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Simple Summary: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast
cancer and has a poor prognosis and higher recurrence rate due to ineffective therapy. Even with
newly approved therapeutics, only limited TNBC patients could have benefited from the regimens.
Protein disulfide isomerase (PDI) has been of great interest as a potential therapeutic target for
cancers due to its impacts on tumor progression, metastasis, and clinical outcomes. Here, we discuss
the roles of PDI members in breast cancers such as TNBC and the PDI inhibitors studied in breast
cancer research.

Abstract: Protein disulfide isomerase (PDI) is the endoplasmic reticulum (ER)’s most abundant and
essential enzyme and serves as the primary catalyst for protein folding. Due to its apparent role in
supporting the rapid proliferation of cancer cells, the selective blockade of PDI results in apoptosis
through sustained activation of UPR pathways. The functions of PDI, especially in cancers, have
been extensively studied over a decade, and recent research has explored the use of PDI inhibitors
in the treatment of cancers but with focus areas of other cancers, such as brain or ovarian cancer. In
this review, we discuss the roles of PDI members in breast cancer and PDI inhibitors used in breast
cancer research. Additionally, a few PDI members may be suggested as potential molecular targets
for highly metastatic breast cancers, such as TNBC, that require more attention in future research.

Keywords: breast cancer; triple-negative breast cancer; protein disulfide isomerase; protein disulfide
isomerase inhibitor

1. Introduction

Breast cancer is the most common malignant tumor and the second leading cause of
cancer-related death in women. In the United States, it is estimated that about 30% of newly
diagnosed cancers in women will be breast cancer, and about one in eight women (13%)
will develop invasive breast cancer over their lifetime [1]. Breast cancer is genetically and
epigenetically not just one disease, but a diverse group of disorders with various clinical fea-
tures [2]. Most breast cancer (about 81%) is invasive cancer. It can be further classified into
four subtypes: Luminal A, Luminal B, HER2-enriched, and Basal-like, depending on the
presence of hormone receptors and human epidermal growth factor receptor 2 (HER2) [3].
Basal-like breast cancer is commonly known as triple-negative breast cancer (TNBC). The
term “triple-negative” in TNBC comes from its unique composition of lacking three recep-
tors; the majority of TNBC patients lack expression of the estrogen receptor (ER) and the
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progesterone receptor (PR) and overexpression or amplification of HER2 [4]. TNBC is a
more aggressive type of breast tumor because it grows rapidly and is more likely to spread,
resulting in high metastatic potential [5,6]. TNBC also has higher recurrence rates even
after being treated with chemotherapy, which is the mainstay for TNBC treatment [6–9].
These features make TNBC represent over 50% of mortality in breast cancer, whereas it
accounts for 15–20% of all cases [10]. In addition, health disparities have been highlighted
in breast cancers, most probably due to TNBC. In detail, the aggressive TNBC subtype
of breast cancer is identified more frequently in African-American women in advanced
stages than Caucasian-American women [11–13], and African-American women exhibit
the lowest survival rate of any race or ethnic group in the same cancer stage [13].

2. Recent Therapeutic Options and Molecular Targets in TNBC

TNBC is an aggressive disease with fewer specific targets due to the lack of any
receptor expression. TNBCs tend to occur in younger women and have a higher potential
to metastasize to distant organs or for regional relapse. In a study involving 2534 breast
cancer patients, 35% of patients developed metastasis after 6 years: 15% to the brain
and 14% to the lung [14]. Recently, research has expanded the targetable vulnerabilities
in TNBC (Figure 1 and discussed below). Clinical efforts targeting multiple pathways,
including DNA damage response, Epithelial-mesenchymal transition, (Wingless/Int-1)
Wnt Signaling, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
(PIK3CA), and Androgen signaling, are currently ongoing, some of which are discussed
below [15].

Figure 1. Molecular targets in TNBC. Inhibitors of pathways discussed in the text are shown with
inhibitors or antibodies. These include inhibitors targeting EGFR, VEGFR, and AR. Checkpoint
inhibitors such as anti-PD-1 and PD-L1 are used to inhibit cancer cell and T cell interactions. Neoad-
juvant chemotherapy and PAPR inhibitors are used to abrogate DNA Damage Response. (*) indicates
U.S. Food and Drug Administration (FDA) approved drugs for treating TNBC.

The standard of treatment for TNBC is neoadjuvant chemotherapy, which yields better
pathologic complete response (pCR) [16]. Particularly, platinum-based chemotherapy with
cisplatin or carboplatin alone or in combination has achieved pCR in a large number of
patients [17]. More recently, targeted delivery with an antibody-drug conjugate has shown
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promising results. One such drug, Sacituzumab Govitecan, has been approved by the U.S.
Food and Drug Administration (FDA) for the treatment of metastatic TNBC [18]. The drug
combined cell surface human trophoblast cell-surface antigen 2 (Trop 2) antibody with a
topoisomerase I inhibitor. However, TNBCs relapse at a higher rate compared to other
types of breast cancer, as shown by lower Disease-Free Survival (DFS), which is associated
with neoadjuvant chemotherapy and residual disease [19].

The early breakthrough treatment option is the use of Poly-ADP Ribose Polymerase
(PARP) inhibitors after discovering its pathways in DNA repair. Incidentally, TNBCs have
higher BRCA1 loss-of-function mutations or BRCAness, a clinical signature similar to
sporadic BRCA1 or BRCA2 mutation [20,21]. Loss of BRCA or BRCAness is associated
with a defective DNA damage response, since BRCA1 is involved in double-stranded DNA
breaks. Thus, in the context of BRCA loss, PARP inhibition leads to the accumulation of
single-strand breaks, ultimately causing cancer cell death. This is attributed to the synthetic
lethality of PARP inhibition with BRCA1 loss-of-function mutations. With this rationale,
the targeted groups of PARP inhibitors are the BRCA1 negative TNBC patients [22]. PARP
inhibitors such as Olaparib, Niraparib, and Rucaparib are currently approved by the FDA
for ovarian cancers, endometrial cancers, and castration-resistant prostate cancer. Currently,
the only approved PARP inhibitor for TNBC is Talazoparib (Talzenna, Pfizer) [23]. It is
approved as a single-agent therapy for the treatment of HER2-negative breast cancer with
a germline BRCA1 mutation, and it shows significant improvement in progression-free
survival compared to standard chemotherapy. Clinical trials of other PARP inhibitors, such
as Olaparib, in combination with radiation or a monoclonal antibody Durvalumab for
TNBC are underway (NCT03109080 and NCT03801369, respectively).

Besides the single target, the most recent efforts for TNBC treatment focus on the
utilization of combination therapy. These include standard platinum-based therapeutics
as a neoadjuvant or with mechanistically different chemotherapeutics. For example, two
clinical trials have used this strategy when BRCA1/2 germline or somatic mutations are
present. These trials have utilized Carboplatin with Docetaxel [24] or Doxorubicin with
cyclophosphamide as opposed to neoadjuvant cisplatin (INFORM trial) [25]. Carboplatin
has also been combined with an anti-microtubule agent such as Ixabepilone with a good
prognosis in metastatic TNBC [26].

Other treatment efforts are on the way with different antibodies targeting mitogens
such as Vascular Endothelial Growth Factor A (VEGF-A) (Bevacizumab) and small molecule
inhibitors targeting kinases such as Epidermal Growth Factor Receptor (EGFR) (Erlotinib
and Gefitinib) in TNBC [27,28]. More preclinical studies have shown that EGFR-targeted
Chimeric Antigen Receptor (CAR) T cells could potentially be a treatment for TNBC, as
these T-cells cause TNBC cell lysis [29]. TNBC has a high tumor mutation burden and thus
is immunogenic. Along with that, the high levels of Program-cell Death-Ligand 1 (PD-L1)
expression make TNBC a prime candidate for immune checkpoint inhibition therapy [30].
PD-L1 can cause T-Cell anergy (inactivation of T-cells as an immune tolerance mechanism),
thus enabling TNBCs to evade immune detection. Therefore, checkpoint inhibitors such as
Atezolizumab, an anti-PD-L1 monoclonal antibody, and a PD-1 receptor targeting human-
ized monoclonal antibody, such as Pembrolizumab, have been tested with neoadjuvant
chemotherapy [31,32]. These combinations have shown significant improvement in overall
survival. Additionally, PARP inhibitors such as Talazoparib have been tried in combina-
tion with Nab-Paclitaxel and anti-PD-L1 in BRCA mutated TNBC [33]. Additionally, the
combination of PARP inhibitor Niraparib with Pembrolizumab, a Programmed death 1
(PD1) immune checkpoint inhibitor, has shown promising results in a preliminary trial with
advanced and metastatic TNBC patients [34]. Other potential avenues are using inhibitors
for Protein kinase B (AKT) (Ipatasertib), Aurora, and kinase inhibitor ENMD-2076, which
have shown promising results [35,36]. In addition, Androgen Receptor (AR) antagonists
Enzalutamide and Bicalutamide are in clinical trials in AR-positive TNBC patients. In the
studies, the combinations of Enzalutamide with Paclitaxel (NCT02689427) or Bicalutamide
with cyclin D1/CDK4 and CDK6 inhibitor Ribociclib (NCT03090165) are being used. AR
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inhibition has also been tried with a combination of PI3K inhibitor Taselisib, resulting in an
overall increase in progression-free survival [37].

Multiple preclinical studies are exploring other avenues to target TNBCs to yield better
outcomes. For example, the simultaneous targeting of EGFR, HER2, and HER3 with an
antibody cocktail has shown tumor regression in patient-derived xenograft models and
the downregulation of AKT and ERK pathways [38]. In vitro studies with Fingolimod, an
inhibitor of sphingosine-1-phosphate, reduced TNBC cell growth in xenograft models [39].
Interestingly, intratumoral Toll-like receptor (TLR) 7/8 agonist 3M-052 has shown improve-
ment in activating a tumor-immune microenvironment to protect against metastasis [40].
Other receptor tyrosine kinases, such as Insulin-like Growth Factor 1 Receptor (IGF-1R)
targeting antibodies (Cixutumumab), are currently showing potential in the treatment of
TNBC in pre-clinical studies with xenograft [41].

Together with the multiple preclinical studies, improved and promising outcomes from
the currently approved therapeutics have also been reported. However, only limited TNBC
patients could have benefited from the new therapeutic regimens. Thus, it still requires
continuous effort to identify clinically relevant molecular targets for TNBC. Among the
promising therapeutic targets for TNBC, PDI has emerged as an interesting molecular
target for cancer research due to its critical role in the unfolded protein response (UPR)
pathways. Thus, in this review, we provide an overview of PDIs in ER stress and UPR
pathways, the roles of PDI family members in breast cancer, and the PDI inhibitors studied
in breast cancer research.

3. Protein Disulfide Isomerase (PDI) Family

Disulfide (s-s) bonds are important for maintaining natural structures of proteins for
their normal biological functions. The disulfide bond formation occurs between cysteine
residues through the oxidation of thiol groups and is then rearranged to achieve the correct
conformation [42,43]. The most abundant and essential enzyme in the ER is PDI. PDI
functions as a dithiol-disulfide oxidoreductase and molecular chaperone which participates
in the oxidation (formation), reduction (breakage), and rearrangement (isomerization)
of disulfide bonds. PDI also assists in protein folding by preventing the aggregation of
misfolded proteins [44].

The PDI family has at least 21 members that are resident in various cellular compart-
ments, primarily within the ER and other cellular locations such as the nucleus, cytoplasm,
or the plasma membrane. Although belonging to the same family, they show different
lengths, different domain arrangements, and varied substrate specificity (Figure 2). The
common domain that is present in all PDIs is the thioredoxin-like domain that can be
further divided into two types (a and b) depending on the presence of a catalytic motif (Cys-
X-X-Cys) [45,46]. The a-type catalytic domain, including a and a’, contains cysteines in the
active sites that are thiol-reactive, and they are responsible for oxidoreductase activity [47].
The most conserved motif of CXXC is the CGHC (Cys-Gly-His-Cys) [48]. Catalytically
inactive b-type domains (b and b’) that lack cysteines do not mediate disulfide bond forma-
tion. Instead, primarily, the b’ domain plays a role in recruiting substrates by constituting
the principal substrate-binding site via hydrophobic interaction [49,50]. The archetype
PDI protein, PDIA1, has a multidomain (a, b. b’, a’), a linker x, and the acidic C-terminal
extension in which the ER retention signal resides. Other PDI members have a similar
modular composition of thioredoxin-like domains in various arrangements, but there are
some atypical members that only possess one type of domain. Depending on structural
similarity, the PDI family can be divided into several subgroups, such as the PDIA, TMX,
AGR, or CASQ subfamilies [45,51]. The typical PDIs (PDIA 1-6), PDILT, and DNAJC10
contain at least two active a-type domains (a and a’ domains) and two inactive b-type
domains (b and b’ domains), except for PDIA5, PDIA6, and DNAJC10, which have one b
domain instead of two b-type domains. The TMX (TMX1-4) and AGR (TXNDC12, AGR2-3)
subfamilies carry only a-type domains, except TMX3, which contains b-type domains.
TXNDC5 contains only a-type domains without the presence of a b-type domain. ERp27
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and ERp29 have only b-type domains, whereas ERp44 contains a-type domains as well.
The CASQ subfamily (CASQ1-2) possesses b-type domains and is the only PDI member
without an ER retention sequence [45].

Figure 2. The human PDI gene family. Each gene is described with other aliases, subcellular locations,
known functions, and domain organization. For the domain organization, the catalytically active
a domains are represented in orange with active sites noted, active a’ domains are represented in
yellow, b and b’ domains are represented in blue, and COOH-terminal ER retention sequences are
represented in gray with their amino acid composition denoted. The figure was adapted and modified
from Powell and Foster, Cancer Medicine 2021 [51].

Each domain of the human PDI is arranged in a horseshoe shape with two CXXC active
sites, with the a and a’ domains facing each other at the two ends [52]. In reduced PDI, a, b,
and b’ domains are arranged on the same plane, and only the a’ domain twists outward
by 45◦. By contrast, all four domains are placed on the same plane in the oxidized state.
The distance between the two redox-active sites in the a and a’ domains of the oxidized
form increases to 40.3 Å compared to 27.6 Å of the reduced form, resulting in a more
open hydrophobic inner space (14,400 Å3, two times larger than the area of reduced form,
6800 Å3) that is required for substrate binding (Figure 3) [52]. While almost no interaction
is observed between the a and b domains, the redox-driven interdomain rotation occurs
in the b’xa’ region [52]. An extensive cation-π interaction between the guanidium group
of Arg300 in the b’ domain and the indole ring of Trp396 in a’ domain leads to a closed
conformation in the reduced human PDI. However, in the oxidized state, oxidation of the
CGHC motif of the a’ domain occurs. In other words, disulfide bond formation between
cysteine residues (Cys397 and Cys400) in the a’ domain disrupts the cation-π interaction
between Arg300 and Trp396 of the b’ and a’ domain, resulting in an open conformation.
It allows PDI to capture unfolded and partially folded substrates, because oxidized PDI
exists in an open state and assembles to form a face-to-face dimer. The resultant central
hydrophobic cavity accommodates the substrate and efficiently introduces disulfide bonds
into it [53]. Ultimately, correctly folded proteins with native disulfide bonds and hydrophilic
surfaces are released from PDI. The oxidative folding in the oxidized state leads to higher
chaperone activity than the reduced state [54]. The importance of the substrate binding on
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the proper oxidative folding of proteins has been demonstrated by using an inhibitor of
PDI, bisphenol A (BPA), that binds to the substrate-binding site of PDI b’ domain. BPA
causes significant spatial rearrangement and results in a more compact overall structure
of PDI. This conformation switch leads to the subsequent closure of the substrate-binding
pocket in the b’ domain, preventing PDI from binding to other proteins [55].

Figure 3. The overall structures of oxidized and reduced hPDI: (A,B) the crystal structure of oxidized
human PDI (hPDI) (PDB #: 4EL1) (A) and reduced hPDI (PDB #: 4EKZ). Redox-active sites are
represented as space-filling models in green; (C,D) the interaction between b’ and a’ domain of hPDI
at different redox states. The Arg300 (b’ domain) and Trp396, Cys397, and Cys400 (a’ domain) are
shown in ball and stick presentation. There is no observed interaction between Arg300 and Trp396 in
the oxidized state (C), whereas the cation-π interaction between the guanidium of Arg300 and the
indole ring of Trp396 is observed due to disulfide bond formation in Cys397 and Cys400 in the a’
domain (D). The a and a’ domains are catalytic domains, b and b’ domain are non-catalytic domains,
and x is a linker. The figures were generated by using the Schrodinger program.

4. PDI in ER Stress and UPR Signaling

PDI works as a folding enzyme and a chaperone for disulfide bond formation, cleavage,
and rearrangement in unfolded or misfolded proteins, so it is important for endoplasmic
reticulum (ER) proteostasis. In other words, the dysregulation of PDI functions can disrupt
protein folding efficiency in the ER lumen, leading to the accumulation of unfolded and
misfolded proteins. This condition is known as ER stress, which further activates a cellular
stress response called UPR (Figure 4). The UPR is carried out through ER stress sensors,
inositol-requiring protein 1 (IRE1), activating transcription factor 6 (ATF6), and protein
kinase RNA-like endoplasmic reticulum kinase (PERK) [56]. In the situation of ER stress,
the process is initiated by the dissociation of glucose-regulated protein 78kDa (GRP78),
known as binding immunoglobulin protein (BiP). Its dissociation allows ER stress receptors
to be activated through the dimerization and phosphorylation of PERK and IRE1 or the
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cleavage of ATF6. Downstream signaling of these receptors induces chaperones that
either facilitate protein folding to reduce the unfolded protein burden or remove the
inappropriately folded proteins to further relieve ER stress [44]. In addition, PDI mediates
regulation of the ER stress receptors upon activating the UPR pathway in response to
ER stress [44,57,58]. For example, PDIA1 in its oxidized state is essential to activating
PERK, whereas PDIA3 forms a complex with PDIA1 to let PDIA1 in its reduced state,
which prevents PERK activation [59,60]. PDIA6 also prevents the activation of IRE1 by
forming a covalent disulfide bond with the Cys148 of IRE1 [57,61]. On the other hand,
PDIA5 regulates the ATF6 export from the ER and the activation of its target genes through
disulfide bond rearrangement in ATF6 [62,63].

Figure 4. ER stress and the UPR pathway. The figure was adapted and modified from Powell and
Foster, Cancer Medicine 2021 [51]. The figure was created with BioRender.com.

The early-stage UPR functions to alleviate ER stress and maintain cellular homeostasis.
However, longer exposure to ER stress and prolonged UPR promotes cell death. Under
chronic ER stress, PERK leads to the upregulation of proapoptotic C/EBP homologous
protein (CHOP) expression [64]. Similarly, IRE1 also promotes the activation of the JNK
pathway that interacts with the proapoptotic Bcl-2 members such as BAX and BAK [65].

Cancer cells are exposed to various stressors which increase the level of unfolded and
misfolded proteins in the ER, triggering the activation of the UPR. The cancer cells, in turn,
are in high demand for PDI in order to sustain rapid cell growth. The significance of PDI
in supporting cancer cell survival is demonstrated by its upregulation in various cancers,
including kidney, lung, brain, ovarian, melanoma, and prostate tumors. Interestingly, PDI
overexpression is frequently correlated with tumor metastasis and invasiveness [66,67],
chemoresistance [68,69], and lower survival rates in cancer patients [70].

5. The Functions/Roles of Specific PDIs in Breast Cancer
5.1. Overexpression of PDIs and the Role of PDI in Breast Cancer Proliferation

In breast cancer, PDI gene transcription is frequently upregulated. More specifically,
out of 21 members, PDIA1, PDIA3, PDIA4, and PDIA6 are identified to exhibit an increased
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mRNA level in breast cancer, according to the Gene Expression Atlas dataset [51]. Protein
analysis has revealed PDIA1 to be one of the most frequently upregulated proteins in breast
tumor tissue, interstitial fluid, and, importantly, in the blood. The presence of high-level
PDIA1 in the blood of breast cancer patients serves as a potential non-invasive serological
marker for early detection [71]. Its high expression is observed in infiltrating ductal
carcinomas of the breast in either sex [72,73] and in axillary lymph node metastatic breast
tumors [74]. In breast cancer mammospheres, the protein levels of PDIA1, PDIA3 (ERp57),
and ERp44 are elevated [75]. Another proteome analysis indicates that PDIA3 and PDIA6
show higher expression levels in invasive ductal carcinomas than in lobular carcinomas,
and the high expression of PDIA3 and PDIA6 genes correlates with the aggressiveness of
primary ductal breast cancer [76]. In addition, it is not surprising that AGR2 (PDIA17) is
highly expressed in ER-positive breast cancer, as it mediates estrogenic actions [77]. It is
evident in cell lines that AGR2 is present in MCF-7 (Luminal A) at a relatively high level
but is low in MDA-MB-231 (TNBC) [67]. However, it is also involved in lobuloalveolar
development due to its ability to stimulate cell proliferation [77]. In the recent proteomic
study reported by Stojak et al., PDIA1 is identified as a major isoform of PDIs present in
human breast cancer cells (MDA-MB-231 and MCF-7) [78]. PDIA3 (ERp57) is found to be
the second most abundant isoform in both cell lines. PDIA4 (ERp72), PDIA6, and PDIA9
levels are high, but lower than PDIA1 and PDIA3. PDIs also show somewhat cell-type-
specific expression. For example, PDIA1 and PDIA6 are highly expressed in breast cancer
cells (MDA-MB-231, MDA-MB-468, and T47D), whereas PDIA4 (ERp72) expression is high
in those two TNBC cells but moderate in T47D cells, indicating a complex transcriptional
regulation mechanism [67]. Consistent with the findings, the mRNA levels of PDIA1,
PDIA3, PDIA4, and PDIA6 are typically overexpressed in HER2-enriched and Basal-like
breast cancer subtypes as evidenced by gene expression data attained from the Gene
Expression Atlas datasets [79].

The overexpression of PDI is closely associated with breast cancer cell proliferation.
Consequently, silencing PDI induces significant cytotoxicity in breast cancer cells such
as MCF-7 [80]. PDI inhibitors such as PACMAs are known to interrupt the cell cycle
progression in breast cancer cells [81]. PDI also affects the different mechanisms involved
in breast carcinogenesis, including the estrogen receptor (ERα) or Wnt signaling pathways.
PDI interacts with ERα, which mediates the proliferative effect of estrogens in breast cancer
cells, but not with ERβ, which appears to be antiproliferative and negatively regulates the
transactivation of ERα [82]. So, the knockdown of PDI in MCF-7 cells results in a significant
increase in the ERβ/ERα ratio, possibly providing the beneficial effect of cancer prevention.
Recently, PDI has been found to be vital for Wnt3a secretion and for the regulation of Wnt
signaling, which is mainly involved in the processes of breast cancer proliferation and
metastasis [83,84].

5.2. Role of PDI in Breast Cancer Invasion and Metastasis

Outside their roles in cell proliferation, PDI proteins are also involved in cancer cell
adhesion and migration, affecting breast cancer metastasis. The transendothelial migration
of cancer cells is initiated through the adhesion of the cells to endothelium. This process
is regulated by cell adhesion receptors such as integrins. Integrins are composed of two
subunits, α and β, and mediate the interaction between cell and extracellular matrix (ECM)
proteins [85]. In patients with invasive breast cancer, the significant involvement of β1 and
β3 integrins are observed. For instance, integrin α2β1 is upregulated in highly metastatic
breast cancer cells like MDA-MB-231, compared to non-invasive breast cancer cells like
MCF-7 [86]. A disintegrin and metalloproteinases (ADAMs) are a family of multifunctional
proteins implicated in proteolysis and cell adhesion. The members, such as ADAM8,
ADAM10, and ADAM17, are involved in breast cancer invasion and metastasis [87–89].

PDIs that are located at the cell surface interact with integrins and metalloproteases
and regulate their functions. PDI facilitates the activation of integrins by catalyzing thiol-
disulfide exchange on the cysteine-rich integrin extracellular domains. A similar mecha-
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nism by extracellular PDI is crucial for the activation of matrix metalloproteinases (MMPs)
that are overexpressed in higher grades of breast cancer tumors and contribute to breast
cancer metastasis [45,90]. On the other hand, when PDI interacts with ADAMs by cat-
alyzing the thiol-disulfide exchange, it leads to a dramatic structural change. This change
turns an open conformation of ADAMs in an active state into a closed conformation in an
inactive state [91].

Multiple lines of evidence corroborate the involvement of specific PDIs in the process
of breast cancer invasion and metastasis. Extracellular PDIA1 enhances the adhesion
and migration of breast cancer cells (MCF-7 and MDA-MB-231) by potentially activating
β integrins through thiol switches [78]. Also, PDIA1 increases cancer cell adhesion to
the endothelial monolayer and collagen type I rather than PDIA3 [78]. The function of
AGR2 to promote metastasis is demonstrated in a rat model of overexpressing AGR2 by
enhancing the adhesive property of the cells [92]. Similarly, the extracellular AGR3 is
found to increase the migratory properties of ER-positive breast cancer cells MCF-7 and T-
47D [93]. Its regulation of breast cancer cell migration and adhesion is executed by inducing
the phosphorylation of tyrosine kinases such as Src as proved by the experiment that
treatment with Dasatinib, a protein kinase inhibitor, remarkably reduces AGR3-dependent
migration. In addition, PDIA3 promotes pro-migratory phenotypes in either luminal
(MCF-7) or basal breast tumor subtypes (MDA-MB-231 and HCC1937), and PDI inhibition
led by 16F16 efficiently decreases initial cell spreading [94]. Similar to 16F16, another
PDI inhibitor, PACMA31, could block the transendothelial migration of MDA-MB-231
cells and the contraction of collagen that affect the exposition of free thiols on integrin
molecules [86]. 3,4-Methylenedioxy-β-nitrostyrene (MNS), whose potential target is cell
surface PDI, profoundly inhibits the adhesion of TNBC cells to different ECM components
via the suppression of β1 integrin activation and focal adhesion signaling [95].

5.3. Role of PDI in Breast Cancer Chemoresistance and Clinical Outcomes

In addition, the supporting role of PDIs in developing drug resistance has been intro-
duced in cancers. For example, PDIA4 and PDIA6 are overexpressed in cisplatin-resistant
lung cancer cells, suggesting that their overexpression is associated with developing re-
sistance [68]. Additionally, it is found that PDI-associated ATF6 signaling correlates with
tumor cell resistance to imatinib treatment in leukemia cells [62]. Similarly, an increased PDI
expression is observed in the multidrug-resistant breast cancer cells MCF-7/AdVp3000 [96]
or mitoxantrone-resistant MCF7/MX cells [97].

The expression of one of the PDI isoforms, ERp29, is reported to help increase the
resistance to doxorubicin and, expectedly, decrease the doxorubicin-induced cell apoptosis
in MDA-MB-231 cells [98]. The same effect is observed in MCF-7 cells, as its knockdown
increases the doxorubicin cytotoxicity. The ERp29-mediated resistance to doxorubicin could
be explained by the up-regulation of Hsp27. However, interestingly, similar resistance by
ERp29 is not obtained in response to cisplatin and paclitaxel [98]. AGR2 is a direct target
of ERα with direct binding as evidenced by chromatin immunoprecipitations. However,
counterintuitively, AGR2 expression is increased in tamoxifen-treated ER-positive breast
cancer rather than inhibited by tamoxifen [99]. This could be explained by the agonistic
role of tamoxifen on AGR2; the resultant overexpression of AGR2 potentially contributes
to tamoxifen resistance and decreased overall survival [77].

Hypoxia in the tumor microenvironment is an indicator of aggressive disease and
decreased overall survival in various solid tumors. The underlying mechanism of this ob-
servation is the upregulation of genes associated with metastasis, which is, unsurprisingly,
associated with poor prognosis in breast cancer. Hypoxia is a transcriptional activator of
PDIs, which concurrently also upregulates the expression of human endoplasmic reticulum
oxidoreduction 1-α (ERO1-α). The upregulation of ERO1-α causes significantly shorter
disease-free and overall survival compared to ERO1-α negative patients. Thus, the findings
strongly suggest ERO1-α as a new predictor for poor breast cancer prognosis [100]. In
addition, hypoxia-inducible factor (HIF-1) is associated with poor outcomes in breast can-
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cer [101,102]. Recently, PDI has been identified as a novel regulator of HIF-1α by directly
oxidizing HIF-1α and decreasing its expression level [103]. Associated with regulating
these gene signatures, PDI expression is also suggested as a predictor of poor prognosis
in breast cancer. From the data obtained from Oncomine, lower PDI expression is signifi-
cantly associated with a higher overall survival rate of patients with breast cancer [70]. For
example, AGR2 is described as an overexpressed gene in ER-positive breast cancer, and a
high level of AGR2 is associated with poor prognosis in the same type of breast cancer [77].

5.4. Role of PDI as Transcriptional Cofactors

The roles of PDIs have been reported as transcriptional cofactors such as ERα, nuclear
factor kappa B (NF-kB), Signal Transducer and Activator of Transcription 3 (STAT3), HIF-
1α, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). PDIA1 directly interacts with
ERα and regulates its transcriptional activity [82,104]. Overexpression of PDI suppresses
NF-kB-dependent transcriptional activity, working as a negative regulator of NF-kB [105].
PDIs such as PDIA3 (ERp57) are known to localize to the nuclear matrix and interact with
STAT3 and calreticulin [106,107]. Other transcription factors are also found to be associated
with PDIs, such as HIF-1α [108] and Nrf2 [109].

Interestingly, PDIA1 (P4HB) is known to affect the cell surface levels of the non-
classical human leukocyte antigen (HLA-G) in breast cancer cell lines (MDA-MB-231 and
MCF-7) [110]. ERO1-α, in collaboration with PDIs, suppresses antitumor immunity by
regulating CXCL1, CXCL2, and MHC class I [111–113]. Thus, it is likely that PDIs play a
role in antigen presentation in the tumor microenvironment and tumor immunorecognition.

6. PDI Inhibitors
6.1. PDI Inhibitors Categorized Depending on Binding Sites

There is emerging evidence of a potential therapeutic role for the use of PDI inhibitors
in treating various cancers. In general, PDI inhibitors work either by binding catalytic
active sites selectively or non-selectively or by binding allosteric substrate binding site.
Depending on the site of PDI where binding occurs, PDI inhibitors are categorized into
five different groups (Figure 5). The detailed information about selectivity towards PDI
isoforms, modes of action, cell-based and pre-clinical studies, and clinical trials of the PDI
inhibitors are summarized in Table 1.

Most PDI inhibitors are known to or likely to bind to catalytic sites of the a or a’ do-
main of PDI: they include PACMA31 [114], P1 [115], 16F16 [116], AS15 [117], CCF642 [118],
S-CW3554 [119], Origamicin [120], (±)-dMtcyDTDO [121], Ga-1 [122], 35G8 [123], Cop-
per (II) complex 1 [124], and SK053 [125]. PACMA31 belongs to the class of propynoic
acid carbamoyl methyl amides (PACMAs), and it covalently binds to the Cys400 of the
active site of PDI, and it shows cytotoxicity on a broad range of human cancer cells [81].
PACMA31 has in vitro and in vivo cytotoxicity in ovarian cancer cells [114] and enhances
the efficacy of sorafenib in hepatocellular carcinoma models [126]. P1 is a phenyl vinyl
sulfonate compound identified as an irreversible PDI inhibitor by reacting with active site
cysteines via the vinyl-sulfone electrophile [115]. P1 is 10-fold more potent than PACMA31
in inhibiting in vitro PDI activities, as demonstrated by the insulin aggregation assay. The
antiproliferative effects of P1 are demonstrated in various cancer cells (UACC-257, HeLa,
HepG2) in the low micromolar range. 16F16 is another small-molecule irreversible PDI
inhibitor that binds to the cysteines in the active site via a chloroacetamide electrophile,
and it suppresses apoptosis in cell and brain slice models of Huntington disease [116].
AS15 was recently identified as a covalent nanomolar PDI inhibitor that shows synergis-
tic growth inhibition of glioblastoma cells when treated with the glutathione synthesis
inhibitor buthionine sulfoximine (BSO) [117]. CCF642, S-CW3554, and Origamicin are also
irreversible PDI inhibitors, showing cytotoxicity in multiple myeloma cells (CCF642 and
S-CW3554) [118,119] and in neuroblastoma cells (Origamicin) [120].
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Figure 5. The chemical structures of small-molecule PDI inhibitors: (A) PDI inhibitors that likely bind
to the catalytic sites of the a and a’ domains of PDI; (B) PDI inhibitors that bind adjacent to active
sites; (C) selective PDIA1 inhibitors; (D) PDI inhibitors that likely bind to the allosteric b’ domain of
PDI; and (E) PDI inhibitors that the binding site of PDI is not yet identified.

Disulfide bond disrupting agents (DDAs) are a new class of irreversible PDI inhibitors,
and dimethoxy-tcyDTDO and (±)-dMtcyDTDO are confirmed to bind to the active site
cysteines of AGR2/3 and ERp44 [121]. It seems to interact with PDIA1, but its binding site
on PDIA1 has not yet been determined. A Gallium (III) complex, Ga-1, is a metal-based
PDI inhibitor and most likely interacts with active site His55 of PDIA3 with the cyanic
group [122]. In addition to PDIA3, three other isoforms such as PDIA1, PDIA4, and PDIA6
are determined for Ga-1 to bind. Ga-1 exhibits stronger anticancer activities than cisplatin
in various cancer cells (HeLa, HepG2, A549, HUVEC).

35G8, Copper (II) complex 1, and SK053 are PDI inhibitors that likely bind to active
sites, but their exact binding sites are not yet determined. 35G8 inhibits proliferation in
glioblastoma cells by leading to autophagy-mediated ferroptosis [123]. Copper (II) complex
1 is a metal-based PDI inhibitor and exhibits antitumor activity in various cancer cells
in vitro (2008, BxPC3, PSN1, HCT-15, BCPAP, and A375) and in vivo (LLC) [124]. SK053
induces differentiation and cell death in acute myeloid leukemia cells [125].



Cancers 2022, 14, 745 12 of 25

Table 1. The characteristics of PDI inhibitors.

PDI Inhibitor Specificity
toward PDIs Mode of Action Cell-Based and Pre-Clinical Studies Refs

PACMA31 PDIA1, PDIA2, PDIA3, PDIA4,
PDIA6, TXNDC5

• Binds to active site
• Irreversible

• Exhibits cytotoxicity in ovarian cancer cells (in vitro and in vivo)
• Enhances efficacy of sorafenib in hepatocellular carcinoma model (in vivo)
• Inhibits proliferation of breast cancer cells (MCF-7, MDA-MB-231) and

reduces breast cancer adhesion and migration (MDA-MB-231)

[81,86,114,
126,127]

P1 PDIA1, PDIA4, PDIA6 • Binds to active site
• Irreversible

• Inhibits proliferation in low-micromolar range against six cancer cells
(UACC-257, HeLa, HepG2, MCF-7, MDA-MB-231, T47D) [115]

16F16 PDIA1, PDIA3
• Binds to active site
• Irreversible

• Suppresses apoptosis in cell and brain slice models of Huntington disease
• Reduces cell adhesion/migration of breast cancer cells (MCF-7,

MDA-MB-231, HCC1937)
[94,116]

AS15 PDIA1 • Binds to active site
• Irreversible

• Synergistic growth inhibition of glioblastoma cells when treated with
glutathione synthesis inhibitor buthionine sulfoximine (BSO) [117]

CCF642 PDIA1, PDIA3, PDIA4 • Binds to active site
• Irreversible

• Exhibits potent effects against multiple myeloma activity (in vitro and
in vivo) [118]

S-CW3554 PDIA1 • Binds to active site
• Irreversible

• Reduces cell viability of multiple myeloma cell lines (MM 1.S and KMS11) [119]

Origamicin PDIA1 • Binds to active site
• Irreversible

• Impairs viability of neuroblastoma cells (SH-SY5Y) [120]

(±)-dMtcyDTDO PDIA1, AGR2, AGR3, ERp44
• Binds to active site of AGR2/3

and ERp44
• Irreversible

• Induces cell death in breast cancer cells in vitro (MDA-MB-468) and in vivo
(mice xenograft model of BT474) [121]

Ga-1 PDIA1, PDIA3, PDIA4, PDIA6 • Binds to active site of PDIA3
• Enhances cytotoxicity in various cancer cells (HeLa, HepG2, MCF-7, A549

and HUVEC cells)
• Shows more effective tumor suppression than cisplatin in HeLa

tumor-bearing mice

[122]

35G8 PDIA1 • Likely binds to active site • Inhibits proliferation of glioblastoma cells
• Leads to autophagy-mediated ferroptosis in glioblastoma [123]
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Table 1. Cont.

PDI Inhibitor Specificity
toward PDIs Mode of Action Cell-Based and Pre-Clinical Studies Refs

Copper (II)
complex 1 PDIA1 • Likely binds to active site • Exhibits antitumor activity in various cancers in vitro (2008, BxPC3, PSN1,

HCT-15, BCPAP, A375) and in vivo (LLC) [124]

SK053 PDIA1 • Likely binds to active site (a’
domain)

• Induces differentiation and cell death of acute myeloid leukemia cells [125]

T8 PDIA1 • Binds adjacent to active site
• Reversible

• Sensitizes various cancer cells to etoposide treatment (Jurkat, MDA-MB-231) [128]

LOC14 PDIA1, PDIA3 • Binds adjacent to active site
• Reversible

• Exhibits neuroprotective effects in corticostriatal brain slice cultures
• Attenuates mutant huntingtin toxicity [129,130]

Securinine PDIA1 • Binds adjacent to the active site
• Irreversible

• Exhibits neuroprotective effects in PC12 mHTT-Q103 cells [131]

CCF642–34 PDIA1
• Selective PDIA1 inhibitor
• Likely binds to active site (a’

domain)

• Induces apoptosis in myeloma cells but not in normal bone marrow cells
• Orally bioavailable and effective against multiple myeloma in vivo [132]

RB-11-ca PDIA1
• Selective PDIA1 inhibitor
• Binds to active site of a domain
• Irreversible

• Inhibits proliferation of HeLa cells in micromolar range [133]

KSC-34 PDIA1
• Selective PDIA1 inhibitor
• Binds to active site of a domain
• Irreversible

• Decreases secretion of a destabilized, amyloidogenic antibody light chain at
non-toxic concentrations [134]

Bacitracin PDIA1 • Binds to b’ domain • Enhances melanoma cell death
• Inhibits migration and invasion of malignant glioma cells [135–138]

BAP2 PDIA1, PDIA2 • Binds to b’ domain • Reduces tumor growth in glioblastoma (in vitro and in vivo)
• Inhibits migration of glioblastoma cells in dose-dependent manner [66,127]

Bepristat 1a PDIA1 • Binds to b’ domain
• Reversible

• Blocks platelet activation in-vitro and impair platelet accumulation at
vascular injury site in an in-vivo model of thrombus formation [139]
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Table 1. Cont.

PDI Inhibitor Specificity
toward PDIs Mode of Action Cell-Based and Pre-Clinical Studies Refs

Q3Rut PDIA1 • Binds to b’ domain
• Reversible

• Inhibits platelet aggregation (in vitro) and thrombus formation (in vivo) [140,141]

Isoquercetin PDIA1
• Binds to b’ domain
• Reversible

• Inhibit platelet thrombus formation and fibrin generation in a mouse model
of thrombosis

• Clinical trials (NCT02195232, NCT04514510)
[140–142]

ML359 PDIA1 • Likely binds to b’ domain
• Reversible

• Inhibits platelet aggregation
• No cytotoxicity in cancer cells (HeLa, HEK293, HepG2) [143]

E64FC26 PDIA1, PDIA3, PDIA4, PDIA6,
TXNDC5

• Pan-style inhibitor • Exhibits anti-MM (multiple myeloma) effect (in vitro and in vivo) [144]

MNS Cell surface PDI • Unknown
• Inhibits platelet aggregation
• Inhibits proliferation and reduces cell adhesion and migration in

MDA-MB-231 cells
[95,145,146]

Juniferdin PDIA1 • Unknown • Inhibits replication of influenza A and B virus in cells
• Inhibits reduction of HIV-1 gp120 [147,148]
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The typical mode of action for the PDI inhibitors in the first category, with a few excep-
tions, is to attack the highly susceptible cysteine residues of the active site of PDI through
their electrophilic moieties such as chloroacetamide or vinyl sulfones. This covalent bond
formation could disrupt the CXXC motif of the PDI domain, ultimately losing the func-
tion of PDI. The non-specific and irreversible binding characteristics of the PDI inhibitors
render them lacking in selectivity towards PDI members, especially those which share the
CXXC motif in the active site. For example, PACMA31 irreversibly inhibits PDIA1 but also
interacts with other members such as PDIA2, PDIA3, PDIA4, PDIA6, and TXNDC5 [127].
Similarly, CCF642 is also known to bind to PDIA1, PDIA3, and PDIA4 [118].

The next group includes PDI inhibitors that bind adjacent to the active site: T8 [128],
LOC14 [129], and Securinine [131]. T8 binds deeply into the two binding groves adjacent
to each catalytic site by hydrophobic interaction with its diethylphenyl group [128]. T8
impairs substrate-binding without disruption of the catalytic cysteines of the active site,
thus being a reversible PDI inhibitor. Likewise, LOC14 is a reversible and non-covalent PDI
inhibitor. LOC14 interacts with the region adjacent to the active site, inducing the protein
to adopt an oxidized conformation and inhibiting its reductase activity [129]. LOC14 shows
neuroprotective effects in corticostriatal brain slice cultures [129] and attenuates mutant
Huntingtin toxicity [130]. Securinine likely binds adjacent to the active site similar to T8
and LOC14, but it is an irreversible PDI inhibitor [131]. Securinine interacts with H38
and R103 of PDI, which are important to stabilize the negatively charged cysteine thiolate
transition state of PDI. So, its interaction leads to the destabilization of active site C36
residue, thus inhibiting PDI irreversibly. Securinine has neuroprotective effects in a cell
model of Huntington disease [131].

Different from the first two groups, which may have several PDI isoforms, including
PDIA1, to target, there are specific inhibitors targeting PDIA1 only. As expected, they
selectively interact with the active site of either the a domain or the a’ domain of PDIA1.
CCF642-34 is an optimized analog of CCF642 and likely binds to the active site of the
a’ domain of PDIA1 [132]. It improves the selectivity of CCF642 on PDIA1; thus, it is a
selective PDIA1 inhibitor. CCF642-34 is an orally bioavailable and effective agent against
multiple myeloma [132]. RB-11-ca and KSC-34, the optimized analog of RB-11-ca, are
a-domain selective PDIA1 inhibitors, as they covalently bind to C53 of the N-terminal
cysteine in a domain of PDIA1 [134]. RB-11-ca inhibits the proliferation of HeLa cells in
the micromolar range [133]. KSC-34 demonstrates its ability to reduce the extracellular
pathogenic load of the amyloidogenic antibody light-chain [134].

Instead of binding to catalytic domains of PDI, there are PDI inhibitors that bind to the
allosteric b’ domain, such as Bacitracin [135], BAP2 [66,127], Bepristat 1a [139], Quercetin-
3-rutinoside (Q3Rut) and Isoquercetin [140,141], and ML359 [143]. The inhibitors in this
category are reversible PDI inhibitors due to their interactions with the allosteric b’ domain
of PDI. Bacitracin is a peptide antibiotic and is widely used as a PDI inhibitor in research.
It inhibits PDI by binding to the b’ domain. However, bacitracin is not a specific PDI
inhibitor, so it exhibits many off-target effects due to lack of selectivity on PDI [135,136].
Bacitracin enhances melanoma cell death [137] and inhibits the migration and invasion of
malignant glioma cells [138]. BAP2 is a PDI inhibitor containing a chalcone scaffold [66].
BAP2 reduces tumor growth in glioblastoma and inhibits the migration of glioblastoma
cells in a dose-dependent manner [66,127]. Another allosteric PDI inhibitor, Bepristat
1a, blocks platelet activation and impairs platelet accumulation at vascular injury sites
in a model of thrombus formation [139]. Q3Rut and isoquercetin both inhibit platelet
aggregation and thrombus formation [140,141]. A flavonoid, isoquercetin, is the only
PDI inhibitor that is currently undergoing clinical trials. The oral isoquercetin in phase
II/III improves markers of coagulation in advanced cancer patients (NCT02195232) [142].
A similar hypothesis being tested in clinical trials in patients with sickle cell disease is
that isoquercetin would diminish thrombo-inflammatory venous thromboembolism (VTE)
biomarkers and attenuate the associated hypercoagulable state (NCT04514510). ML359
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is a reversible PDI inhibitor that likely binds to the b’ domain, and it inhibits platelet
aggregation without cytotoxicity in cancer cells (HeLa, HEK293, HepG2) [143].

The last group includes PDI inhibitors whose binding site of PDI is not yet identified.
E64FC26 is pan-style PDI inhibitor affecting several PDI members, including PDIA1, PDIA3,
PDIA4, PDIA6, and TXNDC5, but its binding site is not reported [144]. E64FC26 induces
apoptosis and cytotoxicity in multiple myeloma cells [144]. MNS is a small-molecule
synthetic PDI inhibitor that works by potentially targeting the cell surface of PDI [95,145].
MNS inhibits platelet aggregation by preventing the activation of integrin αIIbβ3 [145].
Juniferdin is a natural compound that inhibits PDIA1, although the clear mode of action is
not yet determined [147]. It inhibits the replication of influenza A and B virus in cells [147]
and inhibits the reduction of HIV-1 gp120 [148].

6.2. PDI Inhibitors in Breast Cancer

Increased numbers of PDI inhibitors have been developed for various diseases, includ-
ing cancers, neurodegenerative diseases, cardiovascular diseases, and infectious diseases.
Among the inhibitors, only a few PDI inhibitors have been used for breast cancer, including
PACMA31, P1, 16F16, DDA, Ga-1, T8, and MNS. The findings of using PDI inhibitors
in breast cancer research and the proposed mechanism of action of PDI inhibition are
summarized in Table 2.

PACMA31, P1, 16F16, and DDA (±)-dMtcyDTDO are irreversible PDI inhibitors.
PACMA31 is one of the popular PDI inhibitors explored for breast cancer. In particular,
PACMA31 displays its inhibition effect on the cell proliferation of breast cancer cells MCF-7
and MDA-MB-231, but, more significantly, in MDA-MB-231 when the concentration exceeds
10 µM [86]. MCF-7, which lacks integrin β1 and β3 expression, has a non-invasive character,
whereas MDA-MB-231, with highly expressed β1 and β3, adheres more effectively to
ECM proteins as well as endothelial cells. PACMA31 significantly reduces the adhesion
and migration of invasive MDA-MB-231 cells compared to 16F16 and Q3Rut [86]. It
blocks the transendothelial migration of the cells by inhibiting thiol-disulfide exchanges of
integrin molecules β1 and β3, thus suggesting the involvement of integrins in breast cancer
progression and metastasis.

The antiproliferative activity of P1 is confirmed in breast cancer cells such as MCF-7,
MDA-MB-231, and T47D with a GI50 of 3~4 µM [115]. It is found to have PDI isoforms
(PDIA4 and PDIA6) to interact besides PDIA1, so P1 could inhibit not only endogenous
PDI, but also PDIA4 and PDIA6 localized in the nucleus.

16F16 is an irreversible PDI inhibitor that impairs cell adhesion and the migration of
breast cancer cells MCF-7, MDA-MB-231, and HCC1937 [94]. The spreading and attachment
of breast cancer cells are strongly reduced by 16F16 treatment, and the effect of 16F16 is
stronger than PACMA31. 16F16 reduces the initial rates of closure and overall scratch
closure for all cell lines. Also, a reduction in pro-migratory F-actin structures, including
lamellipodia, is observed in the three cell lines in treatment with 16F16 [94]. Their different
phenotypic responses between PACMA31 and 16F16 in the breast cancer cells are potentially
due to the difference in their primary target in PDIs. PACMA31 binds to PDIA1 more
strongly than PDIA3, but 16F16 could bind to both PDIA1 and PDIA3 [116].

The anticancer efficacy of DDAs is apparent in cancers overexpressing EGFR and
HER2 [121]. In particular, (±)-dMtcyDTDO shows efficient cytotoxic effects on TNBC
MDA-MB-468 cells that highly express EGFR and on luminal B BT474 cells that express
HER2. Their cytotoxic functions could be explained as DDAs downregulating EGFR, HER2,
and HER3 and activating Death Receptors 4 and 5 (DR4/5). The oligomerization of DR4
and DR5 leads to cell death via a caspase-dependent mechanism by activating caspase 8
and 3 sequentially. This might also be due to the targeting of PDI members such as PDIA1,
AGR2, and ERp44 by DDAs.
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Table 2. The PDI Inhibitors Used in Breast Cancer Research.

PDI Inhibitor Findings in Breast Cancer Research
(Cell-Based and Pre-Clinical Studies)

Mechanism of Action of PDI Inhibitors
(Proposed Pathways)

PACMA31

• Inhibits proliferation of breast cancer cells (MCF-7, MDA-MB-231).
• Highly metastatic MDA-MB-231 breast cancer cell lines adhere to

endothelial cells are more effective than non-invasive MCF-10A and MCF-7
cell lines.

• The attachment of MDA-MB-231 to the endothelium can be attenuated by
PDI inhibitors.

• The transendothelial migration of MDA-MB-231 cells can be blocked by PDI
inhibitors that inhibit thiol-disulfide exchange of integrin molecules β1 and β3.

P1 • Inhibits cell proliferation of breast cancer cells (MCF-7, MDA-MB-231, T47D)
in low micromolar range of GI50.

• Affects cell viability by inhibiting endogenous PDIA1, PDIA4, and PDIA6 localized
in nucleus.

16F16

• Reduces cell adhesion/migration of breast cancer cells (MCF-7,
MDA-MB-231, HCC1937).

• The spreading and attachment of breast cancer cells are strongly reduced by
16F16 treatment, and the effect of 16F16 is stronger than PACMA31.

• 16F16 reduces initial rates of closure and overall scratch closure for all cell
lines.

• Impairs cell adhesion and migration of breast cancer cells by affecting pro-migratory
F-actin structures including lamellipodia.

DDAs

• The anticancer efficacy of DDAs is apparent in cancers overexpressing
EGFR and HER2.

• Induces cell death in breast cancer cells in vitro (MDA-MB-468) and in vivo
(mice xenograft model of BT474).

• DDAs triggers DR4 and DR5-mediated activation of caspase 8 and 3 to cause
apoptosis.

Ga-1 • Inhibits cell proliferation of MCF-7 with nanomolar range of IC50.

• Ga-1 induces ER stress, mitochondria dysfunction and subsequent cell death.
• Ga-1 induced apoptosis is evidenced by upregulation of ATF4 and CHOP,

subsequent activation of MAPK signaling pathway, and up-regulation of Bax as well
as down-regulation of Bcl-2.

• Ga-1 induced mitochondria dysfunction is evidenced by increased ROS level,
induced morphological changes of mitochondria, and decreased MMP.

T8 • Combination with etoposide dose-dependently increases cell death rate in
MDA-MB-231 cells.

• Apoptosis is evidenced by increased PARP cleavage, caspase 9 and caspase 3 activity.

MNS

• Inhibits proliferation in MDA-MB-231 cells with IC50 of 14 µM.
• Inhibits adhesion of TNBC cell lines (MDA-MB-231) to different ECM

components.

• MNS works potentially by blocking cell surface PDI to inhibit β1 integrin activation,
affecting on cell adhesion and migration.

• Also, MNS inhibits phosphorylation of FAK and paxillin to disrupt the formation of
focal adhesion complex and actin stress fiber networks.
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Ga-1 is a gallium (III) based compound that shows stronger anticancer activity com-
pared to cisplatin in breast cancer cells (MCF-7) with an IC50 of 0.42 µM [122]. Previously,
the antitumor effects of Ga (III)-based compounds were considered to be iron-dependent,
disrupting cellular iron homeostasis and metabolism [149]. However, Ga-1 is proved to
induce ER stress, mitochondria dysfunction, and subsequent cell death in cancer cells. Treat-
ment with Ga-1 increases the ratio of phosphorylated eIF2α to the total eIF2α, up-regulates
ATF4 and CHOP, activates the mitogen-activated protein kinases (MAPK) signaling path-
way, and upregulates Bax and downregulates Bcl-2 [122]. Also, Ga-1 induced mitochondria
dysfunction, including disruption of mitochondria membrane permeability, could be ex-
plained by the observation that Ga-1 increases the reactive oxygen species (ROS) level,
induces morphological changes of mitochondria, and decreases mitochondria membrane
potential (MMP) [122].

A reversible PDI inhibitor, T8, specifically sensitizes cancer cells to the effect of the
anticancer drug etoposide at a subtoxic concentration (500 nM) [128]. Therefore, the
treatment of T8 in combination with an etoposide dose dependently increases the cell death
rate in TNBC MDA-MB-231 cells. The apoptotic effects of T8 in combination with etoposide
could result from increased PARP cleavage and increased activity of caspase 9 and caspase
3 [128].

A synthetic PDI inhibitor, MNS, inhibits not only the proliferation of human breast
cancer MDA-MB-231 cells (IC50 of 14 µM) but also the adhesion, migration, and invasion of
the cells [95,146]. MNS works potentially by blocking cell surface PDI to inhibit β1 integrin
activation, thus affecting cell adhesion and migration. Additionally, the formation of focal
adhesion complex and actin stress fiber networks are disrupted in the treatment of MNS as
MNS inhibits the phosphorylation of focal adhesion kinase (FAK) and paxillin [95,146].

7. Concluding Remarks and Future Perspectives

PDIs play a critical role in ER proteostasis by assisting protein folding as an essential
catalyst for disulfide bonds and as a chaperone. PDI members are upregulated alongside
other UPR proteins in cancers, highlighting the importance of PDI in regulating cancer cell
survival. Due to the protective role of PDIs in cancer cells, the prolonged inhibition of PDIs
has emerged as a promising approach to induce excessive ER stress in cancer cells, leading
to apoptosis in cancers.

PDI proteins are mainly localized in the endoplasmic reticulum, but are also found on
cell surfaces, in the nucleus, in the extracellular space, or in mitochondria. Although the
exact functions of PDIs at different subcellular localizations are not yet fully demonstrated,
it seems to be apparent that PDIs at different localizations have different functions in
cancers. PDIs localized in the endoplasmic reticulum are involved in UPR pathways that
determine cell survival or cell death through redox regulation of UPR stress receptors
such as IRE1 [57], PERK [57], or ATF6 [62], and regulation of ERAD and autophagy. PDIs
located at the cell surface are involved in cell adhesion and migration as evidenced in breast
cancer [78,93,95] or glioblastoma [138,150]. Inhibition of extracellular PDIs could impair
cell adhesion and migration by inhibiting the activation of metalloproteases and integrins.
PDIs at mitochondria are suggested to regulate endoplasmic reticulum and mitochondrial
calcium dynamics [151].

In this review, several PDI members, including PDIA1 (P4HB), might be suggested as
interesting molecular targets for TNBC as evidenced by the overexpression in the TNBC
subtype compared to other breast cancer subtypes and the superior inhibition effects on the
adhesion and migration of TNBC cells than other subtypes. Their functions as transcription
cofactors such as ERα, NF-kB, or Nrf2 are interesting because they seem to be involved in
antigen presentation in the tumor microenvironment and tumor immunorecognition.

Many PDI inhibitors are irreversible inhibitors that likely bind to cysteine residues
in catalytic domains or affect the cysteine residues in the active site of PDI. Due to this
binding characteristic, these PDI inhibitors are able to interact with other PDI isoforms or
proteins that share cysteine residues in the active site, leading to a non-selective character.
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The non-selective PDI inhibitors might result in off-target effects. Recently, more reversible
PDI inhibitors or PDIA1-specific inhibitors have been developed. These inhibitors might
not have selectivity issues related to off-target effects. However, further research is needed
to clearly elucidate the effects of irreversible, non-selective PDI inhibitors and reversible
PDI inhibitors in cancers in terms of off-target activities, potency, toxicity, etc.

There were few studies exploring PDIs in breast cancers previously, but now an
increased number of reports suggest the involvement of PDIs in tumorigenesis, metastasis,
drug resistance, and poor prognosis in breast cancer, including TNBC. However, there
is no clear evidence of which specific PDIs are impacting each process nor of their exact
mechanisms of action. In order to develop PDI inhibitors targeting specific breast cancer
subtypes such as TNBC, continuous efforts are required to identify the exact roles and
mechanisms of specific PDI isoforms involved in tumorigenesis, metastasis, drug resistance,
and antigen presentation in TNBC.
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14. Pogoda, K.; Niwińska, A.; Murawska, M.; Pieńkowski, T. Analysis of pattern, time and risk factors influencing recurrence in
triple-negative breast cancer patients. Med. Oncol. 2013, 30, 388. [CrossRef] [PubMed]

15. Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer—Expanded options,
evolving needs. Nat. Rev. Clin. Oncol. 2021, 19, 91–113. [CrossRef] [PubMed]

16. Huang, M.; O’Shaughnessy, J.; Zhao, J.; Haiderali, A.; Cortés, J.; Ramsey, S.D.; Briggs, A.; Hu, P.; Karantza, V.; Aktan, G.;
et al. Association of Pathologic Complete Response with Long-Term Survival Outcomes in Triple-Negative Breast Cancer: A
Meta-Analysis. Cancer Res. 2020, 80, 5427–5434. [CrossRef]

17. Anders, C.K.; Abramson, V.; Tan, T.; Dent, R. The Evolution of Triple-Negative Breast Cancer: From Biology to Novel Therapeutics.
Am. Soc. Clin. Oncol. Educ. Book 2016, 36, 34–42. [CrossRef]

18. Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.;
et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [CrossRef]

19. Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M.
The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007, 13, 2329–2334.
[CrossRef]

20. Chen, H.; Wu, J.; Zhang, Z.; Tang, Y.; Li, X.; Liu, S.; Cao, S.; Li, X. Association Between BRCA Status and Triple-Negative Breast
Cancer: A Meta-Analysis. Front. Pharmacol. 2018, 9, 909. [CrossRef]

21. Lips, E.H.; Mulder, L.; Oonk, A.; van der Kolk, L.E.; Hogervorst, F.B.; Imholz, A.L.; Wesseling, J.; Rodenhuis, S.; Nederlof, P.M.
Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br. J. Cancer 2013,
108, 2172–2177. [CrossRef]

22. Keung, M.Y.T.; Wu, Y.; Vadgama, J.V. PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in
Breast Cancers. J. Clin. Med. 2019, 8, 435. [CrossRef]

23. Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.;
et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763.
[CrossRef] [PubMed]

24. Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.;
et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: The TNT Trial. Nat. Med. 2018,
24, 628–637. [CrossRef] [PubMed]

25. Tung, N.; Arun, B.; Hacker, M.R.; Hofstatter, E.; Toppmeyer, D.L.; Isakoff, S.J.; Borges, V.; Legare, R.D.; Isaacs, C.; Wolff, A.C.; et al.
TBCRC 031: Randomized Phase II Study of Neoadjuvant Cisplatin Versus Doxorubicin-Cyclophosphamide in Germline BRCA
Carriers with HER2-Negative Breast Cancer (the INFORM trial). J. Clin. Oncol. 2020, 38, 1539–1548. [CrossRef]

26. Osborne, C.; Challagalla, J.D.; Eisenbeis, C.F.; Holmes, F.A.; Neubauer, M.A.; Koutrelakos, N.W.; Taboada, C.A.; Vukelja, S.J.;
Wilks, S.T.; Allison, M.A.; et al. Ixabepilone and Carboplatin for Hormone Receptor Positive/HER2-neu Negative and Triple
Negative Metastatic Breast Cancer. Clin. Breast Cancer 2018, 18, e89–e95. [CrossRef] [PubMed]

27. Thomssen, C.; Pierga, J.Y.; Pritchard, K.I.; Biganzoli, L.; Cortes-Funes, H.; Petráková, K.; Kaufman, B.; Duenne, A.; Smith, I.
First-line bevacizumab-containing therapy for triple-negative breast cancer: Analysis of 585 patients treated in the ATHENA
study. Oncology 2012, 82, 218–227. [CrossRef]

28. Nakai, K.; Hung, M.C.; Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer
Res. 2016, 6, 1609–1623.

29. Liu, Y.; Zhou, Y.; Huang, K.H.; Li, Y.; Fang, X.; An, L.; Wang, F.; Chen, Q.; Zhang, Y.; Shi, A.; et al. EGFR-specific CAR-T cells
trigger cell lysis in EGFR-positive TNBC. Aging 2019, 11, 11054–11072. [CrossRef] [PubMed]

30. Kwapisz, D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol. Immunother. 2021, 70, 607–617.
[CrossRef] [PubMed]

31. Schmid, P.; Salgado, R.; Park, Y.H.; Muñoz-Couselo, E.; Kim, S.B.; Sohn, J.; Im, S.A.; Foukakis, T.; Kuemmel, S.; Dent, R.; et al.
Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: Results from
the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 2020, 31, 569–581. [CrossRef]

32. Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al.
Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast
cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. Oncol.
2020, 21, 44–59. [CrossRef]

33. Lyons, T.G. Targeted Therapies for Triple-Negative Breast Cancer. Curr. Treat. Options Oncol. 2019, 20, 82. [CrossRef] [PubMed]
34. Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.; Mita, M.; McCann, G.; Tan, A.R.; Wahner-Hendrickson, A.E.; Forero, A.; Anders, C.;

Wulf, G.M.; et al. Open-label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic
Triple-Negative Breast Cancer. JAMA Oncol. 2019, 5, 1132–1140. [CrossRef]

35. Diamond, J.R.; Eckhardt, S.G.; Pitts, T.M.; van Bokhoven, A.; Aisner, D.; Gustafson, D.L.; Capasso, A.; Sams, S.; Kabos, P.; Zolman,
K.; et al. A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or
metastatic triple-negative breast cancer. Breast Cancer Res. 2018, 20, 82. [CrossRef] [PubMed]

http://doi.org/10.3389/fpubh.2020.576964
http://www.ncbi.nlm.nih.gov/pubmed/33415093
http://doi.org/10.1007/s12032-012-0388-4
http://www.ncbi.nlm.nih.gov/pubmed/23292831
http://doi.org/10.1038/s41571-021-00565-2
http://www.ncbi.nlm.nih.gov/pubmed/34754128
http://doi.org/10.1158/0008-5472.CAN-20-1792
http://doi.org/10.1200/EDBK_159135
http://doi.org/10.1056/NEJMoa2028485
http://doi.org/10.1158/1078-0432.CCR-06-1109
http://doi.org/10.3389/fphar.2018.00909
http://doi.org/10.1038/bjc.2013.144
http://doi.org/10.3390/jcm8040435
http://doi.org/10.1056/NEJMoa1802905
http://www.ncbi.nlm.nih.gov/pubmed/30110579
http://doi.org/10.1038/s41591-018-0009-7
http://www.ncbi.nlm.nih.gov/pubmed/29713086
http://doi.org/10.1200/JCO.19.03292
http://doi.org/10.1016/j.clbc.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28779904
http://doi.org/10.1159/000336892
http://doi.org/10.18632/aging.102510
http://www.ncbi.nlm.nih.gov/pubmed/31804974
http://doi.org/10.1007/s00262-020-02736-z
http://www.ncbi.nlm.nih.gov/pubmed/33015734
http://doi.org/10.1016/j.annonc.2020.01.072
http://doi.org/10.1016/S1470-2045(19)30689-8
http://doi.org/10.1007/s11864-019-0682-x
http://www.ncbi.nlm.nih.gov/pubmed/31754897
http://doi.org/10.1001/jamaoncol.2019.1029
http://doi.org/10.1186/s13058-018-1014-y
http://www.ncbi.nlm.nih.gov/pubmed/30071865


Cancers 2022, 14, 745 21 of 25

36. Kim, S.B.; Dent, R.; Im, S.A.; Espie, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al.
Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS):
A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017, 18, 1360–1372. [CrossRef]

37. Lehmann, B.D.; Abramson, V.G.; Sanders, M.E.; Mayer, E.L.; Haddad, T.C.; Nanda, R.; Van Poznak, C.; Storniolo, A.M.; Nangia,
J.R.; Gonzalez-Ericsson, P.I.; et al. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor
Efficacy in Patients with AR(+) Metastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2020, 26, 2111–2123. [CrossRef]
[PubMed]

38. Reddy, T.P.; Choi, D.S.; Anselme, A.C.; Qian, W.; Chen, W.; Lantto, J.; Horak, I.D.; Kragh, M.; Chang, J.C.; Rosato, R.R.
Simultaneous targeting of HER family pro-survival signaling with Pan-HER antibody mixture is highly effective in TNBC: A
preclinical trial with PDXs. Breast Cancer Res. 2020, 22, 48. [CrossRef]

39. Rupp, T.; Pelouin, O.; Genest, L.; Legrand, C.; Froget, G.; Castagné, V. Therapeutic potential of Fingolimod in triple negative
breast cancer preclinical models. Transl. Oncol. 2021, 14, 100926. [CrossRef]

40. Zanker, D.J.; Spurling, A.J.; Brockwell, N.K.; Owen, K.L.; Zakhour, J.M.; Robinson, T.; Duivenvoorden, H.M.; Hertzog, P.J.; Mullins,
S.R.; Wilkinson, R.W.; et al. Intratumoral administration of the Toll-like receptor 7/8 agonist 3M-052 enhances interferon-driven
tumor immunogenicity and suppresses metastatic spread in preclinical triple-negative breast cancer. Clin. Transl. Immunol. 2020,
9, e1177. [CrossRef]

41. Solomon, V.R.; Alizadeh, E.; Bernhard, W.; Hartimath, S.V.; Hill, W.; Chekol, R.; Barreto, K.M.; Geyer, C.R.; Fonge, H. 111In- and
225Ac-Labeled Cixutumumab for Imaging and α-Particle Radiotherapy of IGF-1R Positive Triple-Negative Breast Cancer. Mol.
Pharm. 2019, 16, 4807–4816. [CrossRef]

42. Galligan, J.J.; Petersen, D.R. The human protein disulfide isomerase gene family. Hum. Genom. 2012, 6, 6. [CrossRef] [PubMed]
43. Depuydt, M.; Messens, J.; Collet, J.F. How proteins form disulfide bonds. Antioxid. Redox Signal. 2011, 15, 49–66. [CrossRef]

[PubMed]
44. Perri, E.R.; Thomas, C.J.; Parakh, S.; Spencer, D.M.; Atkin, J.D. The Unfolded Protein Response and the Role of Protein Disulfide

Isomerase in Neurodegeneration. Front. Cell Dev. Biol. 2015, 3, 80. [CrossRef] [PubMed]
45. Lee, E.; Lee, D.H. Emerging roles of protein disulfide isomerase in cancer. BMB Rep. 2017, 50, 401–410. [CrossRef]
46. Ali Khan, H.; Mutus, B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front. Chem.

2014, 2, 70. [CrossRef]
47. Kanemura, S.; Matsusaki, M.; Inaba, K.; Okumura, M. PDI Family Members as Guides for Client Folding and Assembly. Int. J.

Mol. Sci. 2020, 21, 9351. [CrossRef]
48. Hatahet, F.; Ruddock, L.W. Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxid.

Redox Signal. 2009, 11, 2807–2850. [CrossRef]
49. Kozlov, G.; Maattanen, P.; Thomas, D.Y.; Gehring, K. A structural overview of the PDI family of proteins. FEBS J. 2010, 277,

3924–3936. [CrossRef]
50. Klappa, P.; Ruddock, L.W.; Darby, N.J.; Freedman, R.B. The b’ domain provides the principal peptide-binding site of protein

disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998, 17, 927–935. [CrossRef]
51. Powell, L.E.; Foster, P.A. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med. 2021, 10,

2812–2825. [CrossRef]
52. Wang, C.; Li, W.; Ren, J.; Fang, J.; Ke, H.; Gong, W.; Feng, W.; Wang, C.C. Structural insights into the redox-regulated dynamic

conformations of human protein disulfide isomerase. Antioxid. Redox Signal. 2013, 19, 36–45. [CrossRef] [PubMed]
53. Okumura, M.; Noi, K.; Kanemura, S.; Kinoshita, M.; Saio, T.; Inoue, Y.; Hikima, T.; Akiyama, S.; Ogura, T.; Inaba, K. Dynamic

assembly of protein disulfide isomerase in catalysis of oxidative folding. Nat. Chem. Biol. 2019, 15, 499–509. [CrossRef]
54. Wang, C.; Yu, J.; Huo, L.; Wang, L.; Feng, W.; Wang, C.C. Human protein-disulfide isomerase is a redox-regulated chaperone

activated by oxidation of domain a’. J. Biol. Chem. 2012, 287, 1139–1149. [CrossRef] [PubMed]
55. Okumura, M.; Kadokura, H.; Hashimoto, S.; Yutani, K.; Kanemura, S.; Hikima, T.; Hidaka, Y.; Ito, L.; Shiba, K.; Masui, S.; et al.

Inhibition of the functional interplay between endoplasmic reticulum (ER) oxidoreduclin-1alpha (Ero1alpha) and protein-disulfide
isomerase (PDI) by the endocrine disruptor bisphenol A. J. Biol. Chem. 2014, 289, 27004–27018. [CrossRef]

56. Bettigole, S.E.; Glimcher, L.H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 2015, 33, 107–138. [CrossRef]
57. Eletto, D.; Eletto, D.; Dersh, D.; Gidalevitz, T.; Argon, Y. Protein disulfide isomerase A6 controls the decay of IRE1alpha signaling

via disulfide-dependent association. Mol. Cell 2014, 53, 562–576. [CrossRef] [PubMed]
58. Yu, J.; Li, T.; Liu, Y.; Wang, X.; Zhang, J.; Wang, X.; Shi, G.; Lou, J.; Wang, L.; Wang, C.C.; et al. Phosphorylation switches protein

disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 2020, 39, e103841. [CrossRef] [PubMed]
59. Appenzeller-Herzog, C.; Ellgaard, L. The human PDI family: Versatility packed into a single fold. Biochim. Biophys. Acta 2008,

1783, 535–548. [CrossRef]
60. Kranz, P.; Neumann, F.; Wolf, A.; Classen, F.; Pompsch, M.; Ocklenburg, T.; Baumann, J.; Janke, K.; Baumann, M.; Goepelt, K.;

et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis. 2017, 8,
e2986. [CrossRef]

61. Eletto, D.; Eletto, D.; Boyle, S.; Argon, Y. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1.
FASEB J. 2016, 30, 653–665. [CrossRef] [PubMed]

http://doi.org/10.1016/S1470-2045(17)30450-3
http://doi.org/10.1158/1078-0432.CCR-19-2170
http://www.ncbi.nlm.nih.gov/pubmed/31822498
http://doi.org/10.1186/s13058-020-01280-z
http://doi.org/10.1016/j.tranon.2020.100926
http://doi.org/10.1002/cti2.1177
http://doi.org/10.1021/acs.molpharmaceut.9b00542
http://doi.org/10.1186/1479-7364-6-6
http://www.ncbi.nlm.nih.gov/pubmed/23245351
http://doi.org/10.1089/ars.2010.3575
http://www.ncbi.nlm.nih.gov/pubmed/20849374
http://doi.org/10.3389/fcell.2015.00080
http://www.ncbi.nlm.nih.gov/pubmed/26779479
http://doi.org/10.5483/BMBRep.2017.50.8.107
http://doi.org/10.3389/fchem.2014.00070
http://doi.org/10.3390/ijms21249351
http://doi.org/10.1089/ars.2009.2466
http://doi.org/10.1111/j.1742-4658.2010.07793.x
http://doi.org/10.1093/emboj/17.4.927
http://doi.org/10.1002/cam4.3836
http://doi.org/10.1089/ars.2012.4630
http://www.ncbi.nlm.nih.gov/pubmed/22657537
http://doi.org/10.1038/s41589-019-0268-8
http://doi.org/10.1074/jbc.M111.303149
http://www.ncbi.nlm.nih.gov/pubmed/22090031
http://doi.org/10.1074/jbc.M114.564104
http://doi.org/10.1146/annurev-immunol-032414-112116
http://doi.org/10.1016/j.molcel.2014.01.004
http://www.ncbi.nlm.nih.gov/pubmed/24508390
http://doi.org/10.15252/embj.2019103841
http://www.ncbi.nlm.nih.gov/pubmed/32149426
http://doi.org/10.1016/j.bbamcr.2007.11.010
http://doi.org/10.1038/cddis.2017.369
http://doi.org/10.1096/fj.15-275883
http://www.ncbi.nlm.nih.gov/pubmed/26487694


Cancers 2022, 14, 745 22 of 25

62. Higa, A.; Taouji, S.; Lhomond, S.; Jensen, D.; Fernandez-Zapico, M.E.; Simpson, J.C.; Pasquet, J.M.; Schekman, R.; Chevet, E.
Endoplasmic reticulum stress-activated transcription factor ATF6alpha requires the disulfide isomerase PDIA5 to modulate
chemoresistance. Mol. Cell. Biol. 2014, 34, 1839–1849. [CrossRef] [PubMed]

63. Nadanaka, S.; Okada, T.; Yoshida, H.; Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing
endoplasmic reticulum stress. Mol. Cell. Biol. 2007, 27, 1027–1043. [CrossRef] [PubMed]

64. Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016, 529,
326–335. [CrossRef]

65. Hetz, C.; Bernasconi, P.; Fisher, J.; Lee, A.H.; Bassik, M.C.; Antonsson, B.; Brandt, G.S.; Iwakoshi, N.N.; Schinzel, A.; Glimcher,
L.H.; et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science
2006, 312, 572–576. [CrossRef]

66. Yang, S.; Shergalis, A.; Lu, D.; Kyani, A.; Liu, Z.; Ljungman, M.; Neamati, N. Design, Synthesis, and Biological Evaluation of
Novel Allosteric Protein Disulfide Isomerase Inhibitors. J. Med. Chem. 2019, 62, 3447–3474. [CrossRef]

67. Samanta, S.; Tamura, S.; Dubeau, L.; Mhawech-Fauceglia, P.; Miyagi, Y.; Kato, H.; Lieberman, R.; Buckanovich, R.J.; Lin, Y.G.;
Neamati, N. Expression of protein disulfide isomerase family members correlates with tumor progression and patient survival in
ovarian cancer. Oncotarget 2017, 8, 103543–103556. [CrossRef] [PubMed]

68. Tufo, G.; Jones, A.W.; Wang, Z.; Hamelin, J.; Tajeddine, N.; Esposti, D.D.; Martel, C.; Boursier, C.; Gallerne, C.; Migdal, C.; et al.
The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma.
Cell Death Differ. 2014, 21, 685–695. [CrossRef] [PubMed]

69. Sun, S.; Lee, D.; Ho, A.S.; Pu, J.K.; Zhang, X.Q.; Lee, N.P.; Day, P.J.; Lui, W.M.; Fung, C.F.; Leung, G.K. Inhibition of prolyl
4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum
stress response (ERSR) pathways. Neuro Oncol. 2013, 15, 562–577. [CrossRef]

70. Xu, S.; Sankar, S.; Neamati, N. Protein disulfide isomerase: A promising target for cancer therapy. Drug Discov. Today 2014, 19,
222–240. [CrossRef]

71. Gromov, P.; Gromova, I.; Bunkenborg, J.; Cabezon, T.; Moreira, J.M.; Timmermans-Wielenga, V.; Roepstorff, P.; Rank, F.; Celis, J.E.
Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection
of cancer of the breast. Mol. Oncol. 2010, 4, 65–89. [CrossRef]

72. Chahed, K.; Kabbage, M.; Hamrita, B.; Guillier, C.L.; Trimeche, M.; Remadi, S.; Ehret-Sabatier, L.; Chouchane, L. Detection of
protein alterations in male breast cancer using two dimensional gel electrophoresis and mass spectrometry: The involvement of
several pathways in tumorigenesis. Clin. Chim. Acta 2008, 388, 106–114. [CrossRef] [PubMed]

73. Chahed, K.; Kabbage, M.; Ehret-Sabatier, L.; Lemaitre-Guillier, C.; Remadi, S.; Hoebeke, J.; Chouchane, L. Expression of fibrinogen
E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: The two-dimensional
electrophoresis and MALDI-TOF-mass spectrometry analyses. Int. J. Oncol. 2005, 27, 1425–1431. [CrossRef] [PubMed]

74. Thongwatchara, P.; Promwikorn, W.; Srisomsap, C.; Chokchaichamnankit, D.; Boonyaphiphat, P.; Thongsuksai, P. Differential
protein expression in primary breast cancer and matched axillary node metastasis. Oncol. Rep. 2011, 26, 185–191. [CrossRef]

75. Wise, R.; Duhachek-Muggy, S.; Qi, Y.; Zolkiewski, M.; Zolkiewska, A. Protein disulfide isomerases in the endoplasmic reticulum
promote anchorage-independent growth of breast cancer cells. Breast Cancer Res. Treat. 2016, 157, 241–252. [CrossRef]

76. Ramos, F.S.; Serino, L.T.; Carvalho, C.M.; Lima, R.S.; Urban, C.A.; Cavalli, I.J.; Ribeiro, E.M. PDIA3 and PDIA6 gene expression as
an aggressiveness marker in primary ductal breast cancer. Genet. Mol. Res. 2015, 14, 6960–6967. [CrossRef]

77. Salmans, M.L.; Zhao, F.; Andersen, B. The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: A potential
drug target and biomarker. Breast Cancer Res. 2013, 15, 204. [CrossRef] [PubMed]

78. Stojak, M.; Milczarek, M.; Kurpinska, A.; Suraj-Prazmowska, J.; Kaczara, P.; Wojnar-Lason, K.; Banach, J.; Stachowicz-Suhs, M.;
Rossowska, J.; Kalvins, I.; et al. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion
and Transmigration via Lung Microvascular Endothelial Cells. Cancers 2020, 12, 2850. [CrossRef]

79. Yang, S.; (Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA); Dutta, P.; (Charles R. Drew
University of Medicine and Science, Los Angeles, CA 90059, USA); Wu, Y.; (Charles R. Drew University of Medicine and Science,
Los Angeles, CA 90059, USA); Wu, Y.; (Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA);
Vadgama, J.V.; (Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA). Unpublished work, 2022.

80. Hashida, T.; Kotake, Y.; Ohta, S. Protein disulfide isomerase knockdown-induced cell death is cell-line-dependent and involves
apoptosis in MCF-7 cells. J. Toxicol. Sci. 2011, 36, 1–7. [CrossRef]

81. Yamada, R.; Cao, X.; Butkevich, A.N.; Millard, M.; Odde, S.; Mordwinkin, N.; Gundla, R.; Zandi, E.; Louie, S.G.; Petasis, N.A.;
et al. Discovery and preclinical evaluation of a novel class of cytotoxic propynoic acid carbamoyl methyl amides (PACMAs). J.
Med. Chem. 2011, 54, 2902–2914. [CrossRef]

82. Fu, X.; Wang, P.; Zhu, B.T. Protein disulfide isomerase is a multifunctional regulator of estrogenic status in target cells. J. Steroid
Biochem. Mol. Biol. 2008, 112, 127–137. [CrossRef]

83. Torpe, N.; Gopal, S.; Baltaci, O.; Rella, L.; Handley, A.; Korswagen, H.C.; Pocock, R. A Protein Disulfide Isomerase Controls
Neuronal Migration through Regulation of Wnt Secretion. Cell Rep. 2019, 26, 3183–3190.e5. [CrossRef] [PubMed]

84. Xu, X.; Zhang, M.; Xu, F.; Jiang, S. Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol.
Cancer 2020, 19, 165. [CrossRef] [PubMed]

http://doi.org/10.1128/MCB.01484-13
http://www.ncbi.nlm.nih.gov/pubmed/24636989
http://doi.org/10.1128/MCB.00408-06
http://www.ncbi.nlm.nih.gov/pubmed/17101776
http://doi.org/10.1038/nature17041
http://doi.org/10.1126/science.1123480
http://doi.org/10.1021/acs.jmedchem.8b01951
http://doi.org/10.18632/oncotarget.21569
http://www.ncbi.nlm.nih.gov/pubmed/29262583
http://doi.org/10.1038/cdd.2013.193
http://www.ncbi.nlm.nih.gov/pubmed/24464223
http://doi.org/10.1093/neuonc/not005
http://doi.org/10.1016/j.drudis.2013.10.017
http://doi.org/10.1016/j.molonc.2009.11.003
http://doi.org/10.1016/j.cca.2007.10.018
http://www.ncbi.nlm.nih.gov/pubmed/17996735
http://doi.org/10.3892/ijo.27.5.1425
http://www.ncbi.nlm.nih.gov/pubmed/16211239
http://doi.org/10.3892/or.2011.1266
http://doi.org/10.1007/s10549-016-3820-1
http://doi.org/10.4238/2015.June.26.4
http://doi.org/10.1186/bcr3408
http://www.ncbi.nlm.nih.gov/pubmed/23635006
http://doi.org/10.3390/cancers12102850
http://doi.org/10.2131/jts.36.1
http://doi.org/10.1021/jm101655d
http://doi.org/10.1016/j.jsbmb.2008.09.005
http://doi.org/10.1016/j.celrep.2019.02.072
http://www.ncbi.nlm.nih.gov/pubmed/30893592
http://doi.org/10.1186/s12943-020-01276-5
http://www.ncbi.nlm.nih.gov/pubmed/33234169


Cancers 2022, 14, 745 23 of 25

85. Zheng, Y.; Leftheris, K. Insights into Protein-Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J.
Med. Chem. 2020, 63, 5675–5696. [CrossRef] [PubMed]

86. Popielarski, M.; Ponamarczuk, H.; Stasiak, M.; Watala, C.; Swiatkowska, M. Modifications of disulfide bonds in breast cancer cell
migration and invasiveness. Am. J. Cancer Res. 2019, 9, 1554–1582. [PubMed]

87. Romagnoli, M.; Mineva, N.D.; Polmear, M.; Conrad, C.; Srinivasan, S.; Loussouarn, D.; Barille-Nion, S.; Georgakoudi, I.; Dagg, A.;
McDermott, E.W.; et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol.
Med. 2014, 6, 278–294. [CrossRef]

88. Willems, S.H.; Tape, C.J.; Stanley, P.L.; Taylor, N.A.; Mills, I.G.; Neal, D.E.; McCafferty, J.; Murphy, G. Thiol isomerases negatively
regulate the cellular shedding activity of ADAM17. Biochem. J. 2010, 428, 439–450. [CrossRef]

89. Mullooly, M.; McGowan, P.M.; Kennedy, S.A.; Madden, S.F.; Crown, J.; O’Donovan, N.; Duffy, M.J. ADAM10: A new player in
breast cancer progression? Br. J. Cancer 2015, 113, 945–951. [CrossRef]

90. Chabottaux, V.; Sounni, N.E.; Pennington, C.J.; English, W.R.; van den Brule, F.; Blacher, S.; Gilles, C.; Munaut, C.; Maquoi, E.;
Lopez-Otin, C.; et al. Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Res.
2006, 66, 5165–5172. [CrossRef]

91. Lorenzen, I.; Eble, J.A.; Hanschmann, E.M. Thiol switches in membrane proteins—Extracellular redox regulation in cell biology.
Biol. Chem. 2021, 402, 253–269. [CrossRef]

92. Liu, D.; Rudland, P.S.; Sibson, D.R.; Platt-Higgins, A.; Barraclough, R. Human homologue of cement gland protein, a novel
metastasis inducer associated with breast carcinomas. Cancer Res. 2005, 65, 3796–3805. [CrossRef]

93. Obacz, J.; Sommerova, L.; Sicari, D.; Durech, M.; Avril, T.; Iuliano, F.; Pastorekova, S.; Hrstka, R.; Chevet, E.; Delom, F.; et al.
Extracellular AGR3 regulates breast cancer cells migration via Src signaling. Oncol. Lett. 2019, 18, 4449–4456. [CrossRef] [PubMed]

94. Young, H.S.; McGowan, L.M.; Jepson, K.A.; Adams, J.C. Impairment of cell adhesion and migration by inhibition of protein
disulphide isomerases in three breast cancer cell lines. Biosci. Rep. 2020, 40, BSR20193271. [CrossRef]

95. Chen, I.H.; Chang, F.R.; Wu, Y.C.; Kung, P.H.; Wu, C.C. 3,4-Methylenedioxy-beta-nitrostyrene inhibits adhesion and migration
of human triple-negative breast cancer cells by suppressing beta1 integrin function and surface protein disulfide isomerase.
Biochimie 2015, 110, 81–92. [CrossRef] [PubMed]

96. Liu, Y.; Liu, H.; Han, B.; Zhang, J.T. Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells
using functional proteomic analysis. Cancer Res. 2006, 66, 3248–3255. [CrossRef] [PubMed]

97. Ito, M.; Kajino, K.; Abe, M.; Fujimura, T.; Mineki, R.; Ikegami, T.; Ishikawa, T.; Hino, O. NP-1250, an ABCG2 inhibitor, induces
apoptotic cell death in mitoxantrone-resistant breast carcinoma MCF7 cells via a caspase-independent pathway. Oncol. Rep. 2013,
29, 1492–1500. [CrossRef] [PubMed]

98. Zhang, D.; Putti, T.C. Over-expression of ERp29 attenuates doxorubicin-induced cell apoptosis through up-regulation of Hsp27
in breast cancer cells. Exp. Cell Res. 2010, 316, 3522–3531. [CrossRef]

99. Hrstka, R.; Nenutil, R.; Fourtouna, A.; Maslon, M.M.; Naughton, C.; Langdon, S.; Murray, E.; Larionov, A.; Petrakova, K.; Muller,
P.; et al. The pro-metastatic protein anterior gradient-2 predicts poor prognosis in tamoxifen-treated breast cancers. Oncogene
2010, 29, 4838–4847. [CrossRef]

100. Kutomi, G.; Tamura, Y.; Tanaka, T.; Kajiwara, T.; Kukita, K.; Ohmura, T.; Shima, H.; Takamaru, T.; Satomi, F.; Suzuki, Y.; et al.
Human endoplasmic reticulum oxidoreductin 1-alpha is a novel predictor for poor prognosis of breast cancer. Cancer Sci. 2013,
104, 1091–1096. [CrossRef]

101. Schindl, M.; Schoppmann, S.F.; Samonigg, H.; Hausmaninger, H.; Kwasny, W.; Gnant, M.; Jakesz, R.; Kubista, E.; Birner, P.;
Oberhuber, G.; et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph
node-positive breast cancer. Clin. Cancer Res. 2002, 8, 1831–1837.

102. Jarman, E.J.; Ward, C.; Turnbull, A.K.; Martinez-Perez, C.; Meehan, J.; Xintaropoulou, C.; Sims, A.H.; Langdon, S.P. HER2
regulates HIF-2alpha and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 2019, 21, 10. [CrossRef]

103. Kobayashi, Y.; Oguro, A.; Hirata, Y.; Imaoka, S. The regulation of Hypoxia-Inducible Factor-1 (HIF-1alpha) expression by Protein
Disulfide Isomerase (PDI). PLoS ONE 2021, 16, e0246531. [CrossRef] [PubMed]

104. Schultz-Norton, J.R.; McDonald, W.H.; Yates, J.R.; Nardulli, A.M. Protein disulfide isomerase serves as a molecular chaperone to
maintain estrogen receptor alpha structure and function. Mol. Endocrinol. 2006, 20, 1982–1995. [CrossRef] [PubMed]

105. Higuchi, T.; Watanabe, Y.; Waga, I. Protein disulfide isomerase suppresses the transcriptional activity of NF-kappaB. Biochem.
Biophys. Res. Commun. 2004, 318, 46–52. [CrossRef]

106. Coppari, S.; Altieri, F.; Ferraro, A.; Chichiarelli, S.; Eufemi, M.; Turano, C. Nuclear localization and DNA interaction of protein
disulfide isomerase ERp57 in mammalian cells. J. Cell. Biochem. 2002, 85, 325–333. [CrossRef]

107. Gaucci, E.; Altieri, F.; Turano, C.; Chichiarelli, S. The protein ERp57 contributes to EGF receptor signaling and internalization in
MDA-MB-468 breast cancer cells. J. Cell. Biochem. 2013, 114, 2461–2470. [CrossRef] [PubMed]

108. Bakker, E.Y.; Fujii, M.; Krstic-Demonacos, M.; Demonacos, C.; Alhammad, R. Protein disulfide isomerase A1associated pathways
in the development of stratified breast cancer therapies. Int. J. Oncol. 2022, 60, 1–19. [CrossRef] [PubMed]

109. Pokkunuri, I.D.; Lokhandwala, M.F.; Banday, A.A. Protein disulfide isomerase inhibition impairs Keap1/Nrf2 signaling and
mitochondrial function and induces apoptosis in renal proximal tubular cells. Am. J. Physiol. Ren. Physiol. 2020, 319, F686–F696.
[CrossRef] [PubMed]

http://doi.org/10.1021/acs.jmedchem.9b01869
http://www.ncbi.nlm.nih.gov/pubmed/31999923
http://www.ncbi.nlm.nih.gov/pubmed/31497343
http://doi.org/10.1002/emmm.201303373
http://doi.org/10.1042/BJ20100179
http://doi.org/10.1038/bjc.2015.288
http://doi.org/10.1158/0008-5472.CAN-05-3012
http://doi.org/10.1515/hsz-2020-0266
http://doi.org/10.1158/0008-5472.CAN-04-3823
http://doi.org/10.3892/ol.2019.10849
http://www.ncbi.nlm.nih.gov/pubmed/31611954
http://doi.org/10.1042/BSR20193271
http://doi.org/10.1016/j.biochi.2015.01.006
http://www.ncbi.nlm.nih.gov/pubmed/25593085
http://doi.org/10.1158/0008-5472.CAN-05-3801
http://www.ncbi.nlm.nih.gov/pubmed/16540677
http://doi.org/10.3892/or.2013.2249
http://www.ncbi.nlm.nih.gov/pubmed/23354844
http://doi.org/10.1016/j.yexcr.2010.08.014
http://doi.org/10.1038/onc.2010.228
http://doi.org/10.1111/cas.12177
http://doi.org/10.1186/s13058-019-1097-0
http://doi.org/10.1371/journal.pone.0246531
http://www.ncbi.nlm.nih.gov/pubmed/33539422
http://doi.org/10.1210/me.2006-0006
http://www.ncbi.nlm.nih.gov/pubmed/16690750
http://doi.org/10.1016/j.bbrc.2004.04.002
http://doi.org/10.1002/jcb.10137
http://doi.org/10.1002/jcb.24590
http://www.ncbi.nlm.nih.gov/pubmed/23696074
http://doi.org/10.3892/ijo.2022.5306
http://www.ncbi.nlm.nih.gov/pubmed/35014681
http://doi.org/10.1152/ajprenal.00049.2020
http://www.ncbi.nlm.nih.gov/pubmed/32830535


Cancers 2022, 14, 745 24 of 25

110. Alhammad, R.; Khunchai, S.; Tongmuang, N.; Limjindaporn, T.; Yenchitsomanus, P.T.; Mutti, L.; Krstic-Demonacos, M.;
Demonacos, C. Protein disulfide isomerase A1 regulates breast cancer cell immunorecognition in a manner dependent on redox
state. Oncol. Rep. 2020, 44, 2406–2418. [CrossRef]

111. Tanaka, T.; Kutomi, G.; Kajiwara, T.; Kukita, K.; Kochin, V.; Kanaseki, T.; Tsukahara, T.; Hirohashi, Y.; Torigoe, T.; Okamoto, Y.;
et al. Cancer-associated oxidoreductase ERO1-alpha promotes immune escape through up-regulation of PD-L1 in human breast
cancer. Oncotarget 2017, 8, 24706–24718. [CrossRef]

112. Tanaka, T.; Kajiwara, T.; Torigoe, T.; Okamoto, Y.; Sato, N.; Tamura, Y. Cancer-associated oxidoreductase ERO1-alpha drives the
production of tumor-promoting myeloid-derived suppressor cells via oxidative protein folding. J. Immunol. 2015, 194, 2004–2010.
[CrossRef]

113. Park, B.; Lee, S.; Kim, E.; Cho, K.; Riddell, S.R.; Cho, S.; Ahn, K. Redox regulation facilitates optimal peptide selection by MHC
class I during antigen processing. Cell 2006, 127, 369–382. [CrossRef] [PubMed]

114. Xu, S.; Butkevich, A.N.; Yamada, R.; Zhou, Y.; Debnath, B.; Duncan, R.; Zandi, E.; Petasis, N.A.; Neamati, N. Discovery of an
orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. Proc. Natl. Acad.
Sci. USA 2012, 109, 16348–16353. [CrossRef]

115. Ge, J.; Zhang, C.J.; Li, L.; Chong, L.M.; Wu, X.; Hao, P.; Sze, S.K.; Yao, S.Q. Small molecule probe suitable for in situ profiling and
inhibition of protein disulfide isomerase. ACS Chem. Biol. 2013, 8, 2577–2585. [CrossRef] [PubMed]

116. Hoffstrom, B.G.; Kaplan, A.; Letso, R.; Schmid, R.S.; Turmel, G.J.; Lo, D.C.; Stockwell, B.R. Inhibitors of protein disulfide isomerase
suppress apoptosis induced by misfolded proteins. Nat. Chem. Biol. 2010, 6, 900–906. [CrossRef] [PubMed]

117. Shergalis, A.; Xue, D.; Gharbia, F.Z.; Driks, H.; Shrestha, B.; Tanweer, A.; Cromer, K.; Ljungman, M.; Neamati, N. Characterization
of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J. Med. Chem. 2020, 63, 10263–10286.
[CrossRef]

118. Vatolin, S.; Phillips, J.G.; Jha, B.K.; Govindgari, S.; Hu, J.; Grabowski, D.; Parker, Y.; Lindner, D.J.; Zhong, F.; Distelhorst, C.W.;
et al. Novel Protein Disulfide Isomerase Inhibitor with Anticancer Activity in Multiple Myeloma. Cancer Res. 2016, 76, 3340–3350.
[CrossRef]

119. Allimuthu, D.; Adams, D.J. 2-Chloropropionamide as a Low-Reactivity Electrophile for Irreversible Small-Molecule Probe
Identification. ACS Chem. Biol. 2017, 12, 2124–2131. [CrossRef]

120. Ozcelik, D.; Pezacki, J.P. Small Molecule Inhibition of Protein Disulfide Isomerase in Neuroblastoma Cells Induces an Oxidative
Stress Response and Apoptosis Pathways. ACS Chem. Neurosci. 2019, 10, 4068–4075. [CrossRef]

121. Law, M.E.; Yaaghubi, E.; Ghilardi, A.F.; Davis, B.J.; Ferreira, R.B.; Koh, J.; Chen, S.; DePeter, S.F.; Schilson, C.M.; Chiang, C.-W.;
et al. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer
cell death. bioRxiv 2021. [CrossRef]

122. Yin, H.Y.; Gao, J.J.; Chen, X.; Ma, B.; Yang, Z.S.; Tang, J.; Wang, B.W.; Chen, T.; Wang, C.; Gao, S.; et al. A Gallium(III) Complex
that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angew. Chem. Int. Ed. Engl. 2020, 59, 20147–20153.
[CrossRef]

123. Kyani, A.; Tamura, S.; Yang, S.; Shergalis, A.; Samanta, S.; Kuang, Y.; Ljungman, M.; Neamati, N. Discovery and Mechanistic
Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma. ChemMedChem 2018, 13,
164–177. [CrossRef]

124. Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer
activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem.
2020, 194, 112266. [CrossRef] [PubMed]

125. Chlebowska-Tuz, J.; Sokolowska, O.; Gaj, P.; Lazniewski, M.; Firczuk, M.; Borowiec, K.; Sas-Nowosielska, H.; Bajor, M.;
Malinowska, A.; Muchowicz, A.; et al. Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia
cells. Haematologica 2018, 103, 1843–1852. [CrossRef] [PubMed]

126. Won, J.K.; Yu, S.J.; Hwang, C.Y.; Cho, S.H.; Park, S.M.; Kim, K.; Choi, W.M.; Cho, H.; Cho, E.J.; Lee, J.H.; et al. Protein disulfide
isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma. Hepatology 2017, 66, 855–868.
[CrossRef]

127. Xu, S.; Liu, Y.; Yang, K.; Wang, H.; Shergalis, A.; Kyani, A.; Bankhead, A., III; Tamura, S.; Yang, S.; Wang, X.; et al. Inhibition of
protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes.
Theranostics 2019, 9, 2282–2298. [CrossRef] [PubMed]

128. Eirich, J.; Braig, S.; Schyschka, L.; Servatius, P.; Hoffmann, J.; Hecht, S.; Fulda, S.; Zahler, S.; Antes, I.; Kazmaier, U.; et al. A small
molecule inhibits protein disulfide isomerase and triggers the chemosensitization of cancer cells. Angew. Chem. Int. Ed. Engl.
2014, 53, 12960–12965. [CrossRef]

129. Kaplan, A.; Gaschler, M.M.; Dunn, D.E.; Colligan, R.; Brown, L.M.; Palmer, A.G., III; Lo, D.C.; Stockwell, B.R. Small molecule-
induced oxidation of protein disulfide isomerase is neuroprotective. Proc. Natl. Acad. Sci. USA 2015, 112, E2245–E2252.
[CrossRef]

130. Zhou, X.; Li, G.; Kaplan, A.; Gaschler, M.M.; Zhang, X.; Hou, Z.; Jiang, M.; Zott, R.; Cremers, S.; Stockwell, B.R.; et al. Small
molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum
stress in a mouse model of Huntington’s disease. Hum. Mol. Genet. 2018, 27, 1545–1555. [CrossRef] [PubMed]

http://doi.org/10.3892/or.2020.7816
http://doi.org/10.18632/oncotarget.14960
http://doi.org/10.4049/jimmunol.1402538
http://doi.org/10.1016/j.cell.2006.08.041
http://www.ncbi.nlm.nih.gov/pubmed/17055437
http://doi.org/10.1073/pnas.1205226109
http://doi.org/10.1021/cb4002602
http://www.ncbi.nlm.nih.gov/pubmed/24070012
http://doi.org/10.1038/nchembio.467
http://www.ncbi.nlm.nih.gov/pubmed/21079601
http://doi.org/10.1021/acs.jmedchem.0c00728
http://doi.org/10.1158/0008-5472.CAN-15-3099
http://doi.org/10.1021/acschembio.7b00424
http://doi.org/10.1021/acschemneuro.9b00301
http://doi.org/10.1101/2021.01.13.426390
http://doi.org/10.1002/anie.202008432
http://doi.org/10.1002/cmdc.201700629
http://doi.org/10.1016/j.ejmech.2020.112266
http://www.ncbi.nlm.nih.gov/pubmed/32248006
http://doi.org/10.3324/haematol.2018.190231
http://www.ncbi.nlm.nih.gov/pubmed/30002127
http://doi.org/10.1002/hep.29237
http://doi.org/10.7150/thno.30621
http://www.ncbi.nlm.nih.gov/pubmed/31149044
http://doi.org/10.1002/anie.201406577
http://doi.org/10.1073/pnas.1500439112
http://doi.org/10.1093/hmg/ddy061
http://www.ncbi.nlm.nih.gov/pubmed/29462355


Cancers 2022, 14, 745 25 of 25

131. Kaplan, A.; Stockwell, B.R. Structural Elucidation of a Small Molecule Inhibitor of Protein Disulfide Isomerase. ACS Med. Chem.
Lett. 2015, 6, 966–971. [CrossRef] [PubMed]

132. Hasipek, M.; Grabowski, D.; Guan, Y.; Alugubelli, R.R.; Tiwari, A.D.; Gu, X.; DeAvila, G.A.; Silva, A.S.; Meads, M.B.; Parker,
Y.; et al. Therapeutic Targeting of Protein Disulfide Isomerase PDIA1 in Multiple Myeloma. Cancers 2021, 13, 2649. [CrossRef]
[PubMed]

133. Banerjee, R.; Pace, N.J.; Brown, D.R.; Weerapana, E. 1,3,5-Triazine as a modular scaffold for covalent inhibitors with streamlined
target identification. J. Am. Chem. Soc. 2013, 135, 2497–2500. [CrossRef] [PubMed]

134. Cole, K.S.; Grandjean, J.M.D.; Chen, K.; Witt, C.H.; O’Day, J.; Shoulders, M.D.; Wiseman, R.L.; Weerapana, E. Characterization of
an A-Site Selective Protein Disulfide Isomerase A1 Inhibitor. Biochemistry 2018, 57, 2035–2043. [CrossRef] [PubMed]

135. Dickerhof, N.; Kleffmann, T.; Jack, R.; McCormick, S. Bacitracin inhibits the reductive activity of protein disulfide isomerase by
disulfide bond formation with free cysteines in the substrate-binding domain. FEBS J. 2011, 278, 2034–2043. [CrossRef]

136. Karala, A.R.; Ruddock, L.W. Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J. 2010, 277, 2454–2462.
[CrossRef]

137. Lovat, P.E.; Corazzari, M.; Armstrong, J.L.; Martin, S.; Pagliarini, V.; Hill, D.; Brown, A.M.; Piacentini, M.; Birch-Machin, M.A.;
Redfern, C.P. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to
endoplasmic reticulum stress. Cancer Res. 2008, 68, 5363–5369. [CrossRef] [PubMed]

138. Goplen, D.; Wang, J.; Enger, P.O.; Tysnes, B.B.; Terzis, A.J.; Laerum, O.D.; Bjerkvig, R. Protein disulfide isomerase expression is
related to the invasive properties of malignant glioma. Cancer Res. 2006, 66, 9895–9902. [CrossRef] [PubMed]

139. Bekendam, R.H.; Bendapudi, P.K.; Lin, L.; Nag, P.P.; Pu, J.; Kennedy, D.R.; Feldenzer, A.; Chiu, J.; Cook, K.M.; Furie, B.; et al. A
substrate-driven allosteric switch that enhances PDI catalytic activity. Nat. Commun. 2016, 7, 12579. [CrossRef] [PubMed]

140. Jasuja, R.; Passam, F.H.; Kennedy, D.R.; Kim, S.H.; van Hessem, L.; Lin, L.; Bowley, S.R.; Joshi, S.S.; Dilks, J.R.; Furie, B.; et al.
Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J. Clin. Investig. 2012, 122, 2104–2113.
[CrossRef]

141. Lin, L.; Gopal, S.; Sharda, A.; Passam, F.; Bowley, S.R.; Stopa, J.; Xue, G.; Yuan, C.; Furie, B.C.; Flaumenhaft, R.; et al. Quercetin-3-
rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b’x Domain. J. Biol. Chem. 2015, 290, 23543–23552. [CrossRef]

142. Zwicker, J.I.; Schlechter, B.L.; Stopa, J.D.; Liebman, H.A.; Aggarwal, A.; Puligandla, M.; Caughey, T.; Bauer, K.A.; Kuemmerle, N.;
Wong, E.; et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced
cancer. JCI Insight 2019, 4, e125851. [CrossRef]

143. Khodier, C.; VerPlank, L.; Nag, P.P.; Pu, J.; Wurst, J.; Pilyugina, T.; Dockendorff, C.; Galinski, C.N.; Scalise, A.A.; Passam, F.; et al.
Identification of ML359 as a Small Molecule Inhibitor of Protein Disulfide Isomerase. In Probe Reports from the NIH Molecular
Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010.

144. Robinson, R.M.; Reyes, L.; Duncan, R.M.; Bian, H.; Reitz, A.B.; Manevich, Y.; McClure, J.J.; Champion, M.M.; Chou, C.J.; Sharik,
M.E.; et al. Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 2019, 33,
1011–1022. [CrossRef] [PubMed]

145. Wang, W.Y.; Wu, Y.C.; Wu, C.C. Prevention of platelet glycoprotein IIb/IIIa activation by 3,4-methylenedioxy-beta-nitrostyrene, a
novel tyrosine kinase inhibitor. Mol. Pharmacol. 2006, 70, 1380–1389. [CrossRef] [PubMed]

146. Hsieh, P.W.; Chang, Y.T.; Chuang, W.Y.; Shih, H.C.; Chiang, S.Z.; Wu, C.C. The synthesis and biologic evaluation of anti-platelet
and cytotoxic beta-nitrostyrenes. Bioorganic Med. Chem. 2010, 18, 7621–7627. [CrossRef] [PubMed]

147. Kim, Y.; Chang, K.O. Protein disulfide isomerases as potential therapeutic targets for influenza A and B viruses. Virus Res. 2018,
247, 26–33. [CrossRef] [PubMed]

148. Khan, M.M.; Simizu, S.; Lai, N.S.; Kawatani, M.; Shimizu, T.; Osada, H. Discovery of a small molecule PDI inhibitor that inhibits
reduction of HIV-1 envelope glycoprotein gp120. ACS Chem. Biol. 2011, 6, 245–251. [CrossRef]

149. Chitambar, C.R.; Al-Gizawiy, M.M.; Alhajala, H.S.; Pechman, K.R.; Wereley, J.P.; Wujek, R.; Clark, P.A.; Kuo, J.S.; Antholine, W.E.;
Schmainda, K.M. Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting
Mitochondrial Function and Ribonucleotide Reductase. Mol. Cancer Ther. 2018, 17, 1240–1250. [CrossRef]

150. Kim, T.W.; Ryu, H.H.; Li, S.Y.; Li, C.H.; Lim, S.H.; Jang, W.Y.; Jung, S. PDIA6 regulation of ADAM17 shedding activity and
EGFR-mediated migration and invasion of glioblastoma cells. J. Neurosurg. 2017, 126, 1829–1838. [CrossRef]

151. Kaufman, R.J.; Malhotra, J.D. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics.
Biochim. Biophys. Acta 2014, 1843, 2233–2239. [CrossRef]

http://doi.org/10.1021/acsmedchemlett.5b00014
http://www.ncbi.nlm.nih.gov/pubmed/26500720
http://doi.org/10.3390/cancers13112649
http://www.ncbi.nlm.nih.gov/pubmed/34071205
http://doi.org/10.1021/ja400427e
http://www.ncbi.nlm.nih.gov/pubmed/23379904
http://doi.org/10.1021/acs.biochem.8b00178
http://www.ncbi.nlm.nih.gov/pubmed/29521097
http://doi.org/10.1111/j.1742-4658.2011.08119.x
http://doi.org/10.1111/j.1742-4658.2010.07660.x
http://doi.org/10.1158/0008-5472.CAN-08-0035
http://www.ncbi.nlm.nih.gov/pubmed/18593938
http://doi.org/10.1158/0008-5472.CAN-05-4589
http://www.ncbi.nlm.nih.gov/pubmed/17047051
http://doi.org/10.1038/ncomms12579
http://www.ncbi.nlm.nih.gov/pubmed/27573496
http://doi.org/10.1172/JCI61228
http://doi.org/10.1074/jbc.M115.666180
http://doi.org/10.1172/jci.insight.125851
http://doi.org/10.1038/s41375-018-0263-1
http://www.ncbi.nlm.nih.gov/pubmed/30315229
http://doi.org/10.1124/mol.106.023986
http://www.ncbi.nlm.nih.gov/pubmed/16837624
http://doi.org/10.1016/j.bmc.2010.08.039
http://www.ncbi.nlm.nih.gov/pubmed/20850977
http://doi.org/10.1016/j.virusres.2018.01.010
http://www.ncbi.nlm.nih.gov/pubmed/29382552
http://doi.org/10.1021/cb100387r
http://doi.org/10.1158/1535-7163.MCT-17-1009
http://doi.org/10.3171/2016.5.JNS152831
http://doi.org/10.1016/j.bbamcr.2014.03.022

	Introduction 
	Recent Therapeutic Options and Molecular Targets in TNBC 
	Protein Disulfide Isomerase (PDI) Family 
	PDI in ER Stress and UPR Signaling 
	The Functions/Roles of Specific PDIs in Breast Cancer 
	Overexpression of PDIs and the Role of PDI in Breast Cancer Proliferation 
	Role of PDI in Breast Cancer Invasion and Metastasis 
	Role of PDI in Breast Cancer Chemoresistance and Clinical Outcomes 
	Role of PDI as Transcriptional Cofactors 

	PDI Inhibitors 
	PDI Inhibitors Categorized Depending on Binding Sites 
	PDI Inhibitors in Breast Cancer 

	Concluding Remarks and Future Perspectives 
	References

