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Abstract

Soil phosphorus (P) adsorption and desorption occur in an important endogenous cycle linked

with soil fertility problems and relevant to the environmental risk assessment of P. In our

study, the effect of long-term inorganic and organic fertilization on P adsorption and desorption

characteristics in relation to changes in soil properties was evaluated by selecting three long-

term experimental sites in southern China. The selected treatments at each site were CK

(unfertilized), NPK (synthetic nitrogen, phosphorus and potassium) and NPKM (synthetic

NPK plus manure). The adsorption and desorption characteristics of P were evaluated using

Langmuir and Freundlich isotherms. The results showed that long-term application of NPK

plus manure significantly increased soil organic carbon (SOC), total P and available P at all

three sites compared with the NPK and CK treatments. All three treatments fit these equations

well. The maximum adsorption capacity (Qm) of P increased with NPKM treatment, and the

binding energy of P (K) and the maximum buffering capacity (MBC) showed increasing trends.

NPKM showed the highest Qm (2346.13 mg kg-1) at the Jinxian site, followed by Nanchang

(221.16 mg kg-1) and Ningxiang (2219.36 mg kg-1). Compared to CK and NPK, the NPKM

treatment showed a higher MBC as 66.64, 46.93 and 44.39 L kg-1 at all three sites. The maxi-

mum desorption capacity (Dm) of P in soil was highest with the NPKM treatment (157.58,

166.76, 143.13 mg kg-1), showing a better ability to release P in soil. The correlation matrix

showed a significant positive correlation of SOC, total and available P with Qm, Dm and MBC.

In conclusion, it is suggested that manure addition is crucial to improve P utilization in red

paddy soils within the recommended range to avoid the risk of environmental pollution.
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Introduction

Phosphorus (P) is an important macronutrient required for plant growth and therefore is a

vital constituent of fertilizers applied to crops grown worldwide [1]. As the reserves of P are

limited, attaining an adequate P supply is a large-scale environmental task in the 21st century

[2]. P supply will limit increases in agricultural production worldwide in the coming decades.

Excessive usage of fertilizers to overcome P deficiency has led to many problems, such as P

accumulation in the soil system and surface water runoff [3, 4]. Red soils, having a low or

acidic soil pH, are widely distributed in the southern part of China. Because of the robust

adsorption of soil P by aluminum-iron (Al-Fe) oxides, the bioavailability of P to crop plants is

inadequate in red soils [5]. In the past few decades, large amounts of organic and inorganic P

have been applied to these soils to ensure maximum crop yields. This continuous long-term

application of P fertilizer results in the gradual depletion of rock phosphate resources [6].

Moreover, approximately 80% of the applied P is fixed or adsorbed in the soil [7, 8]. The suc-

cessive movement of P applied as fertilizer results in water eutrophication through runoff [9].

Hence, lessening P adsorption and enhancing the availability of P in red paddy soils is an

imperative topic to be focused on in current environmental research.

Adsorption and desorption mechanisms are vital aspects of P behavior with respect to the

solid phases in soils. Adsorption processes can limit P phyto-availability, where desorption can

allow P to migrate or vanish from soils [9, 10]. P adsorption includes a continuous mechanism

of adsorption and precipitation. Adsorption is a reversible but rapid process, whereas the pro-

cess of precipitation is irreversible and slow, and the difference between these processes is

unclear [11, 12]. P desorption, the reverse process of adsorption, has an influential role on soil

P availability [13, 14]. It has been stated that the soil P adsorption and desorption process is

primarily affected by the soil pH, SOC and Al-Fe oxides [15–17]. Al and Fe oxides are the pri-

mary sources of fluctuating charge in red soils. Many studies have reported that SOC results in

competitive adsorption by occupying some P adsorption sites [18–20]. In contrast, [21]

revealed that SOC can boost the adsorption capability of P in some sandy textured soils.

Previous studies have reported that the adsorption and desorption reactions of soil P directly

or indirectly affect P availability and mobility in upland soils [22, 23]. The adsorption and

desorption processes of soil P can be analyzed by using several isotherms, i.e., the Langmuir and

Freundlich models [24, 25]. The key factors are the adsorption capacity of soil (Qm), the adsorp-

tion constant (K), the maximum buffer capacity of soil P (MBC), and many others [26]. Contin-

uous fertilizer application can alter soil properties including soil pH, SOC, total P, available P

and soil biological indexes [27], which might influence the ability of soil to adsorb P.

To the best of our knowledge, most studies have focused on the adsorption and desorption

behavior of P in upland soils with a short experimental duration. However, the impacts of

long-term organic and inorganic fertilizer amendment and changing soil properties on soil P

adsorption and desorption in red paddy soils have not been well documented. Therefore, it is

imperative to explore the effects of fertilization on the phytoavailability of P in these paddy

soils. The objectives of this study were to perform batch experiments to examine the adsorp-

tion and desorption behavior of P in red paddy soil under long-term organic and inorganic

fertilization and the mechanism by which changes in soil properties affect P availability in typi-

cal red paddy soils. We hypothesized that the combined application of NPK plus manure

would enhance the maximum adsorption capacity of P, P storage capacity, maximum buffer-

ing capacity and P binding energy. The study will contribute to an improved understanding of

the processes P cycling driven by changes of sorption and adsorption resulted from fertiliza-

tion practices with intensively managed rice-rice cropping system.
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Materials and methods

Study sites and sample collection

The three sites under long-term fertilization selected for this study are located in Nanchang (NC)

which belongs to Soil, Fertilizer & Resources and Environment Institute, Jiangxi Academy of

Agricultural Sciences, Jinxian (JX) and Ningxiang (NX) that belongs to Red Soil Institute of

Jiangxi province, China. Research at these experimental sites was carried out with the consent of

the Institute of Agricultural Resources and Agricultural regionalization, Chinese Academy of

Agricultural Sciences, Beijing, China, under the cooperative research agreement. The geographic

locations, climatic details and physicochemical properties of these three sites are given in Table 1.

The agricultural soil of these regions is classified as red soil based on the soil classification

system of China [28]. Three treatments were applied in each long-term experiment involving

different inorganic and organic fertilization approaches under a rice-based cropping system:

(1) CK (unfertilized soil); (2) NPK (synthetic nitrogen, phosphorus and potassium); and (3)

NPKM (synthetic NPK plus organic manure). The soil had a heavy clayey texture, containing

38% clay. All the treatments were set in a randomized complete block design (RCBD). Tripli-

cate treatments were separated from each other by cemented ridges to prevent water percola-

tion. Inorganic amendments were applied in the form of urea as nitrogen (N), calcium

phosphate as phosphorus (P), and potassium chloride as potassium (K) at each site. The

respective annual fertilizer inputs are presented in Table 2.

For the NPKM treatment, 50% inorganic NPK was applied, and the remaining 50% was added

with pig manure based on the N content, while the P and K rates were modified with inorganic

fertilizers. Organic manure was applied at rates of 16700 kg ha-1, 15000 kg ha-1, and 4050 kg ha-1

Table 1. Locations, climate conditions and initial surface soil properties of the three long-term experimental sites.

Parameters Nanchang Jinxian Ningxiang

Initiation year 1984 1981 1986

Latitude (N) 28.62 28.71 28.38

Longitude (E) 115.99 116.36 112.72

Climate MT SM SM

Mean annual temperature (˚C) 17.8 18.5 16.2

Mean annual precipitation (mm) 1632 1550 1570

Cropping system Rice-Rice Rice-Rice Rice-Rice

Soil classification in FAO Eutric cambisol Eutric cambisol Eutric cambisol

Soil texture Clay loam Clay loam Clay loam

Soil pH 6.08 6.92 6.52

SOM (g kg-1) 26.35 29.36 28.54

TN (g kg-1) 1.37 1.52 2.05

AN (mg kg-1) 82.36 139.66 142.36

TP (g kg-1) 0.52 0.53 0.62

AP (mg kg-1) 22.36 9.81 13.38

TK (g kg-1) 4.26 13.25 21.36

AK (mg kg-1) 37.05 83.34 34.48

Fed (g kg-1) 35.66 55.21 32.24

Ald (g kg-1) 6.81 10.54 5.46

�Abbreviations: MT: monsoon temperate, SM: subtropical monsoon, R-R: rice-rice, SOM: soil organic matter, TN: total nitrogen, AN: available nitrogen, TP: total

phosphorus, AP: available phosphorus, TK: total potassium, AK: available potassium, Fed: dithionite-citrate bicarbonate-extractable Fe and Ald: dithionite-citrate

bicarbonate-extractable Al.

https://doi.org/10.1371/journal.pone.0246428.t001
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at Nanchang, Jinxian and Ningxiang, respectively. The manure and P fertilizers were applied as a

basal dose before rice seedling transplantation, for N and K, 50% was applied as a basal dose, 25%

was top-dressed at the tillering stage, and another 25% was added at the panicle stage.

Soil samples were collected from the topsoil (0–20 cm) from all three sites immediately

after the early rice harvest using a steel auger. The samples were air-dried, crumbled gently,

and passed through a 2 mm sieve before analysis. The representative samples were subjected to

analysis for organic C [29], total P [30] and available P [31]. The soil pH was assessed in a 1:2.5

soil and water suspension [32]. The soil properties are given in Table 3.

Zeta potential measurement

Zeta potential is the potential at the shear plane of the electric double layer on colloidal particles.

The value and sign (positive or negative) of the zeta potential depend on the surface charges of

the soil particles. The isoelectric point (IEP) indicates the pH value at which the zeta potential is

0 mV [33]. The zeta potentials of soil colloids were measured by electrophoresis using a Zetasi-

zer Nano ZS particle size analyzer (ZEN3600, Malvern, Worcestershire, UK). Briefly, 0.05 g of

soil sample (0.05 mm) was weighed into a 250-mL Erlenmeyer flask in duplicate followed by the

addition of 200 mL of KCl solution (0.01M). Each suspension was dispersed under ultrasound

and then dispensed into four 50-mL plastic bottles (~ 30 mL each). The pH was adjusted to 3, 4,

5, 6, or 7 with HCl or KOH. The zeta potential was measured after 2 h of equilibration [34].

P adsorption and desorption experiments

Adsorption isotherms were assessed using the batch equilibrium method [35]. Briefly, 2.5 g of

soil was added to a 50 ml centrifuge tube accompanied by the addition of 25 ml of P working

Table 2. Fertilizer input rates (kg ha−1) at the three long-term experimental sites.

Sites Fertilizer application (N-P-K)

CK NPK NPKM

Nanchang 0-0-0 150-27-125 150-27-125

Jinxian 0-0-0 90-20-63 180-40-125

Ningxiang 0-0-0 143-24-53 143-24-33

https://doi.org/10.1371/journal.pone.0246428.t002

Table 3. The effect of long-term fertilization on soil pH, SOC, total P and available P concentrations and PAC.

Sites Treatments pH SOC (mg kg-1) Total P (g kg-1) AP (mg kg-1) PAC (%)

Nanchang CK 5.71 ± 0.2 Ab 16.97 ± 0.24 Ca 0.36 ± 0.15 Cb 7.30 ± 0.24 Ca 2.03

NPK 5.23 ± 0.12 Bb 23.82 ± 0.13 Ba 0.54 ± 0.05 Bb 21.09 ± 1.35 Ba 3.91

NPKM 5.74 ± 0.15 Ab 28.09 ± 1.33 Aa 1.63 ± 0.07 Ac 82.05 ± 2.14 Ab 5.03

Jinxian CK 5.62 ± 0.15 ABb 13.25 ± 0.52 Cb 0.49 ± 0.04 Ca 6.51 ± 0.55 Ca 1.33

NPK 5.50 ± 0.12 Bb 18.87 ± 0.99 Bb 0.93 ± 0.02 Ba 30.14 ± 1.44 Bb 3.24

NPKM 5.94 ± 0.14 Ab 21.76 ± 1.42 Ab 1.63 ± 0.14 Ab 64.78 ± 1.55 Ac 3.97

Ningxiang CK 6.34 ± 0.11 Ba 12.11 ± 0.74 Cc 0.45 ± 0.05 Ca 4.61 ± 0.39 Cb 1.02

NPK 6.51 ± 0.15 Aa 14.35 ± 0.92 Bc 0.96 ± 0.09 Ba 14.82 ± 0.18 Bc 1.54

NPKM 6.71 ± 0.12 Aa 21.64 ± 1.24 Ab 2.21 ± 0.16 Aa 90.71 ± 2.54 Aa 4.10

�Abbreviations: PAC: phosphorus activation coefficient of soil.

Treatments: CK: unfertilized control; NPK: inorganic nitrogen, phosphorus and potassium; and NPKM: NPK plus manure.

Data (means ± SD, n = 3) followed by different uppercase letters denote significant differences (P�0.05) between fertilization treatments at the same site (A, B, and C),

and lowercase letters denote significant differences (P� 0.05) between sites for the same fertilization treatment (a, b, and c).

https://doi.org/10.1371/journal.pone.0246428.t003
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solution, i.e., 0.01 M CaCl2. A known concentration of P was maintained: 0 mg L-1, 10 mg L-1,

20 mg L-1, 40 mg L-1, 60 mg L-1, 100 mg L-1 or 150 mg L-1. Two to three drops of phenol were

further added to inhibit any microbial growth. The mixture was shaken overnight at room tem-

perature (180 r.p.m at 25˚C) and then centrifuged (4000g) for approximately 10 minutes. After-

wards, 5 mL of the supernatant was filtered and transferred into a 25 mL tube, and

molybdenum blue spectroscopy was used to analyze the P concentration. The soil samples used

for adsorption were then washed two times with saturated NaCl solution, centrifuged and sub-

jected to the desorption experiment. After supernatant removal, 25 mL of CaCl2 and 3 drops of

phenol were added to each sample, followed by overnight shaking. After centrifugation for 10

minutes, 5 mL of the supernatant was taken for the measurement of P concentration by the

same molybdenum blue method. This solution P concentration was defined as the desorbed P.

P adsorption and desorption models

The Langmuir and Freundlich models are widely used for the quantitative description of the P

adsorption characteristics of soil particle surfaces [36]. The adsorption isotherms are expressed

as:

C=Q ¼ C=Qm þ
1

KþQm
ð1Þ

and

Q ¼ KC1=n ð2Þ

where C is the concentration of P in solution at the equilibrium stage (mg L-1); Q is the adsorp-

tion capacity (mg kg-1); Qm is the maximum P adsorption (mg kg-1); K is the equation con-

stant, defined as the factor indicating the intensity of P adsorption, with a maximum quantity

consistent with higher soil P adsorption [37]; and n is the constant of heterogeneity related to

the intensity of adsorption.

The maximum buffer capacity of P in soil (MBC, mg kg-1) was calculated from the series of

indexes derived from the Langmuir and Freundlich equations. MBC is an index that merges

the P adsorption capacity (Qm) with its intensity (K). The resilience of soil to variations in

solution P concentration is explained by MBC [38]. This parameter is expressed as:

MBC ¼ K�Qm ð3Þ

Statistical analysis

All statistical analyses were performed using SPSS 20.0 (IBM SPSS, Somers, NY, USA). Data

fitting and mapping were conducted in Origin Pro 19.0 (Origin Lab Corp, MA, USA). Data

were subjected to one-way ANOVA for comparison of treatments and two-way ANOVA for

comparison of sites, followed by the least significant difference (LSD) test at the P� 0.05 level

to calculate significant differences among the mean values. Pearson’s correlation coefficients

(r) were computed using R 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria).

Correlation coefficients were evaluated to determine the relationships between different soil

properties, Qm, and Dm.

Results and discussion

SOC and total and available P contents in soil

Long-term continuous fertilization significantly (P� 0.05) affected the soil chemical proper-

ties at all three sites (Table 3). Soil pH showed a nonsignificant trend among the treatments,
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and it ranged from 5.23 in Nanchang to 6.91 in Ningxiang. Compared with the CK treatments,

NPK and NPKM significantly increased the SOC, total P and available P concentrations in the

soil. NPKM showed maximum SOC contents of 28.09 mg kg-1, 21.76 mg kg-1 and 21.64 mg

kg-1 at Nanchang, Jinxian and Ningxiang, respectively. These results could be due to the

manure addition, which supplies enough nutrients to the soil, primarily by directly increasing

carbon inputs into the soil, which assists in carbon sequestration. Similar results were reported

in previous long-term studies [39, 40]. Long-term NPK plus manure addition significantly

increased the soil total P and available P concentrations in the soil at all three sites (Table 3).

The maximum values were observed at Ningxiang, with values of 2.21 g kg-1 and 90.71 mg kg-

1, respectively. [41] also reported that long-term fertilization increased soil nutrient concentra-

tions. Similar studies reported that increases in SOC, total P and available P concentrations

could be associated with long-term soil mineral and organic inputs that build SOM in the top-

soil [42, 43].

The proportion of available P to total P is defined as the P activation coefficient, i.e., PAC,

which characterizes the degree of difficulty with which transformation occurs among total P

and available P. PAC is a crucial soil fertility indicator, and a higher PAC indicates a maximum

P that could be available for plant growth [4, 43]. Similar to SOC, total P and available P, PAC

increased significantly with NPKM treatment compared with NPK and CK (Table 3). The

PAC values ranged from 1.02 to 5.03 among the treatments at all three sites.

Characteristics of P adsorption

P adsorption isotherms. The sorption isotherms presented in Fig 1 show that the soil

samples adsorbed extra P as the exogenous P concentration increased; however, there was a

gradual decline in the increasing rate of P adsorption capacity (Fig 1). The variations in the P

Fig 1. The adsorption isotherms of P in red paddy soils under three different long-term experimental sites.

https://doi.org/10.1371/journal.pone.0246428.g001
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adsorption capacity between different treatments became increasingly pronounced with

increasing added P concentration. Among the treatments, the P adsorption capacity at an

added P concentration of 150 mg L-1 was maximum for NPKM, with values of 1786.54 mg kg-

1, 1684.39 mg kg-1, and 1663.05 mg kg-1 at Jinxian, Ningxiang and Nanchang, respectively.

Overall, the P adsorption capacity was higher with NPKM and lower in the CK treatment

across all three sites. These results were in line with previous studies [44–46]. This observation

was possibly due to the adsorption capacity of the solid phase and the residence time (contact

time between the soil and solution) [47]. The P adsorption mechanism comprises two different

phases, i.e., chemical and physical adsorption. The process of chemical adsorption dominated

at comparatively low exogenous P intensities and was completed rapidly. Ligand and ion

exchange are the probable dominant mechanisms that contribute to higher adsorption rates

[48]. This phenomenon is commonly termed the relatively quick adsorption phase. At higher

P concentrations, the process of chemical adsorption slows rapidly because the existing

adsorption sites become saturated so quickly, and the P present in the liquid phase is physico-

chemically adsorbed to the surface of the soil at a relatively slow rate. This process is termed

the slower adsorption phase [44, 48].

Al and Fe oxides are vital for P adsorption, ultimately affecting its availability in soil [49].

SOC alters soil P adsorption by blocking the adsorption sites on Fe/Al oxides or by the forma-

tion of Fe/Al-SOC-P multicomplexes with relatively variable structures [50, 51]. Significant

differences were found in the P adsorbed amount in soils under different treatments that were

subjected to solution with the same exogenous content. The NPKM treatment had the maxi-

mum P retention capacity, followed by NPK and CK. This result was probably due to the

higher SOC content in NPKM than in the other treatments. These results were also supported

by the study of [44].

Adsorption equations. Various models have been developed and used for the quantitative

description of P adsorption isotherms. The Langmuir and Freundlich models are widely used

for P adsorption [10]. The data presented in Table 4 show that the adsorption equations fit the P

adsorption isotherms well for different treatments at different sites. The correlation coefficients

(R2) showed that all the correlations were quite significant. Therefore, either of these equations

could be selected to illustrate the characteristics of P adsorption in soils with different treatments.

These results were consistent with previous studies [10, 52, 53]. Stated that the P adsorption

capacity and its availability are commonly described by the MBC calculated from the Langmuir

isotherm, the maximum adsorption capacity (Qm), and the binding energy constant (K).

Table 4. Isotherm parameters of the Langmuir and Freundlich models for soil P adsorption.

Sites Treatments Langmuir equation Freundlich equation

Qm (mg kg-1) KL (L mg-1) R2 MBC (L kg-1) n Kf R2

Nanchang CK 653.25 0.02 0.91 13.12 0.39 76.94 0.97

NPK 1659.26 0.02 0.96 33.19 0.51 97.21 0.93

NPKM 2221.16 0.03 0.97 66.64 0.42 208.53 0.92

Jinxian CK 549.15 0.04 0.92 14.97 0.31 98.98 0.97

NPK 1478.53 0.01 0.97 21.79 0.54 73.1 0.93

NPKM 2346.13 0.02 0.97 46.93 0.45 186.26 0.92

Ningxiang CK 649.36 0.02 0.91 12.99 0.39 76.94 0.97

NPK 1659.26 0.01 0.97 16.61 0.51 97.21 0.94

NPKM 2219.36 0.02 0.98 44.39 0.39 206.12 0.96

�Abbreviations: Qm: maximum P adsorption capacity, KL: P adsorption constant, R2: model fitting degree, MBC: maximum buffer capacity of soil P.

https://doi.org/10.1371/journal.pone.0246428.t004
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Parameters of P adsorption. The maximum P adsorption capacity (Qm) represents the

quantity of available adsorption sites per unit soil weight and is commonly used for the deter-

mination of soil P adsorption capacity [27, 54]. The Qm values for different treatments across

the sites ranged from 549.15 mg kg-1 to 2219.36 mg kg-1 (Table 4). Long-term inorganic fertili-

zation and manure addition clearly influenced Qm. Qm increased with NPKM treatment com-

pared to the other treatments, and the relationships were statistically significant (P� 0.05).

This difference could be due to increased SOM concentrations because of manure application

in the NPKM treatments across the sites, demonstrating that the capacity of soil P storage was

enhanced with increased SOC content. Similar results were reported by [55]. In contrast [27],

revealed that the SOC content does not directly influence Qm. These conflicting findings

might have been determined by other soil factors, such as soil pH, soil type, Fe and Al forms,

etc., that could have an effect on soil P adsorption capacity. Further studies are recommended

to improve the understanding of such influencing factors.

In addition, it has previously been reported that increased SOC content enhances the P

adsorption capacity of soils at pH values greater than 6 but decreases the P adsorption capacity

at pH values lower than 6 [56]. The P binding energy (K) is important in defining the affinity

of soil for P. A maximum K value indicates much stronger adsorption of P [44]. An uneven

trend in K values was observed among the treatments (Table 4). This variation could be

explained by the SOC content available to react with phosphate anions, as mentioned earlier.

MBC is a unified index that merges K and Qm [44]. A high MBC suggests that there will be

more P adsorption. The NPKM treatment showed a higher MBC than did the NPK and CK

treatments. Similar results were reported in previous studies [57, 58]. This finding led to the

assumption that soil P adsorption was mainly controlled by the SOM content in the soil.

Characteristics of P desorption

P desorption isotherms. Soil desorption is thought to be an inverse process of sorption. It

is considered more important than adsorption due to the significance of immobilized P in soil,

which can be reused, and due to environment-related issues that could be caused by P released

from soil [4, 44]. The concentration of P desorbed from soil was lower than the amount of P

adsorbed in CK, NPK and NPKM (Fig 2). This result indicates that the P adsorbed to the soil

could easily be desorbed and be released back into the soil system but that the adsorption was

not fully reversible. With increasing exogenous P concentration, the desorbed P amount

increased gradually in each treatment, and the trend was more obvious in the case of CK. The

rate of P desorption was lower initially when the exogenous P content in solution was lower

(< 40 mg L-1) but was approximately 20% higher at added P concentrations > 60 mg L-1. This

result shows that there were abundant adsorption sites on soil colloids when the exogenous P

content was lower and there was a higher chemical adsorption binding capacity for soil P,

which resulted in a higher adsorption degree and lower desorption. The adsorption sites on

soil colloids gradually became covered and saturated as the concentration of exogenous P

increased, which resulted in a decreased adsorption binding capacity of the soil. This process is

generally described as a physical adsorption level at which physically bound P can be easily

desorbed. Consequently, a high P application rate could increase the desorbed P amount.

P desorption parameters. The desorption equations fit the isotherms of the CK, NPK

and NPKM treatments well, showing significant (P� 0.05) correlation coefficients (Table 5).

Either the Langmuir or Freundlich equation could be used to describe the desorption charac-

teristics, as was observed in a previous study by Wang and Wang [59]. The amount of P

desorbed when the adsorbent was saturated with exogenous P, termed the maximum desorp-

tion capacity (Dm), reflected the maximum amount of P provided to the soil. The Dm values
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ranged from 78.62 mg kg-1 to 157.58 mg kg-1 across the three sites under CK, NPK and

NPKM. The Dm values were significantly higher in the NPKM treatment than in the NPK and

CK treatments. This difference could be attributed to the higher SOM content in NPKM due

to manure addition, showing competition for adsorption sites between SOM and P. This result

implies that more SOC entered the soil solution and enhanced the desorbed P amount. How-

ever, from an environmental pollution risk assessment perspective, the addition of manure

may increase the risk of P loss, primarily by surface water eutrophication. Similar results were

previously reported [4].

The results and findings in this study suggest practical implications in soil fertility manage-

ment, primarily in the use of manure addition to control soil SOM content. These findings will

Fig 2. Desorption isotherms of P in red paddy soils at three different long-term experimental sites.

https://doi.org/10.1371/journal.pone.0246428.g002

Table 5. P desorption isotherm parameters of the Langmuir and Freundlich models.

Sites Treatments Langmuir equation Freundlich equation

Dm (mg kg-1) KL (L mg-1) R2 n Kf R2

Nanchang CK 124.15 0.003 0.96 0.79 0.83 0.98

NPK 145.53 0.006 0.98 0.72 2.03 0.98

NPKM 157.58 0.036 0.92 0.41 18.72 0.99

Jinxian CK 78.62 0.007 0.97 0.73 1.15 0.99

NPK 134.13 0.008 0.98 0.66 2.75 0.97

NPKM 166.76 0.017 0.98 0.48 11.07 0.99

Ningxiang CK 108.52 0.007 0.99 0.71 1.63 0.98

NPK 112.58 0.022 0.98 0.45 9.89 0.97

NPKM 143.13 0.054 0.95 0.32 27.35 0.99

�Abbreviations: Dm: maximum P desorption capacity, KL: P desorption constant, R2: model fitting degree.

https://doi.org/10.1371/journal.pone.0246428.t005
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assist in regulating P adsorption and desorption in soil to regulate P nutrition in crop plants.

By increasing the SOC content in soil by fertilizer application, the P fixation capacity can be

increased. However, when there is a surplus SOC content, sufficient fertilizer must be added to

sustain the maximum P supply under long-term experiments.

Relationships between different soil properties and parameters of P

adsorption/desorption

The correlation matrix showed correlations between soil pH, SOC, total P, available P, Qm,

MBC and Dm (Fig 3). SOC content, total P and available P showed a strong positive correlation

with Qm, MBC and Dm.

Organic carbon in soil regulates nutrient supply, and it also interacts with and boosts

the supply of other essential nutrients in soil. P adsorption and desorption processes in soil

are greatly influenced by SOM content. A similar study was reported by [4]. Fig 4 shows a

conceptual framework showing the linkage among soil pH, SOC, total P (TP), available P

(AP), Qm, Dm and MBC. This linkage is based on the relationships between different vari-

ables. The variations in the changes in Qm and Dm were mainly due to SOC, TP and AP.

SOC played a dominant role among these factors. Subsequently, adsorption and desorption

were affected by the SOC content in the soil. The absolute value of zeta potential increased

with increasing soil pH and ranked in the following order for the three soils: NX< NC <JX

Fig 3. Correlation analysis among soil properties, Qm, and Dm. The upper diagonal represents the correlation coefficient (the overall value is shown in black;

the treatments are differentiated by color); the lower diagonal plots show the distribution of data along the axis; the box plots show the overall difference

between the treatments.

https://doi.org/10.1371/journal.pone.0246428.g003
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(Fig 5). This result indicates that the P adsorption capacity of NX soil was the lowest, while

that of JX soil was the highest among the three sites. The high P adsorption capacity of JX

soil was confirmed by its high IEP, which indicates that the soil surface was positively

charged and advantageous to P adsorption. This is probably due to the naturally acidic par-

ent material which is characteristic of red soils. The weathering of parent material could

result in abundant Fe-Al oxides, leading to substantial leaching of soluble soil minerals and

basic cations [60].

Conclusions

The relationships between the soil properties of red paddy soils from southern China under

long-term fertilization experiments and their adsorption-desorption characteristics were

assessed by different batch experiments. The Langmuir and Freundlich equations fit the iso-

therms well for every treatment at each site. The combined application of NPK plus manure

Fig 4. A proposed conceptual framework showing the linkage among soil pH, SOC, total P (TP), available P (AP), Qm, Dm and the MBC. The

linkage is based on the relationships between different variables. The color of each line refers to the degree of relationship between the variables. The

variations in the changes in Qm and Dm were mainly due to SOC, TP and AP. SOC played a dominant role among these factors. Consequently,

adsorption and desorption were affected by the SOC content in the soil.

https://doi.org/10.1371/journal.pone.0246428.g004
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enhanced the maximum adsorption capacity of P, P storage capacity, maximum buffering

capacity and P binding energy. Manure addition significantly altered the MBC and Dm values

and increased the P desorption process, suggesting an effective supply of P to crops from the

soil. In short, it is suggested that manure addition is important to improve P utilization in red

paddies within the recommended range to avoid the environmental risk of pollution.
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