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Abstract

Vast repositories of heterogeneous data from existing sources present unique opportunities. Taken 

individually, each of the datasets offers solutions to important domain and source-specific 

questions. Collectively, they represent complementary views of related data entities with an 

aggregate information value often well exceeding the sum of its parts. Integration of 

heterogeneous data is therefore paramount to i) obtain a more unified picture and comprehensive 

view of the relations, ii) achieve more robust results, iii) improve the accuracy and integrity, and 

iv) illuminate the complex interactions among data features. In this paper, we have proposed a data 

integration methodology to identify subtypes of cancer using multiple data types (mRNA, 

methylation, microRNA and somatic variants) and different data scales that come from different 

platforms (microarray, sequencing, etc.). The Cancer Genome Atlas (TCGA) dataset is used to 

build the data integration and cancer subtyping framework. The proposed data integration and 

disease subtyping approach accurately identifies novel subgroups of patients with significantly 

different survival profiles. With current availability of vast genomics, and variant data for cancer, 

the proposed data integration system will better differentiate cancer and patient subtypes for risk 

and outcome prediction and targeted treatment planning without additional cost and precious lost 

time.
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1. Introduction

Genomic and epidemiologic studies over the past decade have generated a wealth of data, 

including molecular, variant, and clinical data on both individuals and populations that can 

be leveraged to better understand cancer risk, progression, and outcomes. Subtyping patient 

disease populations using high-dimensional molecular data has transformed how researchers 

and clinicians interpret and quantify heterogeneity within a disease. Subtyping has been 

highly effective in discovering cancer types, tumor histologies, survival rates, treatment 

planning and responses. Investigation of clinically relevant disease subtypes cannot be 

achieved by using a single dataset in isolation from others due to the heterogeneity of cancer 

with multifactorial etiology. Hence, careful integration of diverse data is crucial (e.g. 

molecular, clinical, environmental data) [1].

The heterogeneity of diseases such as breast cancer is well recognized and gene expression 

profiling has been used to identify at least four major subtypes: luminal A, luminal B, 

HER2+ and basal-like [2]. In the past decade, important clinical advances in cancer 

treatments are attributed to molecularly targeted treatments aiming at specific genes such as 

estrogen receptor alpha (ER-α), the human epidermal growth factor receptor 2 (HER2), the 

epidermal growth factor receptor (EGFR), etc [3]. Targeted treatments result in greater 

efficacy and fewer debilitating or dose limiting side effects. This clearly proves that it is 

important to identify and appropriately treat each individual disease subtype. However, our 

current understanding of disease subtypes appears to be very limited. Despite targeted 

treatment advances, targeted therapies often fail for some patients. For breast cancer, while 

20% of tumors overexpress the HER2 oncogene, one-third of these fail to show response to 

HER2-targeted therapies right from the outset. Research and clinical studies present a 

similar story for anti-estrogen treatment of ER-α-positive breast cancer, and androgen 

ablation of androgen receptor positive prostate cancer [4]. Not all patients show an initial 

response, and from those who do, a significant number will develop resistance. The fact that 

a substantial fraction of patients with a given subtype of cancer respond very differently to 

the same treatment, either immediately or later on, means that either: i) the known subtypes 
are not truly homogeneous and must be further refined, or ii) that subgroups of 
patients may have different mechanisms of defense against the same tumor type.

Several studies have been undertaken to determine disease subtypes. Agglomerative 

hierarchical clustering (HC) [5, 6], model-based approaches [7, 8], graph theoretical 

methods [9, 10], matrix factorization [11] and neural networks [12, 13] are widely used 

techniques to identify the heterogeneity within a disease. Subtypes of cancer can be 

identified using different data types such as clinical data, DNA sequencing, miRNA 

sequencing, protein expression, mRNA sequencing, DNA Methylation, somatic variants [14, 

15, 20, 24, 31].

Consensus Clustering (CC) [16] is a state-of-the-art approach desired to find a single 

clustering by reconciling clustering information from various sources or from different runs 

of the same algorithm. However, CC cannot be used to combine multiple data types with 

different scales and most of the time the analysis of each data type leads to different results 

(subgroups) that are hard to interpret. Other machine learning approaches such as iCluster 
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[17], and iClusterPlus [18] addresses the challenge of integration by using statistical models 

that can simultaneously perform clustering, data integration, feature selection and 

dimensionality reduction using a probabilistic matrix factorization approach. Though 

powerful, they are limited by their strong assumptions about the data as well as by the gene 

selection step necessary to reduce computational complexity. Similarity Network Fusion 

(SNF) [19] is another state-of-the-art approach that can be used for cancer subtyping by 

integrating multiple data types. Herein, samples are constructed into separate networks for 

each data type and fused into one network that represents the full spectrum of the data. 

However, the unstable nature of kernel-based clustering makes the algorithm sensitive to 

small changes in molecular measurements or in its parameter settings. Cancer Integration via 

Multikernel Learning (CIMLR) is another kernel-based approach that adds weights to 

different data types [30].MaxSilhoutte is a clustering technique based on cluster tightness 

and separation where each cluster is represented by a so-called silhouette [27]. 

MaxSilhoutte, however, is not designed to integrate multiple data types, and hence requires 

the separate datasets to be concatenated for integrative analysis.

Nguyen et. al.’s recent paper [20] has inspired and given us the basis on which we have built 

a data integration and disease-subtyping framework. They have proposed a novel integrative 

approach, called Perturbation clustering for data INtegration and disease Subtyping (PINS) 

that addresses subtype discovery using a single datatype or integration of multiple data 

types. The method determines the optimal number of clusters and then partitions the samples 

in a way such that the results are robust to noise and data perturbation. The study integrated 

multiple quantitative numerical data types (mRNA, methylation, microRNA) that came from 

different platforms, different scales and different cellular phenomena. Though powerful, the 

approach proposed here can only be applied on quantitative numerical data types. In this 

paper, we have proposed a new method that can integrate both qualitative and quantitative 

numerical data to better identify the cancer subtypes and novel subgroups of patients with 

significantly different survival profiles.

Cancer being a heterogeneous disease with large genetic diversity even between tumors of 

the same cancer types, it is common for the patients to have significant differences between 

their molecular profiles. Hence, majority of the recent studies use integrative approaches that 

combines multiple types of molecular data such as Methylation, mRNA expression, DNA 

copy number variation etc. accounting for variations among individuals and thereby 

achieving more accurate subtyping [21, 28, 29]. However, because of the noise level of these 

datasets and the complexity of the disease, the results are not producing significant 

separation between the subgroups [22]. Therefore, recent studies have proposed to use 

additional datasets such as somatic variants [21, 23], and clinical data [30] in combination 

with the aforementioned molecular data types as a new source of information. Gligorijevic 

et. al. has shown that careful integration of different data types can address several 

challenges as i) stratification of patients with different clinical outcomes, ii) prediction of 

driver genes, iii) repurposing of drugs treating particular cancer patient groups [21].

In a previous study, we have proposed a cancer subtyping methodology using solely somatic 

variant data available at TCGA [24]. We were not interested in any clusters that form or 

disappear due to small changes in the data, but rather for those groupings that remain stable 
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across many clusterings built in the presence of small changes. To identify such clusters, we 

have generated new datasets by perturbing the original data using a Post Randomization 

(PRAM) method and reconstructing the clustering. The discrepancy between the original 

and the perturbed data was used to assess the stability of the clusters. The results have shown 

that the proposed approach can identify disease subtypes better than the state-of-the-art 

approaches.

In this paper, we integrated the subtyping approach we proposed in [24] for somatic variants 

with the subtyping approach defined by two of our authors [20] for mRNA, miRNA and 

Methylation. We developed a data integration system for cancer subtyping that flexibly 

integrates both qualitative and quantitative datatypes using existing datasets available at 

TCGA. We believe that integrating multi-variate heterogeneous datatypes will improve the 

consistency and actionable information value of the consensus subtypes. Developed 

framework will be a valuable precision medicine resource for the wider scientific 

community on other diseases to pursue a multitude of studies that have not been possible 

due to limitations of existing integrative subtyping methods.

2. Methods

We analyzed five different cancers available at The Cancer Genome Atlas (TCGA) website 

(https://tcga-data.nci.nih.gov/): Kidney Renal Clear Cell Carcinoma (KIRC), glioblastoma 

multiforme (GBM), acute myeloid leukemia (LAML), breast invasive carcinoma (BRCA), 

and colon adenocarcinoma (COAD). Table 1 shows the basic descriptions of the five datasets 

we have analyzed. We used mRNA expression, DNA Methylation, miRNA expression and 

somatic variant data to identify the subtypes for each of the five cancers. Subtyping is first 

performed on each data in isolation and the obtained results are then integrated to improve 

the differentiation between subgroups.

2.1. Subtyping Qualitative Data

Herein, we have used the somatic variant data to identify the cancer subtypes. The somatic 

variant data is stored in a binary matrix, where “1” denotes a mutation on the host gene, and 

“0” denotes the absence of mutation, with the rows and columns corresponding to the 

samples and genes, respectively. Somatic variants can be defined as an alteration in DNA 

identified by comparing a normal sample with a tumor sample and generally very sparse 

since the proportion of variants are minor compared to the whole genome size.

For each of the five datasets, we calculated the pairwise distance between all patients using 

the Jaccard index. For each patient, the somatic variant profile is represented as a binary 

vector and the Jaccard index is computed as

J(A, B) = M11/ M11 + M01 + M10 (1)

M11 represents the total number of mutated genes for patients A and B, M01 represents the 

total number of genes where patient A has a value of ‘0’ and B has a value of ‘1’, and M10 

represents the total number of genes where patient A has a value of ‘1’ and B has a value of 
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‘0’. The Jaccard indexis computed for each pair of patient in the dataset, resulting in a 

similarity matrix that can be used as an input to any distance based clustering method. To 

identify the subtypes, we exploit the agglomerative hierarchical clustering using the Ward’s 

method as the linkage criteria as well as the Partition Around Medoids (PAM) clustering. 

The identified subtypes can be illustrated in a matrix form referred to as the connectivity 

matrix.

2.1.1 Construction of Data Connectivity—The input is a dataset, E ∈ RNXM where 

N is the number of subjects and M is the number of features for each subject. For somatic 

variants, the pairwise similarity between each pair of subject is computed using the Jaccard 

similarity measure and stored in a matrix form. We then partition the subjects into k clusters 

for each value of k ∈ [2..K] using a clustering algorithm. We have used the Agglomerative 

Hierarchical Clustering and PAM but a number of other classical distance based clustering 

approaches could be used instead. The input dataset E can be presented as a set of vectors 

E = e1, e2, …, eN , where each vector ei represents the features of the ith subject. A partition 

Pk = P1, P2, …, Pk  represents a set of subjects that are members of the same cluster. We 

generate a pairwise connectivity matrix Ck ∈ 0, 1 NXN, which can be defined as follows:

Ck(i, j) =
1 if ∃t ∈ [2..K]:ei, e j ∈ Pt

0 otherwise
(2)

Here, the connectivity between two subjects is ‘1’ if and only if they belong to the same 

cluster and ‘0’ otherwise.

2.1.2. Generating Perturbed Datasets—One challenge of clustering is the 

determination of the number of clusters, i.e. the number of subtypes. The proposed approach 

hypothesizes that the number clusters should be robust with respect to the systemic noise of 

the features within the population. Hence, we have utilized a perturbation mechanism to add 

noise to the input data many times and construct connectivity matrices for each perturbed 

dataset. The original and the average perturbed connectivity matrices are then compared to 

assess the stability of pair-wise connectivity (identical or different cluster membership) for 

each pair of subjects. Number of clusters, providing the highest degree of stability with a 

certain amount of perturbation, is considered to be optimal.

Accordingly, we first developed a perturbation method for discrete and binomial data by 

employing a post-randomization (PRAM) methodology [25]. PRAM is a perturbative 

method for disclosure protection of qualitative variables [25]. Applying PRAM on a dataset 

leads the values of a number of variables to be changed according to a specified probability 

mechanism. PRAM is commonly used to protect sensitive data files against disclosure by 

randomization of individual record data with the proper choice of transition probabilities.

As a first step in perturbing data, let ε denote a qualitative variable in the original dataset 

with K categories, numbered 1, .., K to which PRAM is applied and ε denote the same 

categorical variable in the perturbed data file. Let P = pkl  be a KxK Markov probability 
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matrix defined as; P(ε = l |ε = k), that denotes the probability of the original value ε = k 
transitioned into a value of ε = l. For a dataset of n records, let ε(r)denote the value of ε for 

the rth record in the data file.

Given that ε(r) = k, applying PRAM means that the value of ε(r) is drawn from the 

probability distribution pk1, …, pkK This procedure can then be applied independently on 

each record in the datafile. Consider an example where the variable ε represents the somatic 

variants with “1” denoting a mutation on the host gene, and “0” denoting the absence 

mutation (hence, the number of categories, K = 2). The Markov probability matrix P can 

then be defined as follows:

P =
θ0 1 − θ0

1 − θ1 θ1
(3)

In this paper, we have randomized the variants for each subject using equal probabilities for 

the transitions. A variant will switch from present to absent and vice versa, with the 

probability of θ, and stay as is with a probability 1 – θ. If the transition probabilities are set 

too low, the added noise will not perturb the data sufficiently. If the probabilities are too 

high, the perturbation may significantly change the patterns of the data, causing the subtypes 

to be indifferentiable due to the added noise. Therefore, the selection of the transition 

probabilities has an important effect on identifying the hidden subtypes of the data. To 

determine the transition probabilities, we considered the mutation in each gene as an 

independent Bernoulli trial. The Bernoulli process applies to discrete stochastic sequences 

and each component (1,0) designates whether a mutation happened at a specific position. 

This way, we can use the variance of each Bernoulli trial to determine the transition 

probabilities of PRAM.

σ2 = median σ1
2, …, σM

2 , where σ j
2 = var E(i, j), i ∈ [1..N], j ∈ [1..M] . (4)

In equation 4, the variance, σ2, would correspond to 1 – θ, e.g. if the median variance of a 

dataset is calculated as 0.02, then the transition probability, θ, is set to 0.98, which means 

that there would be a 98% probability for any somatic variant (0,1) at E(i, j)to remain the 

same. This process allows us to construct numerous perturbed versions of the original data.

2.1.3. Construction of Perturbed Connectivity—To construct the connectivity 

matrices for each perturbed data, we clustered each perturbed dataset using both hierarchical 

clustering and PAM with varying values of k ∈ [2..1]. Since true cluster assignments is 

assumed to be robust with respect to small perturbations, the ideal case would be the 

individual patient’s cluster assignments to remain the same on both original and perturbed 

datasets for the optimal cluster size, k. Since we have generated many perturbed versions of 

the original data (say L perturbation datasets) for each cluster k, the overall connectivity 

matrix, Ak can be calculated by averaging the connectivity matrices of each perturbed 

dataset, Gk
1, Gk

2, …, Gk
l  where l ∈ [1..L]. Gk

1 and Ak can be defined as follows:
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Gk
l (i, j) = 1 i f i and j belong to the same cluster

0 otherwise
(5)

Ak = 1
l ∑l = 1

l Gk
l

(6)

Hence, the discrepancy between the original connectivity matrix Ck ∈ 0, 1 NXN and the 

average connectivity matrix of the perturbed data Ak can be calculated to measure the 

stability of each cluster size k. The cluster associated with the minimal discrepancy is then 

identified as the optimal cluster size.

2.2. Subtyping Quantitative Data

Herein, we have used mRNA expression, DNA methylation and microRNA data to identify 

the cancer subtypes. We have used the method introduced by Nguyen et. al. [20]. Each of 

these are quantitative numerical datatypes with different scales. Each datatype is first used in 

isolation to identify the subtypes and the results are then integrated to determine the 

consensus subtypes. The perturbation methodology used for quantitative data is different 

from the method used for qualitative data.

2.2.1. Construction of Data Connectivity—The input is a dataset,E ∈ RNXM where 

N is the number of subjects and M is the number of features for each subject. We partition 

the subjects into k clusters for each value of k ∈ [2..K] using the traditional k-means 

clustering. The connectivity matrices for the quantitative data are then constructed the same 

way as in qualitative data (See Section 2.1).

2.2.2. Generating Perturbed Datasets—For the quantitative data, the perturbation is 

performed by adding Gaussian noise to the original data. We perturb the data with a noise 

level that has a variance equal to the variance of the data in order to prevent the perturbation 

from significantly changing the patterns of the data and causing the subtypes to be 

indifferentiable due to the added noise. The variance is calculated as follows:

σ2 = median σ1
2, …, σM

2 , where σi
2 = var E(i, j), i ∈ [1..N], j ∈ [1..M] . (7)

We then generate H new datasets (e.g. 200), Lh ∈ RNxM, h ∈ [1..H] by adding Gaussian noise 

N 0, σ2  to the original data.

Lh = E + N 0, σ2 (8)

Each perturbed data Lh is then re-clustered for each cluster size. The perturbed connectivity 

matrices for quantitative and qualitative data are constructed using the same approach as 

discussed in Section 2.1.2.
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2.3. Integration of Connectivity Matrices

Once the connectivity matrices for the optimal cluster size k are generated for each datatype, 

we then integrate those matrices by the method described below. In the ideal case, different 

data types should give consistent connectivity between subjects. However, in practice, 

different data types can give contradictory information. Therefore, we need to rely on the 

average connectivity between data types in order to partition the samples. The average 

pairwise connectivity between samples can be calculated as follows:Sc = ∑i = 1
T Ci /T, where 

T represents the different datatypes within the dataset. Hence, Sc(i, j) will be 0 if i and j are 

never clustered together , 1 if i and j are always clustered together, and between 0 and 1, if i 
and j are clustered together in some datatypes.

We refer to Sc as the similarity matrix and (1 — Sc) as the distance matrix. The matrix of 

pairwise distances (1 – Sc) can be directly used by a similarity-based clustering algorithm 

such as agglomerative hierarchical clustering, PAM or dynamic tree cut to partition the 

dataset. The framework of the proposed data integration and disease subtyping methodology 

is illustrated in Figure 1.

2.3.1. Further Splitting Discovered Groups—At this stage, we attempt to sub-split 

the discovered subgroups to better identify the clusters. Given that the subgroup 

identification proposed here is an unsupervised approach, prior information such as patient 

demographics that may be predominant are missing. The presence of a subgroup can 

therefore be obscured. In addition, there may be distinct subgroups that share clinically 

relevant characteristics. For instance the already identified subgroups of breast cancer, 

Luminal A and Luminal B, are both estrogen receptor positive, which may require the two 

groups to be further examined to identify the heterogeneity between them. First, we check 

the agreement between the constructed connectivity matrices of each data type. An entry 

will be ‘0’ if the pair of subjects, i and j are never clustered together and ‘1’ if they are 

always clustered together. If the pair is clustered together only within the connectivity 

matrices of certain datatypes, we consider no agreement between the two subjects. If there is 

an agreement that exceed the set threshold (e.g., >50%), we consider further splitting the 

subgroups into clusters.

agreement = Card Sc(i, j) = 0 ∨ Sc(i, j) = 1, i < j / N
2 (9)

In order to sub-split the identified subgroups we have used the gap statistics. Gap statistic is 

a method used to estimate the most possible number of clusters in a partition clustering. We 

have used the criterion introduced by Tibshirani et. al. [26] that uses the output of any 

clustering algorithm by comparing the change in within-cluster dispersion with that expected 

under an appropriate reference null distribution. Suppose Dr be the sum of the pairwise 

distances for all points in cluster r and n be the sample size, then;

Wk = ∑r = 1
k 1

2nr
Dr . (10)
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Wk can be defined as the within-cluster sum of squares around the cluster means. The gap 

statistic can then be computed as

Gapn(k) = En* log Wk − log Wk . (11)

where En* denotes the expectation under a sample of size n from the reference distribution. 

We have applied the gap statistic only on subgroups that have at least a certain number of 

subjects (e.g., 30). The subgroup(s) are split into k clusters with varying values of 

k ∈ [1…K/2]. Note that, if the optimal number of clusters using the Tibshirani criterion is 1, 

no further splitting would be required. If otherwise, the subgroup would be further split into 

k clusters. One limitation of further splitting the subgroups is the potential of overfitting. As 

the within-cluster similarity increases when forming new and finer clusters, it may also lead 

to fitting the noise. In order to prevent the overfitting, we introduced a regularization term 

that restricts high number of clusters by reducing the gap ratio each time a new cluster is 

introduced.

3. Results

The results of the proposed method using five different datasets is reported in Table 2, where 

k denotes the optimal cluster size and Cox P denotes the statistical significance between 

identified subtypes estimated based on the predictive accuracy on the survival time. The 

subtypes are analyzed using the Kaplan-Meier analysis and their statistical significance is 

assessed using Cox regression. The integrated results clearly show a better differentiation 

than the individual data types.

Our results are compared with PINS, CC, SNF, iCluster+ and maxSilhoutte methods. The 

results have shown that the proposed integration significantly differentiates the identified 

subtypes for all investigated diseases and outperforms the integrated results of the 

aforementioned state-of-the-art techniques. Figure 2 (left) shows the Kaplan-Meier survival 

curves of the proposed methodology using the acute myeloid leukemia (LAML) dataset 

compared with the survival curves obtained through integration of mRNA, methylation and 

miRNA data using PINS (center) and CC (right). The proposed integrative clustering with 

somatic variants, methylation, mRNA and miRNA discovers two patient groups with 

significantly different survival profiles (p-value = 10−3). In contrast, the integrative 

clustering without somatic variants discovers four different patient groups with less 

significant survival profiles (p-value = 2.4×10−3). These survival curves clearly show that 

incorporating qualitative data (i.e. somatic variants) into the integration process outperforms 

the subtyping performance. We observed similar performances on the other datasets.

3.1. Further Analysis of Discovered Subtypes

Herein, we looked into significant survival differences to identify cancer subtype specific 

biomarkers. Specifically, we investigated mutations that are abundant in patients within the 

short-term survival group but not within the long-term survival group and vice versa. For 

LAML, mutated genes that are abundant in patients within the short-term survival group are 

TP53, DNMT3A and FLT3 while NPM1 is found to be enriched in long-term survival 
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groups. VHL is mutated in all subgroups of KIRC except one in which all patients survive at 

the end of the study. Similarly, PBRM1 is found to have high mutation rates on patients with 

short-term survivals and low mutation rates on patients with long-term survivals. Our results 

show that GBM subtypes are highly influenced by methylation profiles (See Table 2). The 

genes identified as biomarkers in GBM are TTN, TP53, PTEN and EGFR. The mutation 

rates of those genes are significantly higher in patients that have short-term survival rates. 

IDH1 and ATRX are highly enriched in patients with long-term survival. Parsons et. al. have 

indeed shown that patients with IDH1 mutation usually have a significantly longer survival 

[27] and IDH1 can be used as target for therapy and drug development [28]. High mutations 

in BRAF and p53 were determined in patients with short-term survival of COAD. Contrary 

to recent studies, no significant association was found between KRAS and short-term 

survival [29]. We have further compared the BRCA subtypes with known targets. Out of 172 

patients, there are 34 ER-negative (ER-), 134 ER-positive (ER+) and 4 not evaluated. 27 out 

of 34 ER- patients are found to have a short-term survival, whereas the ER+ patients are 

uniformly distributed across the four clusters identified.

4. Summary and Conclusion

In this paper, we have identified cancer subtypes using somatic variant, mRNA, methylation, 

and miRNA data types. This method can be applied on any quantitative or qualitative dataset 

for the purpose of disease categorization, patient subgroup detection, response to treatment 

identification, drug development and repurposing, or biomarker detection. This method can 

be applied on any dataset for the purpose of disease categorization, patient subgroup 

detection, response to treatment identification, drug development and repurposing, or 

biomarker detection. The method scales well to high dimensional data. However, the time 

complexity is higher as compared to classical approaches due to repeated perturbations. This 

can be resolved by performing the computations in parallel. Another limitation of the 

proposed method is that all data types are treated equally in determining subtypes, which 

may not always be appropriate. For instance, studies have shown that methylation plays a 

major role in determining the GBM subtypes. One way to address this limitation is to 

combine the connectivity matrices in a weighted manner. Future work includes: i) 

incorporating different mutation types (silent, missense, nonsense, etc.), classifications 

(SNP, insertion, deletion, etc.) and counts into the proposed disease subtyping method ii) 

incorporating clinical data into the integration process to examine the significance of 

different survival profiles and iii) utilizing the identified biomarkers to measure pathway 

deregulations, which would justify the application of certain therapies and customize 

treatment plans for individuals.
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Figure 1. 
Framework of the proposed subtyping and data integration method
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Figure 2. 
Kaplan-Meier survival curves of integrative genomic data clustering using proposed 

approach (left), PINS (center) and CC (right).
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Table 1.

Description of the five datasets from The Cancer Genome Atlas (TCGA)

Data Set Patients Data Type Components no.

KIRC 124 mRNA 17,974

Methylation 23,265

miRNA 590

Somatic Variant 3412

GBM 273 mRNA 12,042

Methylation 22,833

miRNA 534

Somatic Variant 5172

LAML 158 mRNA 16,818

Methylation 22,833

miRNA 552

Somatic Variant 1259

BRCA 172 mRNA 20,100

Methylation 22,533

miRNA 718

Somatic Variant 8805

COAD 145 mRNA 17,062

Methylation 24,454

miRNA 710

Somatic Variant 13,309
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Table 2.

Comparison of the subtypes identified using the proposed method and state-of-the-art techniques. Cells 

highlighted in green have Cox P-values < 0.01. Cells highlighted in yellow have Cox P-values between 0.01 

and 0.05.

Proposed PINS CC SNF iCluster+ maxSilhoutte

Name Data type k Cox P k Cox P k Cox P k Cox P k Cox P k Cox P

GBM mRNA 2 0.408 2 0.408 5 0.281 2 0.992 10 0.056 2 0.408

Methylation 2 10−4 2 10−4 6 0.001 2 0.017 10 0.003 3 10−4

miRNA 3 0.051 4 0.086 6 0.526 2 0.401 10 0.09 2 0.276

Somatic Variant 2 0.016 - - - - 3 0.632 8 0.324 - -

Integration 6 4×10−5 3 8.7×10−5 7 0.039 4 0.162 5 0.156 2 0.408

LAML mRNA 6 0.003 5 0.003 6 8×10−4 2 0.327 6 0.01 2 0.027

Methylation 4 0.893 6 0.239 7 0.049 2 0.993 10 0.002 2 0.04

miRNA 2 0.065 2 0.072 6 0.017 3 0.183 - - 2 0.07

Somatic Variant 6 0.469 - - - - 3 0.532 5 0.324 - -

Integration 2 10−3 4 2.4×10−3 8 0.035 3 0.027 5 0.036 3 0.032

BRCA mRNA 2 0.902 2 0.902 8 0.114 2 0.969 9 0.101 2 0.902

Methylation 4 0.048 4 0.048 8 0.578 5 0.878 10 0.083 2 0.702

miRNA 3 0.218 3 0.218 5 0.142 2 0.105 - - 2 0.093

Somatic Variant 2 0.002 - - - - 3 0.324 10 0.132 - -

Integration 4 3×10−4 7 3.4×10−2 7 0.667 2 0.398 10 0.402 2 0.902

COAD mRNA 2 0.109 2 0.113 8 0.048 2 0.148 6 0.29 2 0.113

Methylation 2 0.719 2 0.741 8 0.034 2 0.389 10 0.194 2 0.741

miRNA 4 0.468 4 0.452 7 0.318 3 0.131 - - 2 0.801

Somatic Variant 9 0.365 - - - - 3 0.218 10 0.421 - -

Integration 8 0.019 5 0.201 5 0.225 2 0.246 10 0.319 2 0.113

KIRC mRNA 2 0.176 2 0.176 7 0.073 2 0.219 9 0.072 2 0.176

Methylation 3 0.111 3 0.111 6 0.128 3 0.577 10 0.14 3 0.111

miRNA 2 0.138 2 0.138 5 0.509 2 0.138 - - 2 0.138

Somatic Variant 2 0.076 - - - - 3 0.124 9 0.348 - -

Integration 5 3×10−3 4 1.3×10−4 6 0.104 3 0.248 7 0.067 2 0.176
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