
Received: January 28, 2020; Revised: March 28, 2020; Accepted: April 13, 2020

496

© The Author(s) 2020. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License  
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Regular Research Article

Clinical and Clinical-Pharmacogenetic Models 
for Prediction of the Most Common Psychiatric 
Complications Due to Dopaminergic Treatment in 
Parkinson’s Disease
Sara Redenšek, MPharm, PhD, Barbara Jenko Bizjan, MBiochem, PhD,  
Maja Trošt, MD, PhD, Vita Dolžan, MD, PhD

Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia 
(Drs Redenšek, Jenko Bizjan, and Dolžan); University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, 
Slovenia (Dr Jenko Bizjan); Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia (Dr Trošt).

Correspondence: Vita Dolžan, MD, PhD, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia  
(vita.dolzan@mf.uni-lj.si).

Abstract

Background: The most common psychiatric complications due to dopaminergic treatment in Parkinson’s disease are visual 
hallucinations and impulse control disorders. Their development depends on clinical and genetic factors.
Methods: We evaluated the simultaneous effect of 16 clinical and 34 genetic variables on the occurrence of visual hallucinations 
and impulse control disorders. Altogether, 214 Parkinson’s disease patients were enrolled. Their demographic, clinical, and 
genotype data were obtained. Clinical and clinical-pharmacogenetic models were built by The Least Absolute Shrinkage and 
Selection Operator penalized logistic regression. The predictive capacity was evaluated with the cross-validated area under 
the receiver operating characteristic curve (AUC).
Results: The clinical-pharmacogenetic index for prediction of visual hallucinations encompassed age at diagnosis (OR = 0.99), 
rapid eye movement (REM) sleep behavior disorder (OR = 2.27), depression (OR = 1.0002), IL6 rs1800795 (OR = 0.99), GPX1 
s1050450 (OR = 1.07), COMT rs165815 (OR = 0.69), MAOB rs1799836 (OR = 0.97), DRD3 rs6280 (OR = 1.32), and BIRC5 rs8073069 
(OR = 0.94). The clinical-pharmacogenetic index for prediction of impulse control disorders encompassed age at diagnosis 
(OR = 0.95), depression (OR = 1.75), beta-blockers (OR = 0.99), coffee consumption (OR = 0.97), NOS1 rs2682826 (OR = 1.15), SLC6A3 
rs393795 (OR = 1.27), SLC22A1 rs628031 (OR = 1.19), DRD2 rs1799732 (OR = 0.88), DRD3 rs6280 (OR = 0.88), and NRG1 rs3924999 
(OR = 0.96). The cross-validated AUCs of clinical and clinical-pharmacogenetic models for visual hallucinations were 0.60 and 
0.59, respectively. The AUCs of clinical and clinical-pharmacogenetic models for impulse control disorders were 0.72 and 
0.71, respectively. The AUCs show that the addition of selected genetic variables to the analysis does not contribute to better 
prediction of visual hallucinations and impulse control disorders.
Conclusions: Models could be improved by a larger cohort and by addition of other types of Parkinson’s disease biomarkers 
to the analysis.
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Introduction
The most common psychiatric complications of dopamin-
ergic treatment in patients with Parkinson’s disease (PD) are 
visual hallucinations (VH) and impulse control disorders (ICD) 
(Wood, 2010). VH affect up to 40% of PD patients treated with 
dopaminergic drugs (Wood, 2010). They usually present with 
vision of nonthreatening images of people or animals. They 
can be either benign with retained insight or may be per-
ceived as threatening without insight (Ceravolo et  al., 2016; 
Marinus et  al., 2018). The prevalence rates of ICD vary from 
6% to 39% of PD patients treated with dopaminergic therapy 
(Wood, 2010). The main symptoms of ICD encompass patho-
logical gambling, hyper-sexuality, compulsive buying, and 
binge eating (Ceravolo et al., 2016). These behaviors represent 
an important public health problem because they can affect 
the patients’ socioeconomic status and can also lead to illegal 
acts (Kraemmer et al., 2016).

Not all treated patients are affected by VH or ICD. Several 
clinical parameters have already been suggested as poten-
tial predictors of these AEs. VH may occur either due to dopa-
minergic treatment and/or due to progression of PD (Connolly 
and Lang, 2014). It has been reported that older age at onset, 
longer disease duration, depression, cognitive decline, female 
sex, excessive daytime sleepiness, and REM sleep behavior dis-
order (RBD) increase the risk for development of VH (Marinus 
et al., 2018). ICD mostly develop due to dopaminergic treatment 
(Ceravolo et al., 2016; Marinus et al., 2018). Several risk factors of 
ICD have already been reported, such as younger age at disease 
onset, longer disease duration, male sex, family or personal his-
tory of gambling and alcoholism, depression, unmarried status, 
impulsive or novelty-seeking traits, cigarette smoking, and caf-
feine use (Ceravolo et al., 2016; Kraemmer et al., 2016). Despite 
all of the known clinical risk factors, the occurrence of these 2 
AEs cannot be predicted in individual patients.

It has been reported that VH and ICD have a complex 
multigene heritability. The interpatient variability in the de-
velopment of the 2 adverse effects (AEs) can be to some ex-
tent assigned to genetic factors. DRD2 rs1800497, DRD3 rs6280, 
SLC6A3 rs2652511, APOE Ɛ4, ACE I/D, CCK rs1799923, and HOMER1 
rs4704559 polymorphisms were associated with VH in several 
different populations. On the other hand, DRD1 rs4867798, DRD1 
rs4532, DRD2 rs1800497, DRD3 rs6280, and GRIN2B rs7301328 
were independently associated with ICD (Lee et al., 2009; Zainal 
Abidin et al., 2015; Politi et al., 2018). As many clinical and gen-
etic factors may influence the occurrence of different pheno-
types, their simultaneous effect should be evaluated. To the 
best of our knowledge, only 1 clinical-pharmacogenetic model 
for prediction of ICD has been published so far, which pointed 
out the importance of OPRK1, HTR2A, and DDC genotypes along 
with several clinical parameters (Kraemmer et al., 2016). Besides 
genetic factors from dopaminergic pathway, other pathways 

affecting the PD pathogenesis, such as inflammation, oxidative 
stress, and neurodevelopment, may also influence the occur-
rence of VH and ICD. We have previously reported that COMT 
rs165815 and DRD3 rs6280 influence the occurrence of VH 
(Redenšek et al., 2019b), while NOS1 rs2682826 affects develop-
ment of ICD (Redenšek et al., 2019a).

Both VH and ICD can be quite troublesome for patients 
and their caregivers. It would be thus extremely valuable to be 
able to predict the occurrence of these AEs in an individual pa-
tient. The construction of predictive models could be helpful 
in building clinical algorithms for the identification of patients 
at higher risk for certain AEs. Appropriate statistical tools are, 
however, required when numerous clinical and genetic param-
eters are included in the modelling process. The Least Absolute 
Shrinkage and Selection Operator (LASSO) penalized regres-
sion allows the inclusion of many different covariates when the 
study group is relatively small. Additionally, it is a variable se-
lection method, which also prevents overfitting to data (Moons 
et al., 2004; Goeman, 2010; Jenko et al., 2017). Better predictive 
models would enable clinicians to avoid the occurrence of these 
AEs or at least to be more cautious and recognize the early pres-
entations of AEs in at-risk patients. The aim of this study was 
to evaluate the simultaneous effect of demographic and clin-
ical parameters in combination with selected candidate gene 
variants on the occurrence of VH and ICD in PD patients treated 
with dopaminergic drugs. The additional aim was to build the 
predictive models for the development of VH and ICD with as 
good as possible predictive capacity to be translated into clin-
ical practice.

Methods

Participants and Clinical Data

Patients were enrolled in this study according to the following 
criteria: (1) diagnosis of PD according to the UK Parkinson 
Disease Society Brain Bank criteria (Goetz, 2008); (2) available 
clinical data; (3) at least 1 year of dopaminergic treatment dur-
ation either with dopamine agonists, and/or levodopa. The re-
cruitment period lasted from October 2016 to April 2018. Patients 
were recruited from the Department of Neurology, University 
Medical Centre Ljubljana. Demographic and clinical data were 
collected with structured interviews with patients/caregivers 
and from medical records. Only explanatory variables that 
are known at the beginning of treatment were included in the 
analysis to enable future algorithm construction for potential 
therapy guiding. The primary endpoints of the study were VH 
and ICD occurring due to dopaminergic treatment. Presence or 
absence of the AE throughout the course of dopaminergic treat-
ment was recorded.

Significance Statement
Parkinson’s disease (PD) is a highly multifactorial disorder, which indicates that biomarkers of different types have to be evalu-
ated to properly characterize PD-related phenotypes, including dopaminergic treatment response. Visual hallucinations and 
impulse control disorders are among the most important psychiatric complications due to treatment of PD. Several clinical and 
genetic factors influence the occurrence of these 2 adverse events. In the reported study, we evaluated the simultaneous effect of 
selected clinical and genetic parameters on the occurrence of visual hallucinations and impulse control disorders. This is one of 
the first studies to construct clinical and clinical-pharmacogenetic models for prediction of these 2 adverse events with potential 
for translation to clinical practice and personalization of PD treatment. Such predictive models would give us a window of oppor-
tunity to avoid the occurrence of the adverse events or at least to increase caution and enable prompt action in at risk patients.
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The study protocol was approved by the Slovenian Ethics 
Committee for Research in Medicine (KME 42/05/16). All parti-
cipants gave written informed consent in accordance with the 
Declaration of Helsinki.

Single Nucleotide Polymorphism (SNP) Selection and 
Genotyping Analysis

The SNP selection (supplementary Table 1) and genotyping ana-
lysis were carried out as described previously (Redensek et al., 
2019c). In total, 37 SNPs from 22 genes from the following path-
ways were evaluated: (1) dopamine metabolism, transport, 
and signaling; (2) neuroinflammation; (3) oxidative stress; (4) 
neuron development, proliferation, and differentiation; and 
(5) apoptosis. We chose SNPs with reported associations with 
neurodegeneration, PD pathogenesis, and response to dopa-
minergic treatment (Baratchi et al., 2010; Terzic et al., 2015; Xu 
et al., 2017; Redenšek et al., 2018, 2019a). Only functional SNPs 
were selected to enable mechanistic explanations of the pos-
sible associations.

Statistical Analysis

Median and first and third interquartile (IQR) ranges were used 
to describe central tendency and variability of continuous vari-
ables. Frequency and percentage were used to describe cat-
egorical variables. The agreement of genotype frequencies 
with Hardy-Weinberg equilibrium (HWE) was evaluated by 
chi-squared test. The additive genetic model was used in all 
analyses.

Clinical models including only clinical variables and clinical-
pharmacogenetic models including clinical and genetic vari-
ables were built using logistic regression analysis with LASSO 
penalization. The method of LASSO penalization was used due 
to a large amount of explanatory variables relative to the number 
of events. LASSO penalization prevents overfitting to avoid 
over-optimistic results and shrinks the estimates of the regres-
sion coefficients towards zero. The shrinkage is estimated by the 
tuning parameter λ, which is obtained by the cross-validation of 
the (partial) likelihood (Goeman, 2010). If the estimated regres-
sion coefficient was not shrunk to zero, the variable was con-
sidered statistically significant.

Receiver operating characteristic curves were constructed 
for both types of models. Sensitivity, specificity, and area 
under the receiver operating characteristic curve (AUC) were 
assessed. The predictive indexes were estimated by selecting 
the threshold that provided the maximized sum of the cross-
validated true positive and true negative rates. Indexes were 
defined as the linear predictors obtained from the penalized 
logistic regression model. Based on the penalized regression 
equations, multivariate signatures for individual patients 
were calculated. Cross-validation was applied to all predictive 
accuracy estimates (AUC, true and false positive rates) to avoid 
biased and over-optimistic results. The apparent and cross-
validated estimates are reported. The model’s performance is 
presented in the confusion matrix, where each row represents 
the instances in a predicted class while each column repre-
sents the instances in an actual class. The positive predictive 
value (PPV) was calculated based on the number of true and 
false positives.

The predictive accuracy of the models was ranked as follows: 
AUC <0.6 was considered as worthless, between 0.6 and 0.7 as 
poor, between 0.7 and 0.8 as fair, between 0.8 and 0.9 as good, 
and >0.9 as excellent.

All of the statistical analyses were carried out using the 
R software (Goeman, 2010; Foucher and Danger, 2012; Team, 
2018).

Results

Patient Characteristics

In total, 214 PD patients were included in the analysis; of those, 
90 (42.1%) were female. The median age at diagnosis was 61.7 
(54.6–70.6) years. Altogether, 54 (25.2%) patients experienced VH, 
while 32 (15.0%) experienced ICD. Clinical characteristics of in-
cluded patients accounted for in the construction of the models 
are presented in Table 1. Additionally, clinical characteristics of 
patients not accounted for in the construction of the models 
but are, however, important for a comprehensive description of 
the patient cohort are presented in Table 2. The continuous data 
from Table 2 correlated with the age at diagnosis presented in 
Table 1 and were thus indirectly included and accounted for in 
the model construction.

All of the patients were genotyped for 37 SNPs. Three 
SNPs (rs1060253, rs1060257, and rs1787467) deviated from 
HWE requirements (P < .05), so we excluded them from fur-
ther analysis. Genotype frequencies of the DDC rs921451 
and rs3837091 did not match the HWE requirements as well. 
However, frequencies for these 2 SNPs were not significantly 
different from frequencies reported in the 1000 genomes Utah 
Residents with Northern and Western European Ancestry 
population (P = .730 and P = .152, respectively), which is the 
population that our patients are the most similar to in terms 
of ethnicity. These 2 SNPs were thus retained in the analysis. 
The remaining 32 SNPs were in HWE (P > .05; supplementary 
Table 1).

Table 1.  Characteristics of Patients Included in the Constructed Models

Characteristics All patients (n = 214)

Female sex 90 (42.1)
Age at diagnosis (years) 61.7 (54.6–70.6)
Tremor-predominant PD 174 (81.3)
Body side of disease initiation Right 113 (52.8)

Both 17 (7.9)
Left 84 (39.3)

REM sleep behavior disorder 105 (49.1)
Depression 93 (43.5)
Constipation 90 (42.1)
Olfactory dysfunction 90 (42.1)
Beta-blockers 49 (22.9)
Nonsteroidal  

anti-inflammatory drugs
40 (18.7)

Calcium channel blockers 34 (15.9)
Statins 44 (20.6)
Tobacco smoking  

(pack/year*years of smoking)
0 (0–5.7)

Alcohol consumption  
(no. of units in a lifetime)

447.2 (0–7033.0)

Coffee consumption (cups per day) 1 (0–2)
Visual hallucinations 54 (25.2)
Impulse control disorders 32 (15.0)

Abbreviations: PD, Parkinson’s disease; REM, rapid eye movement.

Categorical variables are presented as frequencies (percentages), whereas 

numerical variables are presented in years as median and IQR (first – third 

quartile).

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
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Clinical and Clinical-Pharmacogenetic Models for 
Prediction of VH

The LASSO penalized clinical model for prediction of VH in-
cluded: age at diagnosis (OR = 0.98), RBD (OR = 2.48), depression 
(OR = 1.12), statins (OR = 0.99), and coffee consumption (OR = 0.98) 
(Table 3; Figure 1A). The apparent AUC for prediction of VH was 
0.80, which decreased to 0.60 after cross-validation (Figure 1B). 
Sensitivity and specificity were 46.3% and 69.1%, respectively. 
The PPV was 48.4%. The predictive index was −1.48, which 
means that patients with a multivariate signature above this 
threshold had higher odds for development of VH.

The LASSO penalized clinical-pharmacogenetic model for 
prediction of VH included: age at diagnosis (OR = 0.99), RBD 
(OR = 2.27), depression (OR = 1.0002), IL6 rs1800795 (OR = 0.99), 
GPX1 rs1050450 (OR = 1.07), COMT rs165815 (OR = 0.69), MAOB 
rs1799836 (OR = 0.97), DRD3 rs6280 (OR = 1.32), and BIRC5 
rs8073069 (OR = 0.94) (Table 3; Figure 1C). The apparent AUC for 
prediction of VH was 0.81, which decreased to 0.59 after cross-
validation (Figure 1D). Sensitivity and specificity were 28.3% and 
88.7%, respectively. The PPV was 56.7%. The predictive index was 
−1.25. The confusion matrices of both models are presented in 
supplementary Table 2.

Clinical and Clinical-Pharmacogenetic Models for 
Prediction of ICD

The LASSO penalized clinical model for prediction of ICD in-
cluded: sex (OR = 0.97), age at diagnosis (OR = 0.95), depres-
sion (OR = 2.12), beta-blockers (OR = 0.75), alcohol consumption 
(OR = 1.00), and coffee consumption (OR = 0.84) (Table  4; 
Figure  2A). The apparent AUC for prediction of ICD was 0.78, 
while the cross-validated AUC was 0.72 (Figure 2B). Sensitivity 
and specificity were 69.0% and 78.2%, respectively. The PPV was 
38.5%, and the predictive index was −3.95.

The LASSO penalized clinical-pharmacogenetic model for 
prediction of ICD included: age at diagnosis (OR = 0.95), de-
pression (OR = 1.75), beta-blockers (OR = 0.99), coffee consump-
tion (OR = 0.97), NOS1 rs2682826 (OR = 1.15), SLC6A3 rs393795 
(OR = 1.27), SLC22A1 rs628031 (OR = 1.19), DRD2 rs1799732 (OR  
= 0.88), DRD3 rs6280 (OR = 0.88), and NRG1 rs3924999 (OR = 0.96) 
(Table  4; Figure  2C. The apparent AUC for prediction of ICD 
was 0.79, while the cross-validated AUC was 0.71 (Figure  2D). 
Sensitivity and specificity were 66.1% and 70.6%, respectively. 
The PPV was 32.8%, and the predictive index was −4.24.

The confusion matrices of the models are presented in sup-
plementary Table 2.

Discussion

This is the first study, to our knowledge, that evaluated the 
combined influence of selected 16 clinical parameters and 34 
candidate gene variants on the occurrence of VH and ICD in PD 

patients treated with dopaminergic therapy. LASSO penalized 
logistic regression was used to build the clinical and clinical-
pharmacogenetic models for the prediction of VH and ICD. No 
clinically important differences in the prediction capacities were 
observed between clinical and clinical-pharmacogenetic models.

The most prominent clinical predictor of VH was the pres-
ence of RBD. RBD increased risk for development of VH, which 
is in concordance with the previous literature (Diederich et al., 
2009). In both models, younger age at diagnosis and depres-
sion increased the odds for development of VH. Younger age at 
diagnosis may predispose patients to VH as the disease should 
generally last longer in these patients, while depression has al-
ready been recognized as risk factor for VH as well (Ceravolo 
et al., 2016). The clinical model revealed an additional 2 clinical 
parameters as potential predictors of VH: statins and coffee con-
sumption. They both may protect against VH due to their poten-
tial neuroprotective effects (van der Most et  al., 2009; Herden 
and Weissert, 2018). Both parameters were recognized as pro-
tective against PD as well (Kalia and Lang, 2015; Yan et al., 2019). 
However, it was also shown that caffeine increases dopamine 
signaling in the brain (Volkow et al., 2015), which might indicate 
an increased risk for VH development rather than protection 
against this AE.

The largest genetic effect on the occurrence of VH was ob-
served with COMT rs165815 and DRD3 rs6280. COMT rs165815 
C allele decreased odds for development of VH, while the DRD3 
rs6280 C allele increased odds for this AE, confirming the results 
of the univariate analysis in the same cohort (Redenšek et al., 
2019b). IL6 rs1800795 was protective against VH. This SNP may 
lower the expression of IL6, which might lower the chance of VH 
development (Watkins and Andrews, 2016). Furthermore, GPX1 
rs1050450 may increase the risk for development of VH. This 
polymorphism decreases the enzyme’s activity, weakening the 
defense against reactive oxygen species, which might further 
increase VH development (Watkins and Andrews, 2016). Our re-
sults suggest a protective effect of MAOB rs1799836, which may 

Table 2.  Additional Demographic and Clinical Characteristics of En-
rolled Patients

Characteristic All patients (n = 214)

Disease duration 7.6 (4.3–14.0)
Dopaminergic treatment duration 7.8 (3.9–13.6)
Levodopa treatment duration 6.6 (2.6–11.7)
LED at enrolment 1000.0 (605.0–1415.0)

Abbreviation: LED, levodopa equivalent dose presented as mg/d.

The characteristics are presented in years as median (first-third quartile).

Table 3.  Variables Selected by LASSO Penalized Regression for  
Clinical and Clinical-Pharmacogenetic Models for Prediction of  
Visual Hallucination Occurrence 

Clinical modela OR Regression coefficientc

Age at diagnosis 0.98 −0.019
REM sleep behavior disorder 2.48 0.910
Depression 1.12 0.109
Statins 0.99 −0.008
Coffee consumption 0.98 −0.016

Clinical-pharmacogenetic modelb   
Age at diagnosis 0.99 −0.015
REM sleep behavior disorder 2.27 0.821
Depression 1.0002 2.19E-4
IL6 rs1800795 0.99 −0.014
GPX1 rs1050450 1.07 0.066
COMT rs165815 0.69 −0.365
MAOB rs1799836 0.97 −0.027
DRD3 rs6280 1.32 0.280
BIRC5 rs8073069 0.94 −0.066

aRegression equation: multivariate signature for the patient = −0.48 – 0.019 * age 

at diagnosis + 0.910 * REM sleep behaviour disorder + 0.109 * depression −0.008 * 

statins −0.016 * coffee consumption.
bRegression equation: multivariate signature for the patient = −0.67 – 0.015 * 

age at diagnosis + 0.821 * REM sleep behavior disorder + 2.19E-4 * depression 

−0.014 * IL6 rs1800795 + 0.066 * GPX1 rs1050450 −0.365 * COMT rs165815 −0.027 * 

MAOB rs1799836 + 0.280 * DRD3 rs6280 −0.066 * BIRC5 rs8073069.
cRegression coefficient is a natural logarithm of the OR.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa028#supplementary-data
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be due to lowered dopamine turnover in G allele carriers (Lohle 
et  al., 2018). BIRC5 rs8073069 may protect against VH by in-
creased survivin expression (Jenko et al., 2016), which decreases 
apoptosis and consequently also decreases inflammation and 
oxidative stress.

The most prominent clinical predictor of ICD was depres-
sion. This common and also prodromal sign of PD has been 
observed as a risk factor for ICD previously (Gatto and Aldinio, 
2019). Younger patients were reported to be more prone to de-
velopment of impulsive behavior (Ceravolo et al., 2016). We also 
observed that patients taking beta-blockers have lower odds for 
development of ICD. Beta-blockers could attenuate levodopa’s 
extra-physiological efflux of dopamine (Bhide et al., 2015) and 
thus reduce the risk for ICD. Both types of our models showed 
protective effect of caffeine, although previous studies have in-
dicated the contrary (Ceravolo et al., 2016). Further studies are 

warranted as higher caffeine intake was also recognized as 
protective against PD (Kalia and Lang, 2015). Our clinical model 
suggests an association of alcohol consumption with increased 
odds for development of ICD, which is in agreement with pre-
viously reported data (Ceravolo et al., 2016; Gatto and Aldinio, 
2019). Our observation that males develop ICD more often com-
pared with females is in agreement with the previous data as 
well (Gatto and Aldinio, 2019).

The clinical-pharmacogenetic model for prediction of ICD 
identified 6 potential genetic biomarkers. The NOS1 rs2682826 
A  allele increased odds for development of ICD, which is in 
agreement with the univariate analysis in the same cohort 
(Redenšek et al., 2019a). NOS1 polymorphisms were previously 
associated with other psychiatric disorders (Topaloglu et  al., 
2017). SLC22A1 rs628031 A allele increased risk for ICD as well, 
which confirms the results of the univariate analysis in the 

Figure 1.  Least Absolute Shrinkage and Selection Operator (LASSO) penalized regression models and receiver operating characteristic (ROC) curves for prediction of the 

risk for development of visual hallucinations (VH). (A) Clinical model for prediction of VH. The highest predictive quality of the model was estimated at λ = 7.1. (B) ROC 

curve of the clinical model for prediction of VH. (C) Clinical-pharmacogenetic model for prediction of VH. The highest predictive quality of the model was estimated at 

λ = 8.8. (D) ROC curve of the clinical-pharmacogenetic model for prediction of VH. Only significant variables are presented in the graphs of the LASSO penalization as 

their regression coefficients were not shrunk to zero by λ. CV, cross-validated.
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same cohort (Redenšek et al., 2019b). The latter suggests an im-
portant role of this transporter in the occurrence of AEs. As the 
intronic SLC6A3 rs393795 is in linkage disequilibrium with SNPs 
affecting splicing and with SNPs in 3 exons nearby, it could af-
fect the transporter’s function and dopamine availability (van 
Munster et al., 2010) and thus also the occurrence of ICD. Our 
results indicate that DRD2 rs1799732 and DRD3 rs6280 may 
support prediction of ICD, which might be explained by the re-
ported influence of these 2 SNPs on the expression and splicing, 
respectively (Xu and Taylor, 2009). The NRG1 rs3924999 T allele 
affecting splicing (Xu and Taylor, 2009) lowers risk for ICD de-
velopment. This SNP has already been associated with schizo-
phrenia and dementia in patients with Alzheimer’s disease (He 
et al., 2016; Shah et al., 2017).

When comparing the predictive capacity parameters of both 
models for both analyzed AEs, we did not observe any clinically 
significant advantages of the clinical-pharmacogenetic models 
over the clinical models. Regarding predictive capacities for VH, 
both cross-validated AUCs were on the border between worth-
less and poor. The specificity improved after the addition of gen-
etic variables to the model, but the sensitivity decreased. The 
PPV was higher in the clinical-pharmacogenetic model com-
pared with the clinical model, which indicates that genetic fac-
tors may have a role in the occurrence of VH.

The clinical and clinical-pharmacogenetic models for pre-
diction of ICD displayed very similar cross-validated AUCs, and 
their predictive capacities were classified as fair. Both specificity 
and sensitivity decreased after adding genetic variables to the 
analysis. The PPV of the clinical-pharmacogenetic model was 
worse compared with the clinical model. This indicates that the 
selected genetic variables do not contribute to better prediction 
of the ICD development in a multivariate analysis, although 
some of them were significantly associated with the AE in the 
univariate analysis.

We hypothesize that the selected clinical variables had a 
greater impact on the occurrence of VH and ICD compared with 
the selected genetic variables. Therefore, an addition of genetic 
variables did not increase the predictive capacity. Among clin-
ical variables, RBD and depression contributed the most to pre-
diction of VH and ICD, respectively. As discussed above, RBD and 
depression were already detected as important in increasing the 
chance of occurrence of studied AEs. It was hypothesized previ-
ously that VH are intrusions of REM into wakefulness (Diederich 
et al., 2009), which indicates a great link between these 2 phe-
nomena. Additionally, depression and ICD have been recognized 
as comorbidities in many PD patients (Marques et  al., 2018). 
Although several genetic factors significantly influence the oc-
currence of VH and ICD independently and also in a group, the ef-
fect of selected clinical variables, especially RBD and depression, 
surpasses the effect of selected genetic factors. Consequently, 
predictive powers of clinical models compared with clinical-
pharmacogenetic models do not differ significantly.

The thresholds for preemptive identification of patients at 
higher risk for development of VH and ICD were calculated. In 
the case of VH, the fraction of correctly classified patients de-
creased after inclusion of genetic variables in the model. On the 
other hand, in the case of ICD, the fraction of correctly classi-
fied patients increased in the clinical-pharmacogenetic model, 
although this improvement was probably not clinically relevant.

The group of patients analyzed in this study was of mod-
erate size although comparable with other pharmacogenetic 
studies of PD. The sample was also genetically and ethnically 
uniform. All of the patients were enrolled at the same hospital, 
which means they were treated according to the same guide-
lines. Due to the small sample size, the study might have in-
adequate power to detect subtler associations. However, the 
method of LASSO penalization allows analysis of a relatively 
large set of variables that might also correlate between each 
other even in small cohorts. We used cross-validation to pre-
vent overfitting and over-optimistic results as well. We con-
sidered VH and ICD as dichotomous variables due to lack of 
data regarding the type of these AEs and standardized ques-
tionnaires. Information on disease severity at the time of drug 
prescription would be valuable information and a relevant 
covariate in the prediction of the studied AEs, too. However, 
patients’ clinical status was not evaluated by any quantitative 
scales in our study. A longer observation period would probably 
result in a more comprehensive dataset as the group of cases 
would presumably get bigger. Nonetheless, the analyzed AEs 
tend to occur in the first years of treatment (Gatto and Aldinio, 
2019). Additionally, we used a pathway-based approach to in-
clude several genetic parameters from 5 different pathways 
included in the PD pathogenesis to capture as much genetic 
variability as possible. Although it is only partially understood 
which of the genes and genetic variants contribute to PD and 
PD related phenotypes, broader knowledge is available about 
cellular pathways contributing to PD pathogenesis, suggesting 
that the selection of SNPs on the basis of affected pathways 
may be an appropriate and efficient way to grasp the key 
parameters contributing to studied phenotypes. However, add-
itional validation and functional studies are warranted to get a 
full insight into the exact functions and roles of the important 
genetic variants in PD-related phenotypes.

Conclusions

The reported study presents some new associations between 
clinical and genetic variables and VH or ICD. More importantly, 

Table 4.  Variables Selected by LASSO Penalized Regression for  
Clinical and Clinical-Pharmacogenetic Model for Prediction of  
Impulse Control Disorders Occurrence

Clinical modela OR Regression coefficient

Sex 0.97 −0.033
Age at diagnosis 0.95 −0.052
Depression 2.12 0.751
Beta-blockers 0.75 −0.282
Alcohol consumption 1.00 6.35E−7
Coffee consumption 0.84 −0.172

Clinical-pharmacogenetic modelb   
Age at diagnosis 0.95 −0.048
Depression 1.75 0.560
Beta-blockers 0.99 −0.013
Coffee consumption 0.97 −0.033
NOS1 rs2682826 1.15 0.139
SLC6A3 rs393795 1.27 0.242
SLC22A1 rs628031 1.19 0.173
DRD2 rs1799732 0.88 −0.124
DRD3 rs6280 0.88 −0.126
NRG1 rs3924999 0.96 −0.038

aRegression equation: multivariate signature for the patient = 1.21 – 0.033 * sex 

−0.052 * age at diagnosis + 0.751 * depression −0.282 * beta-blockers + 6.35E-7 * 

alcohol consumption −0.172 * coffee consumption.
bRegression equation: multivariate signature for the patient = 0.66 – 0.048 * age 

at diagnosis + 0.560 * depression −0.013 * beta-blockers −0.033 * coffee con-

sumption + 0.139 * NOS1 rs2682826 + 0.242 * SLC6A3 rs393795 + 0.173 * SLC22A1 

rs628031 −0.124 * DRD2 rs1799732 −0.126 * DRD3 rs6280 −0.038 * NRG1 rs3924999.
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this study presents clinical and clinical-pharmacogenetic 
models determining the joint effect of selected clinical and gen-
etic variables on the occurrence of VH and ICD. These models 
could be translated to clinical practice to enable prediction of 
the occurrence of analyzed AEs. We developed them to facili-
tate construction of clinically useful algorithms for informed 
decision-making about the treatment plan for each individual 
PD patient. The investigated genetic factors did not contribute 
to clinically relevant better prediction of the VH and ICD in our 
group of patients. Further analyses on a larger population of 
PD patients are warranted to determine the simultaneous ef-
fect of selected genetic variants on the occurrence of VH and 
ICD. Additionally, genetic variants from other pathways im-
portant in PD could improve predictive capacities of the clinical-
pharmacogenetic models.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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