing 
bone tissue has emerged. Traces of orthopedic treatments 
have been found in Pre-Columbian and Egyptian civiliza-
tions.2,3 During the 17th century, Dutch surgeon Job Van 
Meekeren reported the first success in bone grafting. It con-
sisted of the transplantation of a piece of bone from a dog’s 
skull into a cranial defect in a soldier. Nevertheless, the 
graft had to be removed under the orders of the Church. 
During the 19th century, Van Merren reported the first auto-
genic graft success, while cases of allogenic grafts were 
reported as well.4 Non osseous materials (wood, marble, 
etc.) were used during the same period, but the results were 

not really convincing until Dreesman used plaster of Paris 
(calcium sulfate) in 1892 and resulted in a success.5–7
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In 2001, bone grafting represented 500,000 procedures 
per year in the United States, and more than 2 millions in 
the world,8–10 widely using autograft, which is qualified as 
the gold standard technique. To date, many different mate-
rials can be found to fill bone defects. These can be allo-
genic bone, xenogenic bone, or bone substitutes which are 
defined as “synthetic, inorganic or biologically organic 
combinations which can be inserted for the treatment of a 
bone defect instead of autogenous or allogenous bone.”11,12 
The ideal material to replace bone tissue should meet pre-
cise specifications, such as being biocompatible, bioresorb-
able, osteoconductive, osteoinductive, structurally similar 
to bone, porous, mechanically resistant, easy to use, safe, 
and cost-effective.9 If a vast majority of the materials 
placed on the market are osteoconductive, very few offer 
osteoinductive properties.9,13 Regarding the specifications 
of an ideal material, the only one which seems to meet them 
is autologous bone. Indeed, autologous bone graft still is 
the gold standard technique for bone filling for many rea-
sons.8,9,14–25 First of all, autologous bone meets the mechan-
ical and biological requisites for a filling material. 

Moreover, its use avoids any immunogenicity or rejection 
problems23,24 and any disease transmission risk.24 
Nevertheless, the technique shows many disadvantages as 
well, and the most important of them is certainly the comor-
bidity associated with the presence of a second surgical 
site: the donor site.15,18,24,25 Complications appear to be 
chronic pain in a range of 2.5% from 8% of cases, dysesthe-
sia in 6% of cases, or infection in 2% of cases.26,27 For some 
surgical procedures that would not require a general anes-
thesia (e.g. hand surgery), the need to obtain autologous 
bone (from the iliac crest) makes this anesthesia manda-
tory, increasing surgical risks for the patient.16

The first alternative to autologous bone we can think of is 
the use of allogenic bone (Figure 2), but a risk of disease 
transmission exists.15 Although very rare cases are docu-
mented concerning HIV transmission (two cases have been 
reported since 1989, and the risk is estimated at 1/1.6 mil-
lion)28,29 or hepatitis B and C viruses transmission (1 and 2 
cases have been reported since 1989, respectively),28 trans-
mission of other kind of viruses should not be excluded.28,30,31 
Moreover, the high cost of such materials should be 

Figure 1. Various origins of bone defects: (a) Panoramic X-ray. Bone defect of the mandible right body corresponding to an 
osteonecrosis of the jaw in relation to denosumab taking. (b) 3D-reconstructed view of upper jaw. Bilateral bone defect of 
premolar regions associated to tooth agenesis in a young adult presenting a WNT10A gene mutation. (c) Panoramic X-ray. Bone 
defect (radiolucency, *) of the mandible right ramus corresponding to an ameloblastoma, an odontogenic aggressive benign tumor. 
(d) Panoramic X-ray. Bone defect (radiolucency, arrows) of upper and lower jaws corresponding to a trauma. (e) Panoramic X-ray. 
Bone defect (arrow) of upper jaw after resection surgery of a gingival squamous cell carcinoma (clinical view, left corner). (f) 
Reconstruction of the mandible by autogenous bone (fibula) following an invasive squamous cell carcinoma of the gingiva.
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considered.23 Indeed, an allogenic bone graft has to be treated 
and sterilized before it is stored and clinically used, represent-
ing a significant cost. On the contrary, an autogenous bone 
graft procedure allows to overcome any storage issue and is 
practiced during a single operative time. Another alternative 
to autograft could be the use of xenogenic bone; however, the 
same limitations persist with a risk of immunogenicity prob-
lems23 and disease transmission8 even if the risk is estimated 
to be very low32 and mostly concerns the porcine endogenous 
retrovirus (PERV) and the bovine spongiform encephalopa-
thy (BSE).8 Furthermore, the medical team needs to deal with 
the acceptance of this technique by patients, especially 
regarding their beliefs.26,33 Thus, to avoid all these limitations, 
the use of synthetic bone substitutes is becoming increasingly 
popular.34,35 However, not all bone substitutes, from biologi-
cal or synthetic origin, can be used for every application. The 
aim of our review is to specify the properties of the clinically 
available most used bone substitutes, according to the litera-
ture, to precise some of their clinical use, and to discuss about 
characteristics that should be developed in order to use them 
for large bone defects filling.

Bone substitutes

Bone substitutes will be classified in two main categories: 
bone substitutes derived from biological products and syn-
thetic bone substitutes.

Bone substitutes derived from biological 
products

Demineralized bone matrix. Demineralized bone matrix 
(DBM) is bone that has been acid-treated in order to 

remove the mineral matrix, while maintaining the organic 
matrix and growth factors such as bone morphogenetic 
protein (BMP),24 insulin growth factor (IGF), transform-
ing growth factor (TGF), or fibroblast growth factor 
(FGF).8 In proportion, 93% of a DBM is represented with 
collagen and 5% with growth factors.24 Since some growth 
factors are maintained, DBM can show osteoinductive 
capabilities36–40 and osteoconductive properties by the 
presence of a collagen structure.24,36 Nevertheless, a large 
rate of the osteogenic capacity of bone is lost during its 
processing.41 DBM has been clinically used since the early 
1980s8 after Urist and collegues’42,43 work and is currently 
used in 50% of allografts performed in the United States,39 
although evidence for or against its efficacy is still at low 
level.19,44 DBM shows no immunological rejections 
because the antigenic surface structure of the bone is 
destroyed during its demineralization by acid.24,45 The use 
of DBM avoids donor site morbidity, and studies showed a 
comparable pain intensity after the surgical procedure 
compared to autograft procedures.19 DBM is derived from 
human bone. It presents suitable availability, but this sub-
stitute is more expensive than an iliac crest bone autograft 
procedure,19 and its mechanical properties are quite low.8 
Thus, DBM is only used for filling purposes and generally 
not as a stand-alone bone substitute.8,46

Platelet-rich plasma. Platelet-rich plasma (PRP) is gener-
ally used as a gel that is easily obtained with the patient’s 
blood.8 Blood is centrifuged through gradient density, and 
the resulting blood platelets are mixed with thrombin and 
calcium chloride.47 Hence, PRP includes an important con-
centration of platelets and fibrinogen,47 as well as growth 
factors such as platelet derived growth factors (PDGF), 

Figure 2. (a) Radiographical view of a right fibula bone loss, after a road traffic accident in a 24 year-old woman, with an external fixator. 
(b) Surgical procedure with the use of allogeneic bone chips. (c) Radiographical view 4 months later (courtesy of Dr D. Brinkert).
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vascular endothelial growth factor (VEGF), IGF, and 
TGF.8,40,48–50 PRP is expected to show pro-coagulant 
effects due to platelets;48 however, there is no evidence in 
the literature of benefits for the addition of PRP to acceler-
ate bone healing.40,51 Even if PRP shows limited infectious 
risks and adverse effects by its origin (autologous blood),52 
it does not present any mechanical resistance and is not 
validated as a stand-alone bone substitute.8 PRP is rather 
used as a supplement to other materials.47,53–55

BMPs. Bone morphogenetic proteins (BMPs) are osteoin-
ductive growth factors included in the transforming growth 
factor β (TGF-β) superfamily.8 They are produced by oste-
oblasts and are largely involved in the skeletogenic pro-
cess,56 enabling ectopic bone formation.42 BMP play a role 
in the recruitment of osteoprogenitor cells in bone forma-
tion sites. Genetic engineering allows to synthetize recom-
binant human BMP (rhBMP-2 and rhBMP-7), which can 
be produced in large quantities39,57,58 and limit risks of con-
tamination. rhBMP-2 and rhBMP-7 are allowed by the 
Food and Drug Administration (FDA) for clinical use.59,60 
The history of the safety of BMP has been eventful: in 
2009, a systematic review led by Agarwal et al.61 including 
17 studies for 1342 patients concluded that the use of 
BMP-2 or BMP-7 did not lead to any adverse effect, 
whereas recent reviews reported complications up to 
50%.26 After 2 years in 2011, Carragee et al.62 shared grow-
ing reportings linked to the utilization of BMP-2. These 
studies highlighted unpublished results regarding espe-
cially the use of BMP-2. Authors estimated that the risk of 
complications linked to BMP-2 is 10–50 times higher than 
the results that were showed in previous studies.63 Adverse 
effects then appeared: heterotrophic ossification, osteoly-
sis, infection, and retrograde ejaculation.39,63 Moreover, 
paradoxical inhibitory effects of BMP-2 at high concentra-
tions may appear64 and compromise a successful proce-
dure. Thus, and due to the variability of the needed dosage 
which is patient- and site-dependant, the use of BMP is 
still surrounded by a blur. Moreover, BMPs require molec-
ular carriers to deliver and maintain them at their intended 
osseous targets,39 their mechanical properties are not bio-
mimetic of the native bone tissue, and their high cost 
makes their use prohibitive in most settings.8 However, 
excluding their adverse effects, BMPs appear to be prom-
ising regarding their results in nonunions resolutions,61 
and the decrease in the operating time and blood loss dur-
ing surgical procedures.65,66

Hydroxyapatite. Hydroxyapatite (HA) is part of the apatites 
family, which are crystalline compounds with crystalline 
hexagonal lattice. HA has the specific formula 
(Ca10(PO4)6(OH)2) and is the primary mineral component 
of teeth and bones.8 Thus, HA is extremely biocompati-
ble67–69 and does not promote an inflammatory response.70 
Natural HA is porous with a various porosity depending on 
the bone site that is extracted (for example 65% porosity 

and pores from 100 to 200 µm for trabecular bone71), which 
allows osteoconductive properties. Indeed, HA resorption 
is very slow72 and the material is usually maintained at 
least up to 3 years after implantation,69 allowing a slow 
bone ingrowth progress and cell colonization.69,71 Since 
HA offers very good mechanical properties with a com-
pression resistance up to 160 MPa, it is likely to be utilized 
in small bone defects with low loading condition.69 Never-
theless, the use of HA alone may be deceiving.58,73 HA 
comes in both natural and synthetic forms,8 and HA-TCP 
(tri-calcium phosphate) ceramics are usually preferred to 
HA alone. Some composite materials containing HA and 
collagen exist as well, and their combination enhances 
osteoblasts differentiation and accelerates osteogenesis.74 
HA-collagen composites have some mechanical advan-
tages over HA used alone. Indeed, the ductile properties of 
collagen allow an increase in the poor fracture toughness 
of hydroxyapatite. Still, the effectiveness of this composite 
material has to be validated by further clinical studies.8

Coral. Corals have interconnected pores and a skeleton 
quite similar to cortical and spongy bones,75 and their use 
as bone substitute has been approved by the FDA in 1992.58 
Coral-based substitutes are mainly calcium carbonate that 
can be transformed industrially into HA, or they can retain 
their original state which allows a better resorption by the 
natural bone.8 Coralline HA can be used as growth factors 
carrier, such as BMP, TGF-β, or FGF.58 It can be found in 
different aspects like granules or blocks. Despite its slow 
resorption, it does not induce adverse effects like inflam-
matory responses.58,76 Coralline HA is osteoconductive, 
can show an excellent bone-bonding capacity,77 avoids 
donor site morbidities,58 and is unlikely to promote disease 
transmissions or risks of deep infections.78

Synthetic bone substitutes

Calcium sulfate. The first therapeutic success using calcium 
sulfate (CaSO4) as a bone substitute was reported in 1892.5–

8 However, this material also called “gypsum” or “plaster 
of Paris” and has only been FDA accepted in 1996.58 Cal-
cium sulfate offers many advantages as it presents a struc-
ture similar to bone, it is osteoconductive,34,79 
inexpensive,39,79 and available in different forms (hard pel-
lets and injectable fluids).17,39 It does not generate allergic 
reactions.79 Moreover, calcium sulfate has a crystalline 
structure that is osteoconductive, onto which bone capillar-
ies and perivascular mesenchymal tissue can invade.8,80 
Calcium sulfate resorbs rapidly in 1–3 months.8,39,58,79 This 
resorption creates porosity while stimulating bony 
ingrowth.81 Nevertheless, the resorption of calcium sulfate 
is faster than the rate of new bone deposition,34,82 and thus, 
it is rather unsuitable as a material to support early func-
tional rehabilitation.58,83 Calcium sulfate can be used as a 
support or a vehicle for local antibiotics or growth factors 
delivery.84–87 Although it presents many advantages, 
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calcium sulfate also shows some disadvantages, in addition 
to its fast resorption. It is neither osteoinductive nor osteo-
genic, and in many cases, redness and swelling of the 
wound can persist after the procedures.17,58,79 Appearing in 
4%–53% of cases,17,88,89 these kinds of complications are 
generally managed with local wound care, but just as other 
bone grafts, infections can appear as well and necessitate 
sometimes a further surgical intervention.89

Calcium phosphate cements. Calcium phosphate cements 
(CPCs) were invented in 1986 by Brown and Chow90 and 
were FDA approved for the treatment of non-load-bearing 
bone defect in 1996 (concerning tetracalcium phosphate 
and dicalcium phosphate dihydrate products).8 This biore-
sorbable material91 can stay in the body for long up to 
2 years without resorption, depending on its formulation. It 
consists of a calcium phosphate powder which is mixed 
with a liquid to form a workable paste.8 Its isothermic 
hardening reaction varies from 15 to 80 min depending on 
the formulation,92 and this results in nanocrystalline HA, 
which makes CPC osteoconductive.8 The main advantage 
of CPC is the possibility to shape the paste to the complex 
bone cavity, avoiding gaps between the bone and the 
implant. Furthermore, some CPC are injectable and can be 
used in minimal invasive procedures such as vertebro-
plasty and kyphoplasty. Just like other substitutes (e.g. cal-
cium sulfate and some HA-based grafts), CPC are brittle8 
and can lead to some complications (13% overall compli-
cations according to Afifi et al.93 with 9% major complica-
tions and 5% infections). Because clinical outcomes seem 
not to be better and sometimes worse than the use of meth-
ylmethacrylate or autologous bone, CPC should be used 
selectively.93

β-tri-calcium phosphate ceramics. β-tri-calcium phosphate 
(β-TCP) (Ca3(PO4)2) has largely been used as a bone sub-
stitute94–96 for more than 25 years, mainly for orthopedics 
and dentistry applications,97 and is considered as the “gold 
standard” for synthetic bone.95 It is a biocompatible98,99 and 
bioresorbable material8,58,94,100,101 with properties similar to 
the inorganic phase of bone. β-TCP is osteoconduc-
tive96,98,102,103 due to its composition and its porosity,100 
which depends on the processing condition. Indeed, its 
porous structure plays a role in its osteoconductive charac-
teristics.104 β-TCP gradually resorbs, and although its 
resorption is unpredictable105 and slower than the resorp-
tion of calcium sulfate,39,106 β-TCP is meant to be com-
pletely resorbed in time58,100,107 by osteoclasts.108 β-TCP 
resorbs in approximately 13–20 weeks after implantation 
and is then completely replaced by remodeled bone.103,109 
Furthermore, β-TCP with its interconnected pores may 
accelerate bone remodeling by facilitating the colonization 
of osteogenic cells and nutrients via an enhanced capillar-
ity15 and seems to have the potential to influence angiogen-
esis.96 In vivo studies showed an incorporation of bone 
between 45% (in vertebral bodies of apes)110 and 70% (in 

piglets’ mandibles)111 6 months after implantation, and of 
95% after 2 years.100 The use of β-TCP showed very few 
complications like infection or nonunion.100 Although its 
suitable mechanical resistance, it is still inferior to mechan-
ical properties of cancellous bone39 or of a bone allograft.112 
Therefore, β-TCP should be used selectively.39,112

Biphasic calcium phosphates (HA and β-TCP ceramics). β-
TCP is mostly used in association with HA.8,9,23,94,113,114 
Synthetic HA can be made by the precipitation of calcium 
nitrate and ammonium dihydrogen phosphate.23 This asso-
ciation presents all the advantages of its two components 
(osteoconductivity,94,115–118 biocompatibility,94,113 safe and 
nonallergen use,113 and promotion of bone formation106). 
The major gain of using biphasic ceramics (HA and β-TCP 
mixture) concerns their resorption. Indeed, the resorption 
of β-TCP is faster than the resorption of HA,23,72,119 but 
mechanical properties of HA are slightly better than β-
TCP’s (average compressive resistances are, respectively, 
of 160 and 100 MPa).23 Thus, the association of β-TCP and 
HA enables a faster and higher bone ingrowth rate than 
using HA alone94 while offering better mechanical proper-
ties than β-TCP alone.72,114 Indeed, 12 months after the 
implantation of the material, 60% of the β-TCP resorbs 
compared to only 10% for the HA.94 HA and β-TCP ceram-
ics form a strong direct bond with the host bone.120 They 
can be found with different HA/β-TCP ratios and can be 
associated with bone marrow aspirate which then provides 
enhanced osteogenic properties to the material.121 Despite 
the improvement of mechanical properties of β-TCP by 
the incorporation of HA, the strength of HA and β-TCP 
ceramics is still lower than cortical bone compression 
strength, which is between 150 and 200 MPa.8 Different 
preparation methods are available, like a compact form, or 
a porous form with interconnected macropores equivalent 
to cancellous bone, which is preferred.122

A few studies mention the utilization of composite sub-
stitutes of calcium sulfate associated to β-TCP which 
would lead to very few complications.34,123 When applied 
to long bones, the return to full weight bearing and unre-
stricted activities of daily living is at a mean of 7.3 weeks34 
against 14 weeks when using HA or β-TCP.23

Bioactive glasses. Developed for the first time by Hench 
et al.124 in the 1970s,125 bioactive glasses (or bioglasses) 
are originally silicates that are coupled to other minerals 
naturally found in the body (Ca, Na2O, H, and P). The 
original bioglass composition is 45% silica (SiO2), 24.5% 
calcium oxide (CaO), 24.5% sodium oxide (Na2O), and 
6% phosphorous pentoxide (P2O5) in weight percentage.126 
When subjected to an aqueous solution or body fluids, sur-
face of bioglasses converts to a silica-CaO/P2O5-rich gel 
layer that subsequently mineralizes into hydroxycarbonate 
in a few hours.126–128 Bioglasses are biocompatible, osteo-
conductive,58,125,129 and—depending on their processing 
condition—offer a porous structure which promotes their 
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resorption and bone ingrowth.130 The use of bioglasses 
does not induce an inflammatory response, and their 
resorption is complete in 6 months for silica-based bio-
glasses.131 More recently, phosphate- or borate-based bio-
glasses have been developed.132,133 Borate-based 
bioglasses, which are easily manufacturable, show a faster 
degradation than silica-based bioglasses, but this degrada-
tion rate can be controlled by adjusting its composition. 
This ability leads to a possible match with the bone regen-
eration rate.132 Phosphate-based bioglasses present a con-
trollable solubility by manipulating their composition, and 
their structure makes them a specific and promising group 
of bioglasses for hard and soft tissue engineering.133 When 
implanted in bone tissues, these materials show a strong 
bond to bone and withstand removal from the implantation 
site.125,129,134 However, bioglasses are quite brittle58 and 
present low mechanical strength and decreased fracture 
resistance.125 Thus, their utilization should be selective125 
or in association with other bone substitutes.

Polymer-based bone substitutes. Although natural polymers 
such as collagen exist and are slightly used alone rather 
than in combination with HA; for example, this section 
(synthetic bone substitutes) will be focused on synthetic 
polymers. They can be nondegradable (like 
poly(methylmethacrylate) or PMMA) or fully biodegrad-
able, thus allowing a total bone replacement in time (e.g. 
polylactic acid (PLA)) without remaining foreign bodies.8 
Initially used as graft extenders,135 researches focus on 
synthetic polymeric bone substitutes, especially in the 
field of tissue engineering. Polyesters like poly(ε-
caprolactone) (PCL), for example, can be synthetized by 
mimicking the collagenic matrix, offering a structural 
porosity and osteoconductive properties.136,137 Most of the 
polymer-based bone substitutes are suitable to be used as 
bioactive molecules or growth factors carriers,138 poten-
tially conferring osteogenetic properties.139 Since PCL is 
soluble in a wide range of organic solvents, it is a promis-
ing polymer for continuous researches in tissue engineer-
ing.8,140 Actual polymer-based bone substitutes can be 
found in different forms. Indeed, blocks of acrylic cement 
(with a similar composition of a prepolymerized PMMA 
powder mixed with a liquid monomer containing a large 
amount of methylmethacrylate monomer) can be fash-
ioned into the desired shape,141 or methacrylate-based 
products can be used in injectable forms before their poly-
merisation.142 PMMA cements are of the most extended 
used materials for articular prosthesis fixation and verte-
broplasty. However, according to a Cochrane review led 
by Handoll and Watts143 in 2008, they are materials which 
few would use to date for specific bone implantation after 
distal radial fracture, because they do not promote new 
bone growth and may rather inhibit it.143,144 Polymer-based 
bone substitutes are mainly scrutinized for their wide 
potential in tissue engineering, allowing their fabrication 
with macropores and micropores and in the shape of thick 

membranes (e.g. PCL or PLA).136,138 Clinicians should 
keep a close eye on outcomes of researches concerning 
polymer-based bone substitutes as scaffolds for regenera-
tive medicine.

Clinical use

Bone substitutes should be used selectively. According to 
the literature, here are some directions concerning their 
clinical use (Table 1).

Spine fusion

Spine fusions represent 200,000 procedures per year in the 
United States.145 To date, autograft and allograft are mainly 
used to promote spine fusion,146 although other materials 
seem to fit for this specific use.15 Indeed, DBM combined 
with marrow aspirate showed good results in posterolateral 
spine fusion,147 and DBM showed good results when used 
as a graft enhancer of autologous bone either in cervical 
fusion surgery37,39 or in lumbar fusion surgery.148–150 
However, there is still no evidence for DBM to be used as a 
stand-alone material in spine fusion.37 DBM applied in 
anterior spinal fusion is currently not recommended in clin-
ical practice146 because its results have shown a higher rate 
of graft collapse and pseudarthrosis when compared to 
autograft.151 Coralline HA has been studied for spine fusion 
as a graft enhancer.76,152 Since the host bleeding bone sur-
face in this area is small, and knowing that coralline HA 
mixed with local bone and bone marrow needs adequate 
bleeding to bond to the bone surface, it appeared that coral-
line HA was inappropriate for intertransverse posterolateral 
fusion.76 Although calcium sulfate has been used as a graft 
expander for spine fusion,79 there is less evidence of its 
suitability than there is for β-TCP ceramics. The latter dem-
onstrated efficacy for use as a bone graft extender in poste-
rolateral spinal fusion.121,146,153 Moreover, β-TCP in a non 
injectable form showed good radiographic fusion in both 
single- and double-level lumbar fusion when mixed with 
local laminar autografts.154 Thus, many bone graft substi-
tutes are suitable as bone graft extenders, but only osteoin-
ductive proteins (such as rhBMP-2) provide evidence for 
use as both bone enhancers and bone substitutes58,146 in 
spine fusion. Products of tissue engineering (hydrogels or 
synthetic polymer composites) seem to have the potential 
to be used for spine fusion though warrants further investi-
gation to be used in clinical practice.146

Open-wedge tibial osteotomy

Open-wedge tibial osteotomy (OWTO) is a classical way 
for treating medial knee osteoarthritis155 or varus deform-
ity138 for example. In a review reporting 70 cases, β-TCP 
ceramics have been used as wedges101 and showed more 
than 96% osteointegration and 98.5% of the cases with an 
achieved bone healing.101 In accordance with other studies, 



Fernandez de Grado et al. 7

T
ab

le
 1

. 
C

lin
ic

al
 u

se
 d

ir
ec

tio
ns

 o
f s

om
e 

bo
ne

 s
ub

st
itu

te
s.

Bo
ne

 s
ub

st
itu

te
C

lin
ic

al
 u

se

Spine fusion

OWTO

Contained bone 
defects

Hand surgery

Long bone fracture

Fracture nonunion

Periodontal defects

Sinus augmentation

Osteonecrosis of 
the jaw

Bone infections 
(drug carrier)

Cranioplasty

Vertebroplasty/
kyphoplasty

Bone substitutes 
derived from 
biological products

D
BM

+
 (

ex
ce

pt
 fo

r 
an

te
ri

or
 

sp
in

al
 fu

si
on

)
–

+
N

I
N

I
+

+
+

+
N

I
N

I
+

N
I

PR
P

N
I

–
N

I
N

I
N

I
N

I
–

+
/–

+
N

I
N

I
N

I
BM

P
+

N
I

–
N

I
N

I
N

I
N

I
N

I
N

I
N

I
N

I
N

I
H

A
N

I
+

N
I

+
 (

as
 a

 c
om

po
si

te
 g

ra
ft

 
w

ith
 c

al
ci

um
 s

ul
fa

te
)

N
I

N
I

N
I

N
I

N
I

+
+

N
I

C
or

al
–

N
I

+
N

I
N

I
N

I
-

N
I

N
I

N
I

N
I

N
I

Synthetic bone 
substitutes

C
al

ci
um

 s
ul

fa
te

+
N

I
+

+
 (

as
 a

 c
om

po
si

te
 g

ra
ft

 
w

ith
 H

A
)

N
I

+
N

I
N

I
N

I
+

N
I

–

C
PC

N
I

N
I

N
I

N
I

+
N

I
N

I
N

I
N

I
+

+
+

/–
H

A
 a

nd
 β

-T
C

P 
ce

ra
m

ic
s

+
+

+
+

+
+

+
+

N
I

+
+

N
I

+
N

I
N

I
Bi

oa
ct

iv
e 

gl
as

se
s

N
I

N
I

N
I

N
I

N
I

N
I

+
+

N
I

+
N

I
N

I
Po

ly
m

er
-b

as
ed

 s
ub

st
itu

te
s

N
I

+
–

N
I

N
I

N
I

N
I

N
I

N
I

+
+

+
+

+
+

O
W

T
O

: o
pe

n-
w

ed
ge

 t
ib

ia
l o

st
eo

to
m

y;
 D

BM
: d

em
in

er
al

iz
ed

 b
on

e 
m

at
ri

x;
 N

I: 
no

 li
te

ra
tu

re
-r

el
at

ed
 in

fo
rm

at
io

n 
ar

e 
gi

ve
n 

in
 t

hi
s 

re
vi

ew
; P

R
P:

 p
la

te
le

t-
ri

ch
 p

la
sm

a;
 B

M
P:

 b
on

e 
m

or
ph

og
en

et
ic

 p
ro

te
in

; H
A

: 
hy

dr
ox

ya
pa

tit
e;

 C
PC

: c
al

ci
um

 p
ho

sp
ha

te
 c

em
en

t; 
T

C
P:

 t
ri

-c
al

ci
um

 p
ho

sp
ha

te
.

(+
) 

gi
ve

s 
go

od
 c

lin
ic

al
 o

ut
co

m
es

; (
+

+
) 

gi
ve

s 
go

od
 c

lin
ic

al
 o

ut
co

m
es

 a
nd

 is
 la

rg
el

y 
us

ed
; (

–)
 g

iv
es

 b
ad

 c
lin

ic
al

 o
ut

co
m

es
; (

+
/–

) 
bo

th
 g

oo
d 

an
d 

ba
d 

cl
in

ic
al

 o
ut

co
m

es
 a

re
 fo

un
d 

in
 t

he
 li

te
ra

tu
re

.



8 Journal of Tissue Engineering  

β-TCP ceramics appear to be a bone replacement material 
with optimal biocompatibility, resorption characteristics, 
and bone conduction properties for OWTO,99,156,157 using 
indifferently granules or wedge preforms.158 Using β-TCP 
ceramics, the results seem to be more similar to those 
obtained with autologous bone after 6 months, but bone 
consolidation appears to be a bit longer, so β-TCP ceram-
ics still have to be used selectively.112 In 2000, Hernigou 
and Ma141 obtained clinically satisfying results in OWTO 
when using acrylic cement wedges. In 2001, Koshino 
et al.69 reported a series of 10 cases using HA as a bone 
substitute for OWTO with good clinical outcomes. 
However, HA is assumed too frangible to be implanted in 
bone under mechanical stress or weight bearing,69,112 but 
the weak mechanical properties of porous HA might be 
eliminated once incorporation and bone ingrowth into the 
pores are achieved.159 From their retrospective review in 
2015 concerning 83 patients having surgery, Giuseffi 
et al.160 concluded that allograft mixed with DBM and/or 
PRP was associated with nonunion.

Contained bone defects (benign tumors and 
cysts)

Since contained bone defects can occur in many types of 
bone, a wide range of substitutes has already been clinically 
used. However, a bone substitute that has been validated in 
a specific area is not necessarily expected to be validated in 
another area. Indeed, the setting is different, and the needed 
characteristics of the bone substitute are different.9 In some 
studies, calcium sulfate has successfully been used in fill-
ing contained bone defects,58,79,88,161–163 and results can be 
comparable to DBM-based allografts,39 with the advantage 
to be at lower cost.164 Calcium sulfate also showed good 
results in filling unicameral bone cysts in pediatrics, with a 
rate of healing mostly over 90%.162,165–167 While polymeth-
ylmethacrylate does not seem to be suitable for the filling 
of bone defects due to primary bone tumors, because it does 
not preserve bone stock and because the hardened cement 
does not share the same biomechanical properties as 
bone,34,168 the use of a calcium sulfate–calcium phosphate 
composite was associated with good clinical outcomes 
(rapid biological integration and early return to activities of 
daily living) in cavitary bone reconstruction, following 
intralesional curettage of primary benign bone tumors.34 
Concerning PRP, there are major limitations in the litera-
ture in terms of low quality and heterogeneity, which ham-
per possible beneficial PRP treatments, despite positive 
preclinical findings on its biological potential to promote 
bone healing.169 Moreover, poor evidence mentions the 
efficacy of PRP in the treatment of traumatic bone cyst in 
the mandible.170 Coralline HA, in granules or blocks, seems 
to be suitable to fill contained bone defects.58 Although its 
slow resorption, it does not induce adverse effects.58 On the 
contrary, the use of BMP-2 (in the form of rhBMP-2) can 
lead to a poor healing rate with complications such as an 

exaggerated inflammatory response, pain, and limb swell-
ing.171 Finally, β-TCP ceramics are largely used in this pur-
pose9,23,165 and frequently associated with bone marrow 
aspirate.172,173 Using β-TCP, healing rates vary from 90% to 
100% with very few complications which resolved 
uneventfully.166,172,173

Hand surgery (hand enchondroma and 
metacarpal fractures)

Enchondromas are the most common benign tumors of the 
hand16,174 appearing usually as solitary, cystic bone 
tumors.17 The literature is quite poor regarding the use of 
bone substitutes for bone filling in hands,17 as some authors 
advocate that a simple curettage without filling is a suffi-
cient175,176 and a less-expensive option.176 Nevertheless, 
when bone substitutes are used, β-TCP ceramics seem to 
be suitable. Indeed, the application of this material gives 
the same good functional and radiological results com-
pared to autologous bone.16

The use of a composite material with 60% calcium sul-
fate and 40% HA offered good clinical outcomes as well in 
terms of limited complications (53% redness and swelling 
lasting up to 10 postoperative days, 8% chronic regional 
pain syndrome treated successfully with intensive con-
servative treatment) and an effective return to normal daily 
activities after 2 months.17 Furthermore, the use of bone 
substitutes is especially helpful in the treatment of compli-
cated metacarpal fractures in old multimorbid patients, in 
whom a general anesthesia or potential donor site morbidi-
ties should be avoided,16,17 allowing a reduced operating 
time and day-case surgery.16

Long bones fracture

Concerning tibial plateau fractures, it has been shown that 
CPC can provide similar and better mechanical support than 
autogenous iliac bone graft in the treatment of defects in 
unstable fractures, preventing subsidence.91 β-TCP ceram-
ics have been used as well for many decades in long bone 
fractures, such as tibial plateau fractures.77 However, their 
use in distal radial fractures showed no significant benefits 
in terms of extra stability, compared to the use of internal 
fixation only, without bone substitute. Moreover, the occur-
rence of complications did also not show statistical signifi-
cance.177 For distal radial fractures, some evidence about 
bone scaffolding that may improve anatomical outcomes 
compared with plaster cast immobilization alone exist, but 
are insufficient on functional outcome and safety.143

Fracture nonunion

There is actually no universally accepted definition of non-
union in the orthopedic literature.178 The FDA defines frac-
ture nonunion as a fracture that is at least 9 months old in 
which there have been no signs of healing for 3 months.39 
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Other definitions mention a fracture in which more than 
6 months have elapsed without any improvement toward 
union,179 distinguishing these cases from delayed unions. 
Nonunion appears in 10% of all fractures180 and are gener-
ally treated with an open reduction and internal fixation 
associated with an augmentation using an autologous bone 
graft.19 Since many synthetic bone substitutes are strictly 
osteoconductive, their biological role in fracture healing is 
limited,40 although calcium sulfate has already been used as 
a graft expander for the treatment of established nonunions 
with a healing rate of 88%.181 DBM is a popular bone sub-
stitute for the grafting of nonunions.19,39 It has been com-
pared to autologous bone and led to good results in terms of 
consolidation (more than 80% success) and a decrease in 
the adverse effects (especially due to the presence of a 
donor site).19 However, the procedure cost was more expen-
sive applying DBM (an average difference of US$190/
case).19 Recently, biphasic calcium phosphate biomaterials 
have been use associated to autologous, expanded, bone 
marrow-derived mesenchymal stromal cells. The safety of 
their use in the treatment of fracture nonunions has been 
set, but bone healing obtained through this method still has 
to be determined to compare the efficacy of this strategy 
with that of current clinical standards such as autograft.182

Oral/periodontal procedures

Periodontal diseases are widespread pathologies with 50% 
of adults suffering from a severe attachment loss problem 

in France.183 Dental biofilm provokes an inflammatory 
response leading to the destruction of attachment tissues of 
teeth, while creating periodontal pockets whose depth is 
relative to the severity of the periodontal disease. To treat 
periodontal defect, the use of bone grafts seems to promote 
healing compared to open flap debridement alone.184 Not 
only the material but also the technique has a role to play 
as well. Bone grafts in combination with barrier mem-
branes increase clinical attachment level and reduce prob-
ing depth compared to graft alone.184 Granules of β-TCP 
and HA ceramics can be used with significant pocket depth 
reduction and clinical attachment gain.114,185 Bioglasses 
also have shown good clinical outcomes with a consequent 
clinical experience.58,125,185,186 In comparison, other mate-
rials are not suitable for the treatment of periodontal 
defects, such as PRP, which does not demonstrate signifi-
cant benefit,187–189 or coralline bone substitutes, which 
does not yield the desired outcomes.185 However, even if 
bone replacement grafts offer clinically satisfying results 
in terms of bone fill, histologic evidence of periodontal 
regeneration has only been reported for autogenous bone 
grafts and DBM.190 In situations like buccal bone defect 
filling after a dental implant placement, for example, DBM 
can also be used (Figure 3).

Concerning sinus elevation, some studies concluded the 
efficacy of PRP191 in terms of bone density at 6 months 
post-grafting,192 whereas others postulated that PRP did 
not improve the clinical outcome of sinus lift procedures 
using autogenous bone or bone substitutes.47,51,54,193 DBM 

Figure 3. Use of DBM in oral procedures: (a, b) DBM used to fill buccal bone defect (arrow) after implant placement. (c, d) 
Panoramic X-rays of a maxillary right sinus before (c) and after sinus floor elevation (d) filled with DBM and dental implants 
placement.
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can be used with significant results for sinus elevation 
(Figure 3) as injectable formulation,194 putty195,196 or pow-
der form,196 showing no differences regarding dental 
implant stability and survival rate in a long-term follow-
up.196 Moreover, using injectable formulation of DBM 
could allow practical advantages such as a decrease in 
operative time.194 The use of bioglasses or a mixture of β-
TCP with autologous bone showed suitable results for this 
procedure;51 however, the available evidence neither sup-
ports nor refutes the superiority of autologous bone over 
other graft materials for sinus augmentation regarding 
implant survival or complications at the recipient site.197

Osteonecrosis of the jaw

Poor evidence mentions the efficacy of PRP in the man-
agement of bisphosphonate-related osteonecrosis of the 
jaw (BRONJ).198,199 In some studies, however, the use of 
PRP seems to enhance wound healing and to reduce bone 
exposure and thus would be an effective treatment proto-
col to use in BRONJ subjects.47,200

Infections

Various bone substitutes can be used as drug carriers in the 
treatment of bone deep infections.201 Debridement, and 
implantation of antibiotic-loaded PMMA granules or 
beads mostly followed by an implant exchange, is cur-
rently the gold standard for this treatment.201,202 Most com-
monly used antibiotics are gentamicin, tobramycin, and 
vancomycin.201 Other bone substitutes have been used for 
this purpose, but clinical data in well controlled trials are 
still very limited:201 it is the case for β-TCP granules,203 
porous HA blocks,202,204 calcium sulfate pellets,202,205 
CPC,206,207 and bioglasses.208 However, the performance of 
some bone graft substitutes with antibiotics in one clinical 
site is not inevitably predictable of their performance in 
another site.201 Most infections occur during implantation 
time and that is why sterile techniques still remain of 
utmost importance.26,201

Cranioplasty

Cranioplasty is performed mostly after traumatic injuries, 
tumor removal, or decompressive craniectomies209 in 
order to protect the brain and achieve a natural appear-
ance.209,210 Among other characteristics, the ideal material 
should then be easy to shape, radiolucent, resistant to 
infections, biocompatible, firm, and stable.209,210 Apart 
from some metals (titanium, tantrum, etc.), various bone 
substitutes are safely used for cranioplasties, such as 
CPC,211 HA,209,211,212 or DBM.213 But still, PMMA is the 
most extensively used cranioplasty material,209,210,214 even 
if there is still no consensus on which material is better for 
cranioplasty.209

Vertebroplasty and kyphoplasty

Vertebroplasty procedures were designed to stabilize ver-
tebral body compression fracture and to alleviate pain in 
patients with various etiology such as hemangioma, spine 
tumor, or osteoporosis.215,216 Kyphoplasty is a variation of 
vertebroplasty that usually involves the use of a balloon to 
create a cavity within the cancellous bone and to elevate or 
expand the fractured vertebrae toward its original height. 
The cavity is then filled with bone cement to reinforce the 
vertebral body.215,217 The filling material plays a crucial 
role in the effectiveness of these treatments. It must be 
applicable in a flowable state due to the percutaneous sur-
gical technique, have an adequate setting time to match the 
progress of surgeries, and have considerable mechanical 
strength to withstand cyclic and static complex loading 
patterns.215,217 The most popular bone cement used for this 
purpose is PMMA-based acrylic bone cement, but several 
disadvantages are mentioned, such as its heat generation 
during exothermic polymerization, its nonbiodegradabil-
ity, and a lack of biologic potential to remodel or integrate 
into the surrounding bone.215,217 Good clinical results have 
been reported with PMMA for vertebroplasty and kyphop-
lasty (over 5° correction for 60% of reducible fractures, 
with an average of 95% pain reduction within the first 
week after surgery and improved activity levels for a 
majority of patients218,219). CPCs present interesting char-
acteristics for their use as fillers in vertebroplasty and 
kyphoplasty. Indeed, they can be easily molded, injected 
into the defect area, offer the potential for resorption and 
replacement with new bone, and do not generate 
heat.215,217,220 However, there are still some questionings 
regarding their mechanical strength,221 and few evidence 
mentions their use other than in laboratory models.215,222 
To date, it seems that few CPCs are yet readily available 
for use in vertebroplasty and kyphoplasty.215 Calcium sul-
fate has relatively higher mechanical strength than CPC 
and has been tested, but its fast degradation does not match 
with the bone formation process and would not allow to 
support spinal alignment while it is remodeling.215,217,223

Miscellaneous

Other surgical uses of bone substitutes are sometimes men-
tioned in the literature: β-TCP and HA ceramics have been 
used in hip arthroplasty,224,225 bioglasses in tympanoplasty,58 
and PMMA in an original creation of a neo-rib for chest wall 
reconstruction.226

For bone defects that are not too large, autologous bone 
is often preferred. When it comes to large bone defects, the 
quantity of available autologous bone might not be suffi-
cient, and a wide proportion of bone substitutes is then used 
as graft expanders,8,37,47,58,79 rather than as stand-alone 
grafts. Thus, it appears interesting to discuss about two par-
ticular properties—porosity and vascularization—that 
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should be developed, leading to advances that would allow 
for a new generation of enhanced bone substitutes to be 
used for the treatment of large bone defects.

Vascularization, a requirement for 
bone regeneration

Currently, the use of bone substitutes is limited to rela-
tively restricted bone defects, because they can become 
atrophic sequesters if they exceed a critical size (up to 
60 cm3)136 and are not vascularized sufficiently.227,228 Thus, 
vascularization is vital for bone defects to heal, and there 
is a greater need for vascularization at sites where bone 
substitutes are used because the defects are larger.96 A lack 
of vascularization leads to osteonecrosis, which is not a 
specific disease entity, but the combination of conditions 
resulting in an impairment of blood supply to the bone tis-
sue.229 It is also called avascular necrosis.229

Indeed, the bridging of bone defects with stable bone 
substitutes is limited by vascularization as angiogenesis 
must precede osteogenesis.106,230 The coupling of osteo-
genesis and angiogenesis is determinant in the bone heal-
ing environment,231 and osteogenesis, vascularization, and 
resorption kinetics must be in equilibrium to allow a har-
monious bone remodeling process.232,233 Osteogenic cells 
will develop into the graft site through the existence of a 
vascular system234 that allows to understand why poor vas-
cularity can impede effective osteosynthesis.39 Besides, 
studies showed that the presence of VEGF with resorbable 
carriers influences the ability to promote bone heal-
ing.106,136 Thus, the structure and the composition of bone 
substitutes must allow vascularization, by presenting an 
interconnected porosity and a favorable biochemical sup-
port. The latter may then accelerate bone remodeling by 
facilitating colonization and retention of osteogenic cells 
and nutrients through an enhanced capillarity.15 The estab-
lishment of a vascular network will provide nutrients, sol-
uble factors, and minerals (e.g. calcium and phosphate) 
which are necessary for the bone healing process.136 A 
delayed healing and some nonunions are often attributed to 
a failure in restoring vasculature rather than a lack of oste-
ogenic potential.235 That is why vascularization is one of 
the components of Giannoudis et al.’s236 diamond concept, 
which sets the main factors that affect bone regeneration.

To give the capacity to bone substitutes to allow the 
development of vascularization, pores appear to be essen-
tial in their structure.96 On one hand, the pore size directly 
plays a role in the bony ingrowth and can improve it when 
it is from about 8023,94,237,238 to 200 µm,58,71,102 ensuring a 
cell colonization, migration, and transport. Furthermore, 
porosity fraction in the material in the substitutes plays a 
role as well in bone ingrowth, allowing more cells to 
invade and offering a larger surface area that is believed to 
contribute to a higher bone-inducing protein adsorption.239 
On the other hand, interconnected pores are a crucial char-
acteristic.15,94 Indeed, dead-end pockets limit vascular 

supply to the in-growing bone.23 If 100- to 200-µm pores 
are enough to support cell migration, 300- to 500-µm pores 
appear to be recommended to allow the formation of capil-
laries.156,232,240,241 However, there is an equilibrium to be 
found between the decrease in compressive strength and 
an increased porosity, regarding the desired mechanical 
properties of bone substitutes.242

Nevertheless, even knowing that bone substitutes 
should be porous to allow vascularization, this biological 
process takes time. Thus, another approach to promote the 
quality and speed of bone regeneration is the ability to 
facilitate the development of a vascular network in the 
bone tissue during regeneration. For example, this could 
be achieved by adding growth factors (VEGF) to nano-
structured implants,136 or by creating bone-like structured 
biodegradable synthetic scaffolds using techniques such as 
electrospinning.137,139 This network will provide the nutri-
ents and minerals necessary for cells, conveying cellular 
waste243 and therefore avoiding the potential necrosis in 
the middle of bone defects of a moderate size.244 Being 
able to create polymer-based bone substitutes with a given 
porosity which will support biofunctionalization and pro-
mote the establishment of a vascular network136–139,243,244 
are some of the major interests of current researches in 
bone tissue engineering. That is precisely why clinicians 
should keep a close eye on these researches.

Conclusion

During the past decades, a plethora of materials have been 
used as bone substitutes. Some are derived from biological 
products, others are synthetic. But all of them present 
advantages and disadvantages and should mainly be cho-
sen selectively. Many surgical procedures call out bone 
substitutes, such as spine fusion, filling of bone defects, 
and sinus augmentation, each one being suitable for spe-
cific substitutes among others. The main limitations to the 
use of bone substitutes are large defects and the central 
osteonecrosis which is likely to appear following their uti-
lization. To avoid this phenomenon, current researches are 
focusing on the ability to create synthetic scaffolds with a 
desired porosity and to promote a faster and wider 
vascularization.
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