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Introduction

Cancer continues to be the second most common cause 
of mortality on a global scale (1). Although significant 
advancements have been made in medical research 

regarding prevention, diagnosis, and treatment over the 

past few decades, more than 50% of cancer patients still 

ultimately succumb to the disease (2). Identifying potent 

biomarkers is crucial for facilitating the early detection and 
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Table 1 Basic information on DPEP1, DPEP2, and DPEP3

Name DPEP1 DPEP2 DPEP3

Alternate synonyms MBD1, MDP, RDP MBD2 MBD3

Genomic locus 16q24.3 16q22.1 16q22.1

Subcellular localization Apical plasma membrane and serosa Cell membrane and cytoplasm Cell membrane and 
cytoplasm

Length (AA) 411 486 488

Expression in normal 
tissues

Kidney, heart, liver, lungs, and testis (9-11) Lung, spleen, heart, lymph nodes, and 
testis (12)

Mainly in the testis (13)

Hydrolysis activity Yes Yes Yes (14)

Zn2+-dependent 
metalloenzymes

Yes Yes Yes

Leukotriene metabolism Yes (15) Yes (7) No (14)

β-lactamase activity Penem, carbapenems (16) ND ND

GPI anchor Yes Yes Yes

Special biological function Physical adhesion (lung, liver) By acting as a regulator of the NF-κB 
inflammatory signaling pathway (17)

Cytotoxicity in ovarian 
tumor (18)

Signaling pathway of 
participation

(I) Regulation of E-cadherin expression in 
suppressing colon cancer metastasis. (II) 
TGF-β-induced EMT

Regulation of NF-κB inflammatory 
signaling

ND

DPEP, dipeptidase; AA, amino acid; GPI, glycosylphosphatidylinositol; ND, not detectable; TGF-β, transforming growth factor beta; EMT, 
epithelial-mesenchymal transition; NF-κB, nuclear factor kappa B.

diagnosis of cancer, precisely gauging the risks associated 
with prognosis, and devising more judicious therapeutic 
strategies (3). In recent years, the dipeptidase (DPEP) family 
has risen to prominence as novel biomarkers, garnering 
significant interest due to their intimate association with the 
etiology and progression of a variety of malignant tumors.

DPEP family members, including DPEP1, DPEP2, 
and DPEP3, share the same gene locus on the same 
chromosome and have similar structures (4,5). DPEP1, first 
identified as “renal dipeptidase”, can hydrolyze a variety of 
dipeptides; participate in glutathione (GSH), leukotriene, 
and lipid metabolism; and exert β-lactamase activity and 
metalloenzyme activity (4). DPEP1 and DPEP2, but not 
DPEP3, can cleave leukotriene D4 (LTD4) (6), while 
DPEP3 or DPEP1 can cleave cystinyl-bis-glycine (7). 
DPEP2 has the highest expression level in the lungs, heart, 
and testes, while DPEP3 is only present in the testes (8). 
Three members of the membrane-bound DPEP family 
differ in substrate specificity and tissue distribution (Table 1), 
and due to limitations in expression pattern and function, 
research on DPEP2 and DPEP3 is minimal. In this review, 
we specifically focus on the biological functions of DPEP1 

in cells to clarify their potential regulation mechanisms, 
with the aim of providing insights into the DPEP1 biology 
relevant to cancer activity.

Structure of DPEP1

The DPEP1 gene is located in chromosome 16 (chr16q24.3) 
and contains 11 exons that encode 411 amino acids (aa). 
The initial hydrophobic region composed of the first 16 
amino acid residues is referred to as the signal peptide 
(SP). The span from 17aa to 385aa is the main chain of 
this gene, and DPEP1 contains four N-glycosylation 
sites linked to asparagine, three disulfide bonding sites, 
and several Zn2+ binding sites (Figure 1). As a cofactor, 
Zn2+ stabilizes the secondary structure of DPEP1 and 
promotes advanced conformation formation (19-21). The 
glycosylphosphatidylinositol (GPI) site at the carboxyl end 
of DPEP1 ensures it is covalently anchored on the outer 
membrane of cells (22). Of note, the carboxyl terminal of 
DPEP1 contains an extended sequence of hydrophobic 
amino acids after the GPI anchor, which serves as the 
propeptide (386aa-411aa), and is usually removed for 
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Figure 1 Structure of DPEP1. DPEP, dipeptidase; GPI, glycosylphosphatidylinositol.

Figure 2 Crystal structure of the DPEP1 homologous dimer. The 3D structures of human DPEP1 from the Research Collaboratory for 
Structural Bioinformatics Protein Data Bank. The left and right parts are each a monomer in the dimer. The left side shows the location 
of the glycosylation site in each monomer, which is located at the corner of the helix and β-strand structures and mainly outside of the α/
β barrel structure, facilitating the combination with carbohydrates in the environment. The right side shows the location of the enzyme 
active site in each monomer, mainly in the pocket of the α/β barrel structure, which can maintain stability. DPEP, dipeptidase; 3D, three-
dimensional.

DPEP1 molecule maturation (20) (Figure 1). 
According to the structure obtained from X-ray, DPEP1 

typically exists as a homodimer in cells. Each dimer consists 
of 8 α-helix and β-strand structures [(α/β)8] connected by 
disulfide bonds to form a barrel-like spatial structure (20) 
(Figure 2). The active site of β-lactamase is located in the 

barrel-like structure’s middle pocket (Glu141, His168, 
His214, and His 235), mainly at the β-strand end. A 
triangular pyramid structure is formed by the combination 
of binuclear zinc ions bridged at the bottom of the barrel, 
which provides stability (23). The connection of these two 
sets of disulfide bonds, Cys71-Cys154 and Cys226-Cys258, 



Wang and Tian. Insight into DPEP1 in gastrointestinal cancer 7018

© AME Publishing Company.   Transl Cancer Res 2024;13(12):7015-7025 | https://dx.doi.org/10.21037/tcr-2024-2436

further strengthens the pocket structure and enhances 
the activity of β-lactamase. Renal DPEP is believed to be 
the only metabolizing enzyme of penem and carbapenem 
β-lactam antibiotics in mammals. Previous studies have 
indicated that Glu141, His214, and His235 are involved 
in the catalysis of dipeptide hydrolase (24,25). Meanwhile, 
His168 may be essential in the binding of substrates or 
inhibitors. Finally, cilastatin can change the location of 
binuclear zinc ions and affect the enzyme’s active site by 
disrupting their stability, subsequently involving the activity 
of DPEP1 (20,26).

The main chain of DPEP1 contains 369 amino acids 
(17aa–385aa) with a calculated molecule weight of 42 kDa, 
but according to Western blot assay, it can shift to 45–70 kDa,  
potentially due to its glycosylation. DPEP1 contains four 
N-glycosylation sites (Asn57, Asn279, Asn332, and Asn358), 
mainly located at the outside junction of the barrel structure 
of the helix-turn, helix-strand, and helix-helix structural 
transitions. This allows for carbohydrate compounds to 
form glycosidic bonds with the amino acid residues of 
DPEP1 and effectuate the glycosylation process (Figure 2). 
the N-glycosylation sites Asn57 and Asn332 may also have 
N-acetylglucosamine structures. Glycosylation is fundamental 
to the key pathological steps of tumor development and 
progression, including interference in cell-cell adhesion and 
promotion of tumor cell invasion (27,28). It is thus reasonable 
to assume that the carcinogenic effect of DPEP1 in many 
tumors is closely related to its glycosylation structure, and this 
should be further verified in future research.

As a renal outer membrane protein, DPEP1 is also 

distributed in the cytoplasm and nucleus (29). The  
α/β-barrel structure provides permeability to the outer 
membrane and maintains the DPEP1 protein-based 
stability of the outer membrane structure. However, it has 
not yet been confirmed how many times DPEP1 spans the 
cell membrane to finally anchor onto the outer membrane. 

Biological functions of DPEP1

DPEP1, the first renal DPEP to be discovered, plays 
an essential role in the hydrolysis of dipeptides and 
polypeptides, the regulation of GSH degradation, the 
promotion of the conversion of LTD4 to leukotriene 
E4 (LTE4), lipid metabolism, and the inactivation of 
β-lactam antibiotics (30-32). DPEP1 also participates in 
the cellular myelocytomatosis viral oncogene homolog 
(c-MYC), LTD4/β-catenin, epithelial-mesenchymal 
transition (EMT)/E-cadherin, PI3K/Akt/mechanistic 
target of rapamycin kinase (mTOR), and other signaling 
pathways, which regulate the transformation of malignant 
tumors (32-34). In the immune system, DPEP1 can recruit 
neutrophils to the liver and lungs, which is unrelated to the 
function of dipeptide hydrolase (11). Moreover, DPEP1 
can exert a unique physical adhesion function, with various 
types of acute inflammation being related to this function, 
including acute respiratory distress syndrome (ARDS) and 
multiple organ dysfunction syndrome (MODS). DPEP2 
and DPEP3 are similar in physical structure to DPEP1, 
but their biological functions differ slightly. The structure 
and functional characteristics of the DPEP family are 
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Figure 3 Mechanism of action of DPEP1 in promoting ferroptosis. Glutathione and glutamic acid can be converted into each other; 
dexamethasone can upregulate the expression of DPEP1 in a GR-dependent manner, and DPEP1 can participate in the depletion of 
GSH. GSH depletion results in GPX4 activity deficiency, which produces excessive lipid peroxides, thereby inducing the occurrence of 
mitochondria-dependent ferroptosis. Dex, dexamethasone; DPEP, dipeptidase; GR, glucocorticoid receptor; GSH, glutathione; GPX4, 
glutathione peroxidase 4; CVA, cerebrovascular accident; ACS, acute coronary syndrome; AKI, acute kidney injury; DLBCL, diffuse large 
B-cell lymphoma.
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summarized in Table 1.

DPEP1 in ferroptosis

Ferroptosis is an iron-dependent form of programmed cell 
death, which, in essence, is GSH depletion (35). DPEP1 can 
participate in the hydrolysis of GSH. When GSH depletion 
results in the loss of GSH peroxidase (GPX4) activity, 
lipid oxides cannot be metabolized by GPX4-catalyzed 
GSH reductase, prompting mitochondria to produce an 
excess of lipid peroxides, thereby inducing the occurrence 
of mitochondria-dependent ferroptosis (36,37) (Figure 3).  
The reduction of free ferric ions directly affects the 
synthesis of heme and hemoglobin, resulting in a range of 
ischemia-related diseases such as stroke (38), cardiovascular  
disease (39), intracerebral hemorrhage (37), ischemia-
reperfusion injury (40), and renal damage (41). Ferroptosis 
is mainly associated with the suppression of certain cancers, 
such as triple-negative breast cancer (42), diffuse large B-cell 
lymphoma (43), ovarian cancer (44), and pancreatic ductal 
adenocarcinoma (10) and even with cisplatin resistance 
in cancer (45). This seems to explain DPEP1’s tumor-
inhibiting function in these cancer diseases. In addition, 
dexamethasone, as a positive regulator of ferroptosis, can 
upregulate the expression of DPEP1 in a glucocorticoid 
receptor (GR)-dependent manner, aggravate GSH deficiency, 
and then increase ferroptosis susceptibility and promote the 
occurrence of related diseases (46) (Figure 3).

DPEP1 in inflammation

Associations with osteoarthritis (OA)

In genetics, DPEP1 is associated with the risk of OA (47). 
Zhang et al. identified and genotyped 14 single-nucleotide 
polymorphisms (SNPs) associated with the DPEP1 gene and 
reported that SNP rs1126464 is a missense mutation of the 
DPEP1 gene, significantly increasing the risk of OA (47).  
The DPEP1 protein has the effect of hydrolyzing β-lactam 
antibiotics, which also increases the difficulty of OA 
treatment (48). Cilastatin, an inhibitor of DPEP1, has been 
approved for use in combination with imipenem in the 
treatment of OA, which not only can target DPEP1 but also 
prolong the antibacterial effect (48).

Inhibiting β-lactam antibiotics 

DPEP1 participates in the hydrolysis metabolism of 

carbapenem β-lactam antibiotics (20). In the DPEP1 
structure, the active site of β-lactamase is located in the 
middle of the barrel structure formed by the DPEP1 dimer, 
which maintains the activity and stability of the enzyme. 
As an inhibitor of DPEP1, cilastatin can change the 
position of DPEP1 binuclear Zn2+ and destroy the barrel 
structure, which destroys the stability of the β-lactamase 
active site, thus inhibiting the function of DPEP1 to 
hydrolyze β-lactam antibiotics. Therefore, cilastatin is 
usually combined with imipenem to prolong the effective 
time of imipenem and to reduce renal toxicity (49), which 
is the most meaningful application of DPEP1 for β-lactam 
antibiotics.

Neutrophil recruitment

A significant feature of inflammation is the accumulation 
of neutrophils from the bloodstream to the inflammatory 
tissue. Neutrophils are the first line of defense against 
foreign pathogens, and it is essential to effectively control 
inflammation to recruit them to the site of infection (50). 
Lack of classic recruitment leads to recurrent and persistent 
infection, while inappropriate recruitment of neutrophils 
leads to MODS. Indeed, ARDS and MODS accompanied by 
severe infection are associated with abnormal accumulation 
of neutrophils (51). As a physical adhesion receptor, DPEP1 
promotes the recruitment of neutrophils from the blood 
to the inflamed liver and lung. The effect of this physical 
adhesion receptor is not dependent on its enzyme activity. 
DPEP1 merely exerts a physical adhesive effect, driving an 
excessive accumulation of neutrophils in the lungs and liver, 
thereby inducing an inflammatory response (11). DPEP1 is 
present in the endothelium of the capillaries in human lung 
tissue, which is the site of neutrophil sequestration during 
sepsis. Stimulated by bacterial endotoxin lipopolysaccharide 
(LPS), neutrophils can cross the very thin lung capillary 
wall and gather at the inflamed site of the lung. It exerts 
a similar effect in the kidneys, which is one of the reasons 
why DPEP1 causes a series of renal-related diseases, such 
as colitis-associated colon (52) and acute kidney injury (53). 
We believe that DPEP1 can serve as an anti-inflammatory 
therapeutic target for lung and liver diseases and renal 
diseases. Exploring targeted drugs for DPEP1 may 
profoundly improve clinical treatment.

DPEP1 in gastrointestinal cancer

DPEP1 functions in regulating tumor transformation and 
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malignancy in two ways. DPEP1 can act as an oncogene; 
promote tumor proliferation, survival, invasion, adhesion, 
and migration; and even induce drug resistance (54,55). 
Alternatively, DPEP1 can maintain genomic stability, 
inhibit tumorigenesis, and enhance chemotherapy 
sensitivity (10,56). Nevertheless, the biological mechanism 
of DPEP1 in cancer is related to its unique structure and 
enzyme activity. 

DPEP1 enhance the stemness of tumor cells

DPEP1 may promote the proliferation and invasion of 
colorectal cancer cells through interaction with signaling 
pathways such as c-MYC and PI3K/AKT/mTOR, and form 
a positive feedback loop with ASCL2 to enhance the drug 
resistance of colorectal cancer cells. Although the specific 
mechanisms of drug resistance are not yet clear, it may be 
related to DPEP1’s involvement in regulating the behavior 
of immune cells in the tumor microenvironment, including 
their infiltration, activation status, and cytotoxic capabilities 
towards tumor cells, thereby indirectly participating in the 
regulation of tumor cell drug resistance. These research 
findings provide important information for a deeper 
understanding of the role of DPEP1 in tumor biology 
and offer potential directions for the development of new 
therapeutic strategies.

Transcriptional regulation of DPEP1 in gastrointestinal 
cancer 

c-Myc, as a transcription factor, regulates cell differentiation 
and proliferation through various mechanisms, including 
transcriptional amplification of target genes, and can even 
alter the susceptibility of cancer cells to immunotherapy 
(33,57). Within the promoter region of DPEP1, c-Myc 
binds to the specific DNA motif and transcriptionally active 
DPEP1 expression in colorectal cancer cells (33). Moreover, 
DPEP1 can inhibit ubiquitin-mediated degradation of 
c-Myc, extending the half-life of the c-MYC protein in 
colorectal cancer cells and thus enhancing protein stability. 
Therefore, DPEP1 and c-MYC protein may form a positive 
feedback loop, maintaining their high expression levels 
in colorectal cancer cells, which promotes the invasion 
and proliferation of cancer cells and even induces their 
drug resistance (33). Similarly, miR-193a-5p can directly 
target DPEP1 by binding to its messenger RNA 3 prime 
untranslated region in hepatoblastoma (HB); miR-193a-5p  
suppression promotes cell proliferation and metastasis 

though the activation of PI3K/AKT/mTOR signaling (58). 
The miR-193a-5p-DPEP1 axis appears to be an attractive 
therapeutic target in HB (Figure 4).

Signaling transduction of DPEP1 in gastrointestinal 
cancer

DPEP1 primarily transforms LTD4 into LTE4 (30). 
LTD4, as a proinflammatory mediator in the tumor 
microenvironment, can induce the inhibition of GSK-
3β activity, which can target β-catenin to reduce the 
activity of β-catenin and the formation of the β-catenin-
E-cadherin complex,  thereby destroying cell-cel l 
adhesion and promoting tumor cell metastasis (59,60). 
GSK-3β and β-catenin can mediate the Wnt/β-catenin 
signal transduction pathway (61), which is crucial for 
the malignant transformation of cells. When the activity 
of DPEP1 changes, the function of the Wnt/β-catenin 
signal pathway is also affected (60). DPEP can act both 
as an upstream factor and downstream target of the Wnt/
β-catenin signaling pathway. For instance, achaete scute-
like 2 (ASCL2), a helix-loop-helix transcription factor, 
can drive tumor cell processes, inhibit apoptosis, and even 
increase the resistance of cancer cells to chemotherapeutic 
drugs through Wnt/β-catenin signaling (62-64). In colon 
cancer, DPEP1 can enhance the stability of ASCL2 protein 
by inhibiting its ubiquitination; in turn, ASCL2 acts as a 
transcription factor to activate the transcription activity 
of the DPEP1 gene and promote its expression (55).  
Additionally, DPEP1 can enhance the expression of colon 
cancer cell stemness markers, such as LGR5, CD133, and 
CD44 (55). Overall, DPEP1 is able to form a positive 
feedback loop with ASCL2 to enhance the stemness 
of tumor cells, thereby improving the resistance to 
chemotherapeutic drugs, at least in colon cancer (Figure 4).

In the MEK/ERK pathway, the expression level of 
DPEP1 can be increased upon stimulation with EGF, and 
the sensitivity to gemcitabine is enhanced in pancreatic 
cancer (10). TGF-β is a transcriptional repressor of 
DPEP1 and can suppress its expression. A study has shown 
that in colorectal cancer cell lines, TGF-β can regulate 
the expression of E-cadherin through affecting DPEP1, 
promoting cell invasion, but such effects are not observed in 
cells lacking DPEP1 (30). However, its specific mechanism 
needs to be further illustrated.

DPEP1 is also involved in the metabolism of GSH (65), 
an antioxidant that maintains the redox state in the cellular 
microenvironment and protects cells from pathological 
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Figure 4 Mechanism of action of DPEP1 in malignant tumors. DPEP1 inhibits the expression of GSK-3β by converting LTD4 and reduces 
the expression of β-catenin, thus affecting the expression of E-cadherin. DPEP1 activates the PI3K/AKT/mTOR signaling pathway, 
promoting tumor cell proliferation, invasion, and migration. c-Myc binds to the specific DNA motif and transcriptionally active DPEP1 
expression, playing a role in regulating cell growth, apoptosis, and metabolism. ASCL2 can activate DPEP1 and reversely maintain the 
stability of ASCL2 by inhibiting its ubiquitination. TGF-β and EGFR can both inhibit the expression and function of DPEP1. Meanwhile, 
TGF-β can directly inhibit E-cadherin, promoting the invasion and migration of tumor cells. DPEP, dipeptidase; EGFR, epidermal growth 
factor receptor; GPI, glycosylphosphatidylinositol; LTD4, leukotriene D4; LTE4, leukotriene E4; TGF-β, transforming growth factor 
beta; GSK-3β, glycogen synthase kinase 3 beta; ASCL2, achaete scute complex-like 2; c-Myc, cellular Myc; mTOR, mechanistic target of 
rapamycin kinase.

stress (66). Decreased DPEP1 expression leads to GSH 
homeostasis disorder, which may promote the tumorigenesis 
related to the mechanism of GSH-induced ferroptosis.

DPEP1 and tumor-infiltrating immune

A recent spatial multi-omics profiling study has shed light 
on the co-evolution of sporadic colorectal tumors and 
their microenvironment, where DPEP1, as an extracellular 
matrix regulator, is implicated in immune exclusion 
reactions alongside other regulators such as DDR1, TGFBI, 
and PAK4. This immune exclusion signature (IEX) is 
associated with tumor progression in CIN+ (chromosomal 
instability positive) tumors, correlates with a reduction in 
cytotoxic cell infiltration, and exhibits prognostic value 
in an independent cohort (67). The study indicates that 
DPEP1 may influence the behavior of immune cells within 
the tumor microenvironment, including their infiltration, 

activation status, and cytotoxic capabilities towards tumor 
cells, thereby promoting tumor immune evasion. This 
further emphasizes the potential role of DPEP1 in the 
tumor immune microenvironment. The relationship 
between DPEP1 and tumor-infiltrating immune cells 
is primarily reflected in its potential involvement in 
modulating the function and state of immune cells within 
the tumor microenvironment, affecting the cytotoxic 
capabilities of immune cells against tumors. These findings 
provide potential targets and a theoretical foundation for 
future tumor immunotherapy strategies targeting DPEP1.

DPEP1 and prognosis of different malignant tumors

High express ion of  DPEP1 in  colorecta l  cancer 
is associated with parameters such as pathological 
invasiveness and poor prognosis (68). As a membrane-
bound metalloproteinase, DPEP1 may participate in 
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the degradation of the extracellular matrix, cell invasion, 
and metastasis in colorectal cancer. Similarly, DPEP1 is 
significantly upregulated in HB and is associated with poor 
prognosis in HB patients (69). In contrast, in breast cancer, 
Wilms tumors, and pancreatic ductal adenocarcinoma, the 
expression of DPEP1 is reduced, and it is even considered 
a potential tumor suppressor, possibly being negatively 
correlated with the invasiveness of tumor cells. The above 
studies indicate that the expression patterns and functions 
of DPEP1 vary in multiple types of tumors, and it may play 
different roles in different types of cancer.

DPEP1 glycosylation in gastrointestinal cancer and 
nonneoplastic diseases

Protein glycosylation is one of the most common 
posttranslational modifications involved in various cellular 
activities, including migration, proliferation, adhesion, 
apoptosis, protein stability, and drug resistance (70,71). 
Protein glycosylation is closely related to inflammation, 
immune responses, and tumorigenesis (27,72,73). The 
protein structure of DPEP1 consists of four glycosylation 
sites, which are located on the outside of the spatial 
structure of DPEP1, which is conducive to the binding 
of other carbohydrates. It has been posited that two sites 
of DPEP1 may have carbohydrate chain connections, 
Ser57 and Ser332, but this has not been confirmed. In 
DPEP1, GPI is the only anchor point between DPEP1 
and the cell membrane. Once a genetic mutation causes 
a defect in GPI, DPEP1 will not be able to attach to the 
cell membrane. This may increase the risk of paroxysmal 
nocturnal hemoglobinuria leukemia (29). Additionally, 
it has been reported that GPI anchoring is the principal 
effect of PI3K/AKT signaling pathway activation, which 
promotes gastrointestinal tumor proliferation, invasion, and 
metastasis (69) (Figure 4).

The relationship between DPEP1 and drug resistance in 
gastrointestinal cancer

Research has indicated that DPEP1 may be associated 
with drug resistance in colorectal cancer cells. DPEP1 
can form a positive feedback loop with ASCL2, enhancing 
the chemoresistance of these cells, which is a significant 
factor affecting the efficacy of chemotherapy in colorectal 
cancer patients. Additionally, DPEP1 can promote the 
proliferation of colorectal cancer cells by forming a 
positive feedback loop with c-MYC, a mechanism that 

may amplify DPEP1 expression in colorectal cancer cells, 
thereby increasing their resistance to chemotherapeutic 
agents. Furthermore, the expression of DPEP1 in 
colorectal cancer is linked to various signaling pathways, 
including the PI3K/AKT/mTOR, MEK/ERK, and Wnt/
β-catenin pathways, all of which are implicated in the 
development of tumor cell resistance. DPEP1 may also 
indirectly modulate the chemoresistance of tumor cells by 
participating in the behavior of immune cells within the 
tumor microenvironment. In summary, DPEP1 may be 
involved in the formation and regulation of drug resistance 
in colorectal cancer through diverse mechanisms, including 
the formation of positive feedback loops with transcription 
factors and the modulation of immune cell behavior. 
These findings provide a potential target and theoretical 
foundation for future therapeutic strategies targeting 
DPEP1 in cancer treatment.

Conclusions 

DPEP1 is strongly associated with tumor metastasis, drug 
resistance, and poor prognosis, especially in gastrointestinal 
cancer (55). Targeting DPEP1 may reduce the adverse 
effects of anticancer drugs by inducing ferroptosis. As a 
DPEP1 inhibitor, cilastatin can inhibit DPEP1’s β-lactamase 
function and has been widely used in clinical practice (47).  
However, whether cilastatin’s inhibition of DPEP1 in 
malignant tumors is of value and whether it can inhibit the 
carcinogenic or treatment resistance caused by DPEP1 
when combined with current therapeutic drugs remains to 
be explored. As a glycosylated protein, DPEP1 glycosylation 
may confer itself special functions, but the mechanism 
related to this effect has not been extensively examined, 
particularly in colorectal cancer. Therefore, further research 
into DPEP1 may contribute to the diagnosis, prognostic 
assessment, and therapy of gastrointestinal cancer.
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