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Abstract
Neuronal activity in the central nervous system varies strongly in time and
across neuronal populations. It is a longstanding proposal that such fluctuations
generically arise from chaotic network dynamics. Various theoretical studies
predict that the rich dynamics of rate models operating in the chaotic regime
can subserve circuit computation and learning. Neurons in the brain, however,
communicate via spikes and it is a theoretical challenge to obtain similar rate
fluctuations in networks of spiking neuron models.

A recent study investigated spiking balanced networks of leaky integrate and
fire (LIF) neurons and compared their dynamics to a matched rate network with
identical topology, where single unit input-output functions were chosen from
isolated LIF neurons receiving Gaussian white noise input. A mathematical
analogy between the chaotic instability in networks of rate units and the spiking
network dynamics was proposed.

Here we revisit the behavior of the spiking LIF networks and these matched
rate networks. We find expected hallmarks of a chaotic instability in the rate
network: For supercritical coupling strength near the transition point, the
autocorrelation time diverges. For subcritical coupling strengths, we observe
critical slowing down in response to small external perturbations. In the spiking
network, we found in contrast that the timescale of the autocorrelations is
insensitive to the coupling strength and that rate deviations resulting from small
input perturbations rapidly decay. The decay speed even accelerates for
increasing coupling strength.

In conclusion, our reanalysis demonstrates fundamental differences between

the behavior of pulse-coupled spiking LIF networks and rate networks with
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the behavior of pulse-coupled spiking LIF networks and rate networks with
matched topology and input-output function. In particular there is no indication
of a corresponding chaotic instability in the spiking network.
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Introduction
Slow neural dynamics are believed to be important for behav-
ior, learning and memory (Churchland & Shenoy, 2007; Fee & 
Goldberg, 2011; Murray et al., 2014). Rate models operating in 
the chaotic regime show rich dynamics at the scale of hundreds 
of milliseconds and provide remarkable learning capabilities 
(Barak et al., 2013; Sussillo & Abbott, 2009; Toyoizumi & Abbott, 
2011). Understanding the conditions of such a transition to chaos 
in more detailed network models has recently attracted a lot of 
interest (Harish & Hansel, 2015; Kadmon & Sompolinsky, 2015). 
However, neurons in the brain communicate via spikes and it is 
a challenge in computational neuroscience to obtain similar slow 
rate dynamics in networks of spiking neuron models.

This question was recently addressed in a paper by Ostojic (2014) 
published in Nature Neuroscience (Ostojic, 2014). It argues that 
an “unstructured, sparsely connected network of model spiking 
neurons can display two fundamentally different types of asyn-
chronous activity”. When the synaptic strength is increased, net-
works of leaky integrate-and-fire (LIF) neurons would undergo 
a transition from the “well-studied asynchronous state, in which 
individual neurons fire irregularly at constant rates” to another 
“heterogeneous asynchronous state” in which “the firing rates of 
individual neurons fluctuate strongly in time and across neurons”  
(Ostojic, 2014). These two regimes would differ in an essential man-
ner, the rate dynamics being chaotic beyond the phase transition.  
Finding a transition to chaotic slow-varying rate dynamics in  
spiking networks in such a simple model would be an important 
step towards an understanding of the computations underlying 
behavior and learning and would fill a gap in the current under-
standing of network dynamics. Here we re-examine the behavior of  
random LIF networks and demonstrate that there is no such phase 
transition to chaos in the spiking network analyzed in (Ostojic, 
2014). While we confirm the observed deviation from the mean 
field theory description that assumes uncorrelated Gaussian fluc-
tuations in time and among neurons, we controvert the validity of 
the presented analysis. We provide a series of tests of dynamical  
behavior that refute the existence of a chaotic instability and show 
that the analogy between the spiking network and the rate network 
is conceptually misleading and mathematically flawed.

The paper (Ostojic, 2014) starts with simulations of a network of 
LIF neurons for different values of the synaptic strength, J, while 
all other parameters are fixed to specific values. It is observed that 
the population mean firing rate of the neurons, ν0, is well described 
by a mean field calculation only below a certain coupling strength 
J*. At this value, the average firing rate starts to deviate from the 
mean field prediction more than 5%. (Figure 1a in (Ostojic, 2014), 
denoted Figure P1a; hereafter figures in (Ostojic, 2014) are denoted 
by their numbers preceded by a “P”). In (Ostojic, 2014), it was 
claimed that the “classical” asynchronous state exhibits an instabil-
ity at J=J*. Above J*

 
the dynamics would still be asynchronous, but 

in a way which would be essentially different from the “classical” 
asynchronous state. To assess this claim, the author replaced the 
full dynamics of the spiking LIF network by a rate model of similar 
connectivity, the “Poisson network”. Simulations indicate that as J 
increases, there is a value, J=Jc, at which the dynamics of the latter 
undergo a phase transition between a state in which the rates are 

constant in time (fixed point) and a state in which they fluctuate 
chaotically with long network generated time-scales. The author 
then derives an equation for a critical value J

c
 which is in agreement 

with the simulations of the Poisson model. For the parameters used 
in Figure P1 and P2 the value of Jc is rather close to J*. Apparently 
the author felt that this similarity, gives sufficient reason to justify 
two conclusions: (i) in the LIF network an instability occurs near 
J* which is of the same nature as the one occurring at Jc in the 
Poisson network. (ii) The asynchronous states below and above J* 
are essentially different in the LIF network.

However, as we now show, the reported agreement between the 
predicted transition at Jc 

and the spiking network simulation results 
is coincidental and only valid for the chosen parameters used in 
the paper (Ostojic, 2014) but not in general. We start by providing 
two counter-examples to statements (i) and (ii).

Methods and results
Our first counter-example is the LIF model considered in (Ostojic, 
2014), we take N=40000 neurons and C=4000 synapses per neuron  
instead of N=10000 and C=1000 (all other parameters as in 
Figure P1, except for the network size, keeping the connection 
probability constant). The population firing rate, ν0 (J), is plotted in 
Figure 1a. It deviates from the mean field prediction at J*≅0.3 mV 
by more than 5%. Nonetheless, the critical point in the correspond-
ing Poisson rate network is J

c
≅0.96 mV and thus it is more than 

three times larger than J*.

Our second counter-example is the LIF network of Figure P1 and 
P2 with the same parameters except for the delay, Δ. We note that 
the delay does not affect the existence of the asynchronous state 
and importantly plays no role in the mathematical considerations 
of Ostojic (2014). As these yield identical results irrespective of 
delay we consider the simplest case: Δ = 0 ms. Strikingly, the 
spiking network shows no longer a large deviation from the mean-
field prediction (Figure 1a). However, the proposed analogy with 
the Poisson rate network still predicts that a deviation should occur 
at J*≅0.49 mV, since the transition to chaos in the Poisson network 
is independent of the delay. The author seems to be somewhat 
aware of this discrepancy. Indeed, it is stated in the Online Methods 
that delays must be larger than the refractory period, because “if 
the delays are shorter, spikes that reach a neuron while it is refrac-
tory do not have an effect and the overall coupling is effectively 
reduced” (Ostojic, 2014). If this was correct, this effective reduc-
tion should be reflected in the formula for predicting Jc (Equation 
16). This is not the case: the latter does not depend on Δ. In addi-
tion, the spiking network for Δ = 0 ms in fact exhibits no increased 
level of network synchrony measured by the common synchrony 
measure χ (Figure 2a) (Hansel & Mato, 2003).

It is also argued in the paper (Ostojic, 2014) that the results plot-
ted in Figure P3a and b support the analogy between the rate  
dynamics of the Poisson model and the dynamics of the LIF  
network. However, the comparison made in this figure is conceptu-
ally misleading. In the Poisson model, the rate as a function of time 
is an unequivocally defined quantity. It is the dynamical variable 
of the model and the time scale over which the rate fluctuates for  
strong enough coupling is fully determined by these dynamics. 
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Figure 1.  (a) Population averaged firing rate in the network vs. coupling strength J. Solid lines: Ricciardi mean field for C=1000 (red) and 
C=4000 (blue). Predictions for Jc (Equation 16) are indicated by the corresponding dashed vertical lines. Simulation results (event-based 
simulation implemented in Julia programing language) are also plotted. Dots: Δ=0.55 ms synaptic delay. Triangles: Δ=0.0 ms. Results for 
C=1000, N=10000 (red marker) and C=4000 and N=40000 (blue marker). (b) Averaged normalized AC of neuronal rate functions for J= 
0.8 mV and C=1000 (red) and C=4000 (dashed blue) LIF networks. The rate functions were computed by filtering the spike trains of the 
neurons (1 ms time bin) with a Gaussian filter with 10 ms (the thinnest lines), 50 ms (moderated lines) and 100 ms (the thickest lines) standard 
deviation. (c) Autocorrelation function of the spike trains (no filtering) normalized to the second pick. Solid lines: LIF network. Dashed lines: 
Poisson network. The results are shown for J = 0.5 mV (dark green), J=0.6 mV (dark orange), J = 0.7 mV (magenta) and J=0.8 mV (dark red). 
For the LIF the AC is also shown for J=0.4 mV (solid black). To compute the ACs for the Poisson network we simulated a network for 100 s 
(time step 1 ms) and averaged the results over 40 realizations of the initial conditions. The network size is N=100000 for 0.5≤J≤0.6mV and 
N=10000 for J>0.6 mV. For the LIF network we averaged spike autocorrelation of 3000 randomly chosen neurons with a 1 ms bin following 
Equation 23 in the paper. All parameters are as in Figure P3. (d) Subcritical behavior of the systems. Rate network and spiking network are 
both perturbed in the constant feed-forward input current µ0 in the least stable direction of the linearized rate dynamics (Equation 16) for 
different coupling strengths J. The resulting rate deviation is projected onto the perturbation direction. Dashed lines reflect the normalized 
decay of this perturbation in the rate network and the solid lines those of the spiking network (averaged over 1.42 million perturbations). The 
perturbation was applied to the constant feed-forward input µ0 for 2 ms where the standard deviation of the perturbation vector was 1 mV. 
Longer perturbation durations (10 ms) and weaker perturbation strengths (standard deviation 0.1 mV) gave very similar results (not shown). 
Perturbation direction, strength, duration and network realization were exactly the same for rate and spiking network. Other parameters as in 
(Ostojic, 2014).

This is not the case in the LIF model where the “rate” and its 
“dynamics” depend on the temporal width over which the spiking  
activity is filtered. The width of the Gaussian filter used in (Ostojic, 
2014) is 50 ms. This choice is arbitrary and is the reason for the 
similarity observed in the rate autocorrelations (ACs) plotted in the 
upper and lower panels in Figure P3b which depends on this choice 
(Figure 1b). The rate functions were computed by filtering the spike 
trains of the neurons (1 ms time bin) with a Gaussian filter with  
10 ms (the thinnest lines), 50 ms (moderated lines) and 100 ms  
(the thickest lines) standard deviation. Moreover, the spike 
ACs plotted in Figure P3c for the two models exhibit essential  
differences as we now show.

For J=0.2 and 0.4 mV, the spike AC in the Poisson rate model  
(Figure P3c, upper panel) is close to a Dirac function reflecting 
that the dynamics are at fixed point - that is the rate variable from 
which the Poisson process of the spikes is generated is constant. For 
J=0.6 mV the spike AC is very different: a broad component has 
now appeared. It is flat at zero time lag and has a negative curvature 
at short time lags (Figure 1c and Figure P3c). A detailed analysis 
reveals that this change has all the characteristics of a true phase 
transition. It shows that close to the phase transition, the amplitude 
vanishes proportionally to J-Jc and the decorrelation time diverges 
as 1/ cJ – J  (Figure S1a). To compute the ACs for the Poisson 
network we simulated a network for 100 s (time step 1 ms) and 

a b

c d
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averaged the results over 40 realizations of the initial conditions. 
The network size is N=100000 for 0.5≤J≤0.6mV and N=10000 
for J>0.6 mV. For the LIF network we averaged spike autocorrela-
tion of 3000 randomly chosen neurons with a 1 ms bin following 
Equation 23 in the paper. All parameters are as in Figure P3.

The spike AC behaves very differently in the LIF network. For  
J=0.2 mV it exhibits at zero time lag a sharp peak flanked by a 
trough which reflects the refractoriness (absolute and relative) of 
the single neuron dynamics. As J increases, there is a progressive 
change in the AC shape. Eventually, the trough disappears. The 
flanks of the zero peak are now decreasing exponentially (Figure 1c,  
solid lines). A careful analysis reveals that the typical time  
constant of this decrease depends only weakly on J (Figure 1c, solid 
lines). It is always on the order of the membrane time constant of the 
neurons (20 ms). Note also that by contrast with what is observed 
in the Poisson network, for J=0.5 to 0.8 mV, the spike AC curva-
ture is always positive and peaked around zero time lag (Figure 1c,  
dashed lines).

How do the “strong fluctuations” in the “heterogeneous regime” 
emerge? For increasing J, the spiking activity of single neurons 
becomes increasingly irregular, quantified by the mean coefficient 
of variation (cv) of the interspike interval distribution (Figure 2b). 
At the same time, the distribution of membrane potentials develops 

a very long tail towards negative voltages (Figure 2c). For strong 
coupling (J=0.8 mV), voltage traces of individual neurons show 
long very negative voltage excursions, followed by short bursts of 
action potentials (Figure 2d). This explains the super-Poissonian 
irregularity (CV>1). The super-Poissonian nature of spiking irregu-
larity and the unphysiological negative voltage deviations are prop-
erties related to the linear V

.
-V-relationship of the LIF model. A 

mean-field description of this phenomenon requires self-consistent 
spike train autocorrelations (Lerchner et al., 2006; Wieland et al., 
2015). For other integrate-and-fire neurons e.g. the quadratic- 
integrate-and-fire model, even for very strong coupling J, e.g. 
J = 20 mV, the mean coefficient of variation does not increase 
beyond one and no strongly negative voltage excursions are 
observed. All parameters are as in Figure P1.

Additionally, in order to compare the behavior of spiking and rate 
models below the postulated phase transition, we perturbed rate 
and spiking networks of identical topology in the least stable direc-
tion of the linearized rate dynamics, predicted by Equation 16 in 
the paper (Ostojic, 2014). The resulting rate deviation is projected 
onto the perturbation direction. The perturbation was applied to the 
constant feed-forward input µ

0
 for 2 ms where the standard devia-

tion of the perturbation vector was 1 mV. Figure 1d shows that the 
decay of the perturbation in the rate network slows down near the 
transition, indicating a critical slowing down (Figure 1d, dashed 

Figure 2. (a) Synchrony measure X vs. coupling strength J. Dots: Δ=0.55 ms. Triangles: Δ=0.0 ms for N=10000, C=1000. X is defined as in 
(Hansel & Mato, 2003) on the phases of neurons. Note that zero delay does not increase network synchrony. (b) Coefficient of variation of the 
interspike intervals vs. coupling strength J. (c) Distribution of membrane potentials for different coupling strength J (in mV). (d) Example voltage 
trace for J=0.8 mV shows very negative excursions followed by short bursts of action potentials. Red dots indicate spike times. Numerically 
exact event-based simulation were implemented in Julia programing language. Other parameters are chosen as in (Ostojic, 2014).
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lines). If there were a “mathematically analogous” transition in 
the spiking network, also its perturbation should decay slower as 
the transition is approached. Our result (Figure 1d, solid lines) 
shows that the decay time-scales of the perturbation (averaged over  
1.42 million perturbations) is insensitive to J and it stays close to 
the membrane time constant (similar to solid lines in Figure 1c). 
Longer perturbation durations (10 ms) and weaker perturbation 
strengths (standard deviation 0.1 mV) gave very similar results  
(not shown). All other parameters are chosen as in (Ostojic, 2014).

Conclusion
We therefore conclude that, contrary to what was argued by the 
author, the spiking LIF network studied in (Ostojic, 2014) does 
not exhibit a phase transition to a chaotic state similar to the one 
occurring in the studied rate model. The reported mismatch  
between the average firing rate in this LIF network simulations  
and the mean-field calculation is unrelated to such a transition.
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Zenodo: Reanalysis of “Two types of asynchronous activity in  
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Supplement material

Figure S1. (a) The decorrelation time (τ0 , violet diamond, left y-axis) and amplitude at zero time lag (beta, orange circles, right y-axis) of the 
baseline-subtracted population averaged spike AC are plotted vs. J for the Poisson network. These parameters were obtained by fitting the 
spike AC with ACF(τ) = β/cosh(τ/τ0)2 (see Figure S1b). Inset: the rescaled estimated τ0

-2 (left axis, violet) and β values (orange, right axis) 
for J=0.5, 0.5125, 0.525, 0.5375, 0.55, 0.5625, 0.575, 0.5875 and 0.6 mV, to show that they vanish linearly near the phase transition. (b) The 
non-normalized spike AC can be very well fitted by ACF(τ) = β/cosh(τ/τ0)2. Dashed lines: Simulation results; J=0.525 mV (cyan, right y-axis) 
and J=0.8 mV (dark red, left y-axis): Black solid line: The fits.
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The origin and possible computational role of neuronal noise has been the focus of considerable scientific
effort during the past decades. In particular, the transition to chaos has been extensively studied using
simplified rate-models and much is known about this transition.
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Characterizing the dynamics of spiking neural networks and their transitions is currently a prominent issue
in computational neuroscience. The question is largely non-trivial and riddled with subtleties: numerical
simulations are often delicate to interpret, and theoretical tools to analyze these dynamics are still being
developed. 

The theoretical community have devoted important effort to address this question. Indeed, progresses on

this question would advance our understanding of the brain and its computations. A question of particular
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this question would advance our understanding of the brain and its computations. A question of particular
interest is to characterize phase transitions to chaotic regimes in spiking networks. Indeed, since the
seminal work of Sompolinsky, Crisanti and Sommers  on rate networks, chaotic regime were shown to
have rich dynamics able to support efficient computations and learning (see e.g. Sussillo & Abbott 2009 ).
Whether spiking networks do show a similar transition and thus share similar properties as rate networks
has recently been the focus of several researches and is an important endeavor in computational
neuroscience .

The present paper addresses a few important questions on the interpretations and conceptual approach
of a theoretical article appeared in Nature Neuroscience in 2014  dealing precisely with dynamics and
transitions in spiking networks. That paper argued for the existence a transition in a balanced spiking
network, between an asynchronous and a "new highly fluctuating regime", using in particular transitions of
an associated rate model. The present article comes back to this comparison between spiking and rate
network, and argues that, in contrast with the approach of Ostojic (2014) , it is not possible to extract
accurate information on the spiking network from an analysis of the particular rate network studied, by
showing a mismatch between their qualitative dynamics. Moreover, using relevant numerical quantities to
identify phase transitions (synchrony measure and effect of perturbations), the authors establish the
absence of phase transition in the spiking network, while the rate network does present the hallmarks of
phase transitions. 

The present paper thus contributes to an important scientific debate on the characterization of the
dynamical regimes of spiking networks. This question has been the topic of very recent important works
that advance our understanding of spiking networks and the associated mean-field limits (to cite a few,
see Kadmon & Sompolinsky 2015 , Harrish & Hansel 2015 ,  Goedeke, Schuecker & Helias 2016 ). 

For its contribution to the scientific debate on a timely and important topic in theoretical neuroscience, this
paper shall be helpful to the readers interested in the existence and nature of transitions in spiking
networks.
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