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Abstract

Experimental evidence in both human and animal studies demonstrated that deep brain

stimulation (DBS) can induce short-term synaptic plasticity (STP) in the stimulated nucleus.

Given that DBS-induced STP may be connected to the therapeutic effects of DBS, we

sought to develop a computational predictive model that infers the dynamics of STP in

response to DBS at different frequencies. Existing methods for estimating STP–either

model-based or model-free approaches–require access to pre-synaptic spiking activity.

However, in the context of DBS, extracellular stimulation (e.g. DBS) can be used to elicit

presynaptic activations directly. We present a model-based approach that integrates multi-

ple individual frequencies of DBS-like electrical stimulation as pre-synaptic spikes and infers

parameters of the Tsodyks-Markram (TM) model from post-synaptic currents of the stimu-

lated nucleus. By distinguishing between the steady-state and transient responses of the

TM model, we develop a novel dual optimization algorithm that infers the model parameters

in two steps. First, the TM model parameters are calculated by integrating multiple frequen-

cies of stimulation to estimate the steady state response of post-synaptic current through a

closed-form analytical solution. The results of this step are utilized as the initial values for

the second step in which a non-derivative optimization algorithm is used to track the tran-

sient response of the post-synaptic potential across different individual frequencies of stimu-

lation. Moreover, in order to confirm the applicability of the method, we applied our

algorithm–as a proof of concept–to empirical data recorded from acute rodent brain slices of

the subthalamic nucleus (STN) during DBS-like stimulation to infer dynamics of STP for

inhibitory synaptic inputs.
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1. Introduction

Short-term synaptic plasticity (STP) is an essential property of neuronal networks that is

involved in information processing of the brain [1–3]. STP enables neurons to communicate

with each other through multiple frequency bands [1]. This property can alter the strength of a

synapse based on the history of presynaptic activities and regulates the frequency band of the

transmitted information. According to recent experimental observations in humans and ani-

mals that receive invasive electrical stimulations [2, 4–6], the strength of the synapse–reflected

by the amplitude of the recorded postsynaptic currents in the rat or field potentials in single

unit recordings of the human brain–varies based on the frequency of electrical stimulation.

Such studies demonstrated that high-frequency electrical stimulation induces short-term syn-

aptic depression in the stimulated nuclei [2, 4, 7, 8]. Additionally, theoretical studies [2, 9–11]

utilized different models of STP and showed that synaptic depression during high frequency

DBS is the most prominent feature of suppression of firing rates in stimulated nuclei. Rosen-

baum et al. [11] showed that axonal and synaptic failures can cause synaptic depression in

high frequency DBS. Accordingly, they derived a computational model to reproduce the sup-

pression of β oscillations (13-30Hz) observed in parkinsonian patients during DBS. Alterna-

tively, Farokhniaee et al. [10] and Milosevic et al. [2] used the Tsodyks-Markram (TM) model

of STP to incorporate the impact of different types of synaptic plasticity in a leaky integrate

and fire model to replicate firing patterns of stimulated neurons. The TM model used in these

studies can justify the experimental observation. However, the parameters of stimulation-

induced STP were not well characterized in previous theoretical studies. In the present study,

we propose a novel parameter estimation technique to estimate the dynamics of stimulation-

induced STP by the well-known TM model.

Tsodyks and Markram introduced a phenomenological model that accurately represents

the dynamics underlying facilitation and depression observed in short-term synaptic plasticity

[12, 13]. Although several other models have been developed to describe dynamics of STP, the

TM model and its extended versions [5, 12, 14, 15] have been wildly used due to their simplic-

ity and interpretability of underlying parameters. Generally speaking, one can benefit from

techniques in time series analysis to fit nonlinear models like the TM model to recorded neural

recordings (i.e., postsynaptic potentials/currents) (see [16, 17]). Thus, the parameters of the

TM model can be estimated using least mean square error (LMSE) approaches [12] in which

the parameters are yielded to minimize the mean square error (MSE) between the model out-

put (i.e., the postsynaptic current) and the recorded postsynaptic currents. However, the

LMSE-based algorithms are prone to local minima and might result in low accuracy parameter

estimation [12].

To address the local minima problem, probabilistic approaches are proposed by Costa et al.

[12] to provide an estimation of the posterior distribution of the TM parameters and the

uncertainty of the estimation [12, 13]. More recently, a new method was developed by Ghan-

bari et al. [15, 18] to estimate the TM parameters from extracellular recordings by utilizing a

generalized linear model (GLM) concurrent to the TM model and reproducing the firing rate

of the postsynaptic neuron. Ghanbari et al. [15, 18] also used a different GLM to directly esti-

mate the STP dynamics, a model that can be considered as an alternative to the TM model.

Rossbroich et al. [19] introduced a new synaptic model which represents short-term dynamics

by combining an exponential kernel with a non-linear readout function. The simplicity of this

model enabled applying the concepts of STP in artificial neural networks to examine its role in

learning.

Since the dynamics of the TM model or any other STP models are frequency dependent, it

is crucial to infer STP parameters across different frequencies of presynaptic activations.
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Traditionally, STP parameters were adjusted to fit the model to a neuronal recording during

single frequency stimulations or a single frequency stimulation with one recovery spike after

one second period of silence [12, 15]. Costa et al. [12] showed that using stochastic poisson

point process as the presynaptic stimulation significantly improves the accuracy and the speed

of their probabilistic algorithm. Ghanbari et al. [15, 18] also used a poisson process for the pre-

synaptic spike firing, which is more efficient in estimating the TM parameters. In another

study, by Amidi et al. [20], they developed a statistical method that can estimate the synaptic

parameters of a sparse network of neurons given their connectivity and spiking activity which

are assumed as stochastic processes. Despite the benefits of using stochastic firing patterns,

this type of stimulus is not common in experimental protocols.

Recent studies showed that STP is involved in the underlying mechanism of deep brain

stimulation (DBS) of multiple subcortical regions [2, 8, 21, 22]. The experimental procedure

for studying STP during DBS involves applying multiple individual frequencies of stimulation.

Using only one stimulation frequency cannot provide enough accuracy in estimating all

parameters. For instance, in Costa’s paper [12] the estimation posterior distribution of facilita-

tion time constant is large, which shows the low accuracy of this strategy. Even if the parame-

ters provide consistent output at the specific frequency that is being used for the inference,

they are not reliable to predict the STP for other unobserved stimulation frequencies.

Designing an algorithm for estimating the TM model parameters accurately requires a deep

understanding of the dynamics of the postsynaptic current (PSC) in response to DBS-like

stimulations. Since with DBS at a fixed frequency the inter-pulse intervals remains unchanged,

the PSC reaches a steady-state value after a transient state. Therefore, the DBS-induced PSC

response comprises of transient and steady-state components. Fitting the TM model to DBS

recordings without considering these components might result algorithms that converge to

local minima.

To resolve this issue, we divided the PSCs into transient and steady-state components

which capture different features of the postsynaptic response. It is worth mentioning that the

steady-state values of the PSC for different stimulation frequencies can be calculated analyti-

cally and one can benefit from fast gradient-based optimization algorithms to estimate the TM

model parameters. However, we show in this paper that the estimated parameters based on the

steady-state values of the PSC cannot necessarily replicate the underlying transient response of

the TM model. In other words, the TM model might have similar steady-state values of the

PSC, but different transient responses.

We developed a dual optimization algorithm that incorporates the estimated parameters of

the TM model calculated from steady-state values of the PSC as initial parameters for an algo-

rithm that further estimates those parameters based on the transient responses of the PSCs.

This approach improves the accuracy and speed of the parameter’s estimation. Using extensive

synthetic data, we demonstrated that the performance of the dual optimization algorithm sig-

nificantly outperforms that of conventional methods. Moreover, as a proof of concept, we

applied the algorithm on experimental recordings of the acute slice of subthalamic nucleus

(STN) from a single individual rat in response to stimulation, to infer the synaptic model of

the rat STN and show the accuracy of the model by replicating the experimental observations.

2. Results

2.1. Electrical stimulation pulses as pre-synaptic spikes of a stimulated

neuron

Recent experimental studies in the human brain [2, 4] demonstrated that high frequency DBS

induces STP in the stimulated nuclei. In-vitro experiments in rat have suggested that high
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frequency electrical stimulation of STN induces synaptic depression which can be observed in

the recorded postsynaptic currents of the stimulated nuclei. A recent theoretical framework on

the cellular mechanisms of DBS [2] revealed that DBS-evoked excitatory and inhibitory neuro-

nal responses (of various substructures of the basal ganglia and thalamus in human brain) are

the results of simultaneous activations of convergent afferent inputs. To this end [2], we

assumed that the timing of stimulation pulses can be considered as pre-synaptic (stimulation-

evoked) spikes (the effect of axonal failure can be adjusted in the model) which simultaneously

activate all afferent inputs. Here, we used the TM model to describe stimulation-induced STP.

The TM model is a set of differential equations that simulate the dynamics of short-term facili-

tation (STF), short-term depression (STD), and the postsynaptic current that is generated as a

result of release of neurotransmitters in the synaptic cleft. To cover a wider range of synaptic

dynamics we utilized an extended version of the TM model as follows.

du
dt
¼
U � uðtÞ

F
þ f ð1 � uðt� ÞÞdðt � tspkÞ; ð1Þ

dR
dt
¼

1 � RðtÞ
D

� uðt� ÞRðt� Þdðt � tspkÞ; ð2Þ

dI
dt
¼ �

I
tsyn
þ AuðtþÞRðt� Þdðt � tspkÞ ð3Þ

where u represents the neurotransmitters utilization probability that manifests the STF

dynamics, and r represents the fraction of available neurotransmitters that mimics STD

dynamics. The {f, U, F, D} are the parameters of the model denoting magnitude of facilitation,

baseline release probability, facilitation time constant, and depression time constant, respec-

tively. The effect of each presynaptic action potential (stimulation-evoked spike in this study)

was expressed by the Dirac delta function, firing at t = tspk. The arrival of spikes to the synaptic

terminal triggers the release of the neurotransmitter vesicles and transfers the neuronal signal

to the postsynaptic neuron. The release of neurotransmitter appears on the postsynaptic input

current, regulates the probability of the transmitters release and the number of available vesi-

cles (Eqs 1 and 2). Each of these processes will be recovered to their initial values with their

specific time constants. Since the time constant of these two recovery processes are not equal,

the synaptic efficacy will change for the next spike arriving at the presynaptic terminal. The

postsynaptic current decays to zero with neurotransmitter time constant (τsyn), which is deter-

mined by the type of neurotransmitter and the synaptic connection (e.g. τsyn� 3 ms for gluta-

matergic synapses, and τsyn� 10ms for GABAergic synapses).

In this study, we used excitatory synapses of τsyn� 3 ms to generate the synthetic data. It

is to be noted that our results are valid for both excitatory and inhibitory synapses. Moreover,

we neglected the modulation of the synaptic delay as it is very small compared to the time con-

stants of the STP [23].

2.2. Steady-state and transient response of TM model to electrical

stimulation

To model stimulation-induced STP, we replaced tspk in the TM model with the stimulation

events. In consistent with experimental protocols, the inter-spike time intervals of stimulation

pulses for each individual frequency of stimulation were kept constant. Thus, we simplified the

TM model by only considering the inter-spike interval of stimulation pulses (i.e., a constant

number for each individual frequency of stimulation). We referred to this model as Discrete-
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time Tsodyks-Markram model. The discrete-time TM can be written as:

u½n� ¼ f þ ð1 � f Þ U þ ðu½n � 1� � UÞexp
� 1

FDBS � F

� �� �

; ð4Þ

R½n� ¼ 1þ ðð1 � u½n � 1�Þ � R½n � 1� � 1Þexp
� 1

FDBS � D

� �

ð5Þ

I½n� ¼ I½n � 1�exp
� 1

FDBS � tsyn

 !

þ Au½n�R½n� ð6Þ

where FDBS denotes the frequency of stimulation. u[n], r[n], and I[n] indicate u(tn+), r(tn−),

I(tn+), respectively (as in Eqs 1 and 2), and tn is the time of the n-th stimulation pulse (presyn-

aptic spike). I[n] = I(tn+) is the instantaneous postsynaptic response to n-th stimulation pulse,

reflecting the peak of the postsynaptic current (PSC).

As n increases, the peak of PSC converges to a steady-state value and remains unchanged.

This steady-state value can be formulated based on Eqs 4 and 5 of discrete-time TM model as

follow:

u1 ¼
f þ ð1 � f ÞUexp � 1

FDBS�F

� �

1 � ð1 � f Þ � exp � 1

FDBS�F

� � ; ð7Þ

R1 ¼
1 � exp � 1

FDBS�D

� �

1 � ð1 � u1Þ � exp � 1

FDBS�D

� � ; ð8Þ

I1 ¼
u1 R1

1 � exp � 1

FDBS�tsyn

� � ð9Þ

where u1 and I1 represent the steady-state values of the utilization probability and the peak

of PSC, respectively.

To validate whether the steady-state values calculated by Eq 9 were matched with those

obtained by the TM model (or equivalently the discrete-time TM model), we generated the

PSC of the TM model with a facilitatory synapse given different frequencies of DBS-like pulses.

As it is shown in Fig 1A, the steady-state values of the PSC of both TM and discrete-time TM

models fit those obtained by analytical solutions across all stimulation frequencies. Several

examples of the time traces of the PSC responses and their analytically calculated steady-state

responses (Eq 9) were shown in Fig 1B.

2.3. Inferring STP parameters using steady-state values of postsynaptic

currents

Since the relationship between the steady-state values of PSCs and TM model parameters can

be formulated in an analytical form, one can estimate these parameters by a solving a system of

equations given enough data points (i.e., steady-state PSCs for different stimulation frequen-

cies). However, since these equations are not linear and the recordings are noisy, we utilized

an optimization algorithm to find a set of parameters that minimizes the objective function

defined based on the peak of the PSCs as derived in Eqs 7–9. Here, we used a gradient-based

optimization algorithm, including a trust-region method, to find the optimal set of the param-

eters that minimize the L2 norm of the difference between the steady-state PSC calculated in
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Eq 9 and that obtained experimentally across different stimulation frequencies. This cost func-

tion can be written as:

Steady � sate error ¼
X

freq2FDBS

ðIfreq
1
� Î freq

1
ðyÞÞ

2
ð10Þ

Fig 1. Steady-state responses of postsynaptic current (PSC) in response to different stimulation frequencies. A) The steady-state value of PSCs

calculated by the analytical formula (blue line) accurately fits to the steady-state responses (red dots) of the discrete TM model (calculated for the 100th

stimulation pulse). B) An example of PSC in response to 1, 5, 10, 20, 30, 50, 100, 130, 200 Hz stimulation pulses. The red dashed line represents the steady-

state value of PSCs calculated from analytical solution (see methods). The black plot shows the time trace of postsynaptic PSC in response to the stimulation

calculated from the TM model. The blue dots represent the local peaks of the PSC calculated from discrete TM model. Each panel shows the response of

PSC to 30 stimulation pulses at different frequencies. The steady-state values of both TM and discrete TM models converge to those obtained by analytical

solution.

https://doi.org/10.1371/journal.pone.0273699.g001
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where If req
1

is the steady-state value of PSCs at stimulation frequency of f req, selected from the

set of recorded frequencies, FDBS. Î f req1
ðyÞ is the estimation PSC obtained by the analytical for-

mula (Eqs 7–9) with the parameter set of θ = {f, U, F, D} Using the trust-region algorithm, we

obtain θ that minimizes Eq (10).

To assess the performance of the estimated parameters, we generated a set of synthetic data

comprising five different types of STPs, ranging from strong depression to strong facilitation

dynamics. These parameters were chosen from [7, 10]. Fig 2A shows the distribution of the

estimated parameters using the steady-state-based method, running 100 times with different

initial values. Note that the low variability in the distribution of the estimated parameters rep-

resents the accuracy of the algorithm [15, 18]. The variance of estimated parameters F, and f
were relatively higher than those of U and D. This problem in estimating F, and f were already

reported in [12, 15]. In Fig 2B, we show that the PSCs calculated by estimated parameters

(dashed lines) are closely matching with those generated by the TM model with true parame-

ters (circles) across different stimulation frequencies.

2.4. Dual optimization

2.4.1. Challenge: Parameter estimation based on steady-state responses of postsynaptic

currents does not guarantee a global solution for the TM model. Although the steady-

state-based method can accurately fit the I1 in Eq 9 to the observed steady-state PSCs, the TM

parameters acquired from this method did not always replicate the underlying transient

response. In other words, the steady-state-based method might suffer from local minima. To

better clarify this point, we applied the steady-state-based method to estimate the model

parameters given steady-state PSCs at 8 different frequencies including 5, 10, 20, 30, 50, 100,

130, 200 Hz. With five random initializations, we achieved five different parameter sets that

generate similar steady-state PSCs. However, the transient responses of the TM model using

these parameters were different from each other and from those generated by original (true)

parameters. Fig 3 shows an example in which the steady-state values of the analytically calcu-

lated PSCs (for different stimulation frequencies) fit those calculated by the TM model, but the

transient responses are different.

Using the discrete-time TM model, one can only plot the peak of PSCs versus presynaptic

spike times. As shown in Fig 3, this representation enables us to normalize the timescale of the

PSC response based on stimulation pulse number, which can better illustrate both steady-state

and transient responses of the PSCs for different stimulation frequencies.

2.4.2. Proposed solution: Fitting transient and steady-state responses of postsynaptic

currents. As observed in Fig 3, the transient and steady-state values of PSCs capture different

features of the STP dynamics. Thus, applying either of them alone cannot guarantee accurate

estimation. To benefit from both transient and steady-state values of PSCs, we combined the

fitting algorithm for the state-state values of PSCs with a LMSE-based optimization algorithm

applied to transient response of PSCs. Our proposed algorithm uses the estimated parameters

calculated from steady-state values of the PSCs (see Section 2.2) in response to different fre-

quencies of stimulation as initial parameters for a non-derivative optimization algorithm,

namely, fminsearch (see Methods, Section 3.3.), that estimates the TM model parameters from

the transient responses of the PSCs. By utilizing the new estimates as initial parameters of the

trust-region algorithm for the steady-state values of PSCs, this strategy can continue to sequen-

tially improve the accuracy of the estimated TM model parameters. We use the LMSE method

to estimate the TM model parameters from transient responses of PSCs. The objective
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Fig 2. Parameter estimation of TM model using steady-state responses of postsynaptic currents. (A) Distribution

of estimated parameters of the TM model for 5 different types of synaptic plasticity [15]. The violin plots and black

bars show the distribution of estimated parameters and their true values, respectively. (B) Steady-state PSC in response

to stimulation of different frequencies for true (dots) and a randomly selected set of the estimated parameters (dashed

lines).

https://doi.org/10.1371/journal.pone.0273699.g002
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function can be written as

X

freq2FES

1

Ntrans

XNtrans≜20

n¼1

ðIfreqn � Î freqn ðyÞÞ
2

ð11Þ

where If reqn is the peak value of PSC in response to the n-th stimulation pulse. Î f reqn ðyÞ is the

estimated PSC in the discrete-time TM model with parameter set θ = {f, U, F, D}. The sum

over the stimulation pulses was limited to Ntrans, which indicates the length of the transient

response of the PSC. This number can be defined mathematically as explained in Methods Sec-

tion 3.2. Using various types of plasticity for different stimulation frequencies in our simula-

tions we found that the length of the transient section is between 15 to 20 stimulation pulses,

regardless of the stimulation frequency. Therefore, we used a constant number of 20 stimula-

tion pulses as the length of the transient state in our optimization algorithm. This modification

improves the speed of the LMSE method used for the transient part of the PSC and reduces

convergence time in the dual optimization algorithm.

It is to be noted that conventional LMSE methods use the total length of the PSC response

to estimate the TM model parameters, which can be very time consuming and computation-

ally expensive. Moreover, the LMSE method might only fit to the steady-state values and pro-

vides a suboptimal estimation because the number of data points for steady-state responses is

usually larger than that for transient ones.

The most remarkable advantage of the dual optimization algorithm to the conventional

LMSE method is that the steady-state-based part of the dual optimization algorithm provides a

Fig 3. Mismatch of the transient PSCs in spite of similar steady-state responses. Each color indicates a specific type of STP and each panel represents

PSC response to an individual stimulation frequency. Although the steady-state PSCs of the STP types are similar at all illustrated stimulation frequencies,

the transient phases are remarkably different due to variations in the parameters sets.

https://doi.org/10.1371/journal.pone.0273699.g003
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strong initialization for the transient part. To highlight the impact of such initialization, we

compared the performance of the conventional LMSE method (applied to the full length of

PSC) with a random initial guess compared to the LMSE method (applied to the transient part

of PSC) initialized by a set of parameters obtained from the steady-state-based method. We

added a white noise with a standard deviation of 20 percent of the maximum PSC amplitude

to generate noisy PSCs to assess the robustness of estimation methods in the presence of noise.

The logarithm of the MSE between the TM model output and the original PSC was calcu-

lated for 300 iterations of the fminsearch algorithm. Similar to the MSE, one can measure the

accuracy of the estimated parameters by calculating the L2 norm between these parameters

and their original values. Fig 4A and 4B respectively show that the MSE and the distance mea-

sures calculated by the dual optimization algorithms are significantly lower than those

obtained by conventional LMSE methods. Moreover, strong initialization in the dual optimi-

zation algorithm results in a faster convergence compared to the conventional LMSE method.

Four samples of the estimated parameters, by each method, were chosen from different itera-

tions of the fminsearch algorithm to create PSC response. These responses are plotted against

the original PSC in Fig 4C.

To verify the generalizability of the dual optimization algorithm for different types of STP,

we generated a large synthetic dataset for PSCs by the TM model with 1000 randomly selected

parameter sets. We compared the performance of the dual optimization approach with the

conventional LMSE and the steady-state-based method. Fig 5 shows abstract regression plots

of the three estimation approaches for each parameter of the TM model. In regression plots,

the estimated parameters (y-axis) are plotted against the original ones (x-axis).

As can be seen in Fig 5, the dual optimization approach remarkably increases the accuracy

(the samples in the y-axis have the same values as those in the x-axis) and precision (i.e., stan-

dard deviation reflected by the shaded areas) of all estimated parameters compared to the

other algorithms. Specifically, the parameter F was estimated more accurately by the dual opti-

mization algorithm compared to that by the LMSE method. To better clarify the accuracy and

Fig 4. Comparison between accuracy and speed of convergence for the dual optimization approach and the conventional LMSE approach. (A) The

log MSE of the model output at each iteration of the non-derivative optimization (B) The average distance (norm 2 of [f, U, F, D] vector) between the

estimated parameter set at each iteration and the true parameter set (C) The peak PSC series generated by the estimated parameters at some iterations of the

model.

https://doi.org/10.1371/journal.pone.0273699.g004
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precision of the estimated parameters, we chose one sample of the synthetic dataset together

with corresponding estimated parameters and showed their distributions. In Fig 6A, the mean

and the standard deviation of the estimated parameters indicate the accuracy and precision of

the algorithm, respectively. As it is obvious in this figure, the dual optimization algorithm out-

performs the conventional LMSE and steady-state based methods. Neither MSE-based nor

steady-state-based approaches achieve the optimum solution, and they suffer from local

optima. An example of PSCs generated by the estimated parameters obtained from each algo-

rithm was shown against the synthetic PSCs in Fig 6B at three stimulation frequencies. The

above three algorithms successfully predicted the steady-state values of the PSC, despite the

variability of their estimated parameters. However, as expected, the steady-state-based method

failed to fully predict the transient PSCs. Although the estimated parameters obtained by the

dual optimization method generated fairly close outputs to that of the LMSE method, the

Fig 5. Comparison between the performance of the steady-state-based, the conventional LMSE, and the dual optimization approaches in estimating

parameters of the TM model. Green, blue, and red colors represent the steady-state-based, the conventional LMSE, and dual optimization approaches,

respectively. The thick lines represent smoothed moving average (Hann window) of the estimation. The shaded areas show the 68.2% confidence interval of

the estimated values. As the estimation regression line gets closer to the y = x line the correlation of the estimation and true values increases, and the

estimation is more accurate.

https://doi.org/10.1371/journal.pone.0273699.g005
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estimated parameters of dual optimization method are significantly more precise and closer to

the correct parameters underly the synthetic data.

2.5. An alternative solution in case of lack of information

Although the dual optimization approach has several advantages, the number of data points

required for estimating the parameters must be at least as many as the number of the model

parameters (in the case of four-parameter TM model we require 4 recorded DBS frequencies).

However, the available experimental data (see Section 2.6) only provides the PSC recordings

during 3 DBS frequencies, which can be compensated in fitting the transient part of the PSC

response. To estimate the TM parameters from experimental recordings from 3 frequencies,

we modified the dual optimization by freezing one of the parameters during the fitting of the

steady-state PSC. Since the parameter U has the least effect on changing the steady-state PSC,

we choose it as the frozen parameter in the algorithm. This modified version of the dual opti-

mization approach has an imbalance pace in fitting the steady-state versus the transient part of

the response. Therefore, we should decrease the number of optimization steps in both steady-

state and transient optimizations and increase the iterations between these two steps until con-

vergence. This modification prevents the optimizer from overfitting and becoming trapped in

local minima. Fig 7 shows the distribution of the estimated parameters with 1000 different ini-

tial guesses. Since in optimizing the steady-state the parameter U is frozen, the algorithm can-

not estimate the correct value of the model parameter. However, dual optimization provides a

reliable result compared with the other methods.

Fig 6. Distribution of estimated parameters by the three approaches. (A) Normalized probability distribution function (PDF) of the estimated

parameters by the three approaches. The PDFs have been estimated from the results of applying each algorithm with 1000 different initializations.

Moreover, a 5% white noise has been added to the reference data. The dual optimization approach improved the estimation precision by decreasing the

standard deviation of the PDF and moving the mean of the PDFs closer to the true values. Note that the PFDs of the dual optimization approach are

extremely narrow that might be covered by the true value lines. The x-axis range is also subjective to only provide a clear illustration thus the distance

between the peak of PDFs in the upper right panel (D), is lower than it appears in the figure. (B) The discrete-time TM model output generated by the

estimated parameters that are obtained from the three methods. The plots include the trace of PSC response for both transient state (from stimulus 0 to 10)

and steady-state (last 50 stimuli).

https://doi.org/10.1371/journal.pone.0273699.g006
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2.6. Estimating the TM parameters from in vitro recording of rat STN

neurons

To test the performance of the algorithm in experimental data, we applied the dual optimiza-

tion approach to in vitro recordings of STN from a single juvenile transgenic Wistar rat. In

this experiment (see Methods, Section 3.6.), efferent axons that are connected to STN neurons

were activated by extracellular stimulation pulses. The details of the experimental procedure

are mentioned in [7], and the Methods section.

To apply the dual optimization method on the experimental data, it is necessary to adjust

the hyper-parameters of the algorithm including the number of iterations over transient and

steady states, maximum number of steps for steady-state optimization, maximum steps for

transient optimization, and the factor of penalizing distance from steady-state estimation.

These hyper-parameters were obtained by trial and error to acquire the best results. It is to be

noted that the dual optimization algorithm was robust for a wide range of hyper-parameters

and generated reasonably accurate PSCs.

As shown in Fig 8A, The PSCs generated by the estimated parameters precisely matched to

the PSCs recorded experimentally for three different frequencies of the electrical stimulation.

It is worth highlighting that estimated parameters were consistent across frequencies, confirm-

ing that the TM model with accurate parameters captures the dynamics of STP. Fig 8B shows

the distribution of the TM model parameters by running the algorithm from 100 different ini-

tial guesses. The low variance of the distributions shows that the results are repeatable and the

estimation is precise. Note that we used a logarithmic scale to show the distribution of parame-

ters because the standard deviation of the parameter f was extremely low, and a logarithmic

scale provides a better resolution for lower values.

Fig 7. Distribution of estimated parameters by the three approaches with only 3 recorded responses. (A) Normalized PDF of the estimated parameters

by the three approaches. The PDFs have been estimated from the results of applying each algorithm with 1000 different initial guesses. Moreover, a 5%

white noise has been added to the reference data. The dual optimization approach improved the estimation precision by decreasing the standard deviation

of the PDF and moving the mean of the PDFs closer to the true values. (B) The discrete-time TM model output generated by the estimated parameters (in

case of having the only the observed frequency) that are obtained from the three methods. The plots include the trace of PSC response for both transient

state (from stimulus 0 to 10) and steady-state (last 50 stimuli).

https://doi.org/10.1371/journal.pone.0273699.g007
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2.6.1. Measurement noise in the experimental data. Measurement noise is an inevitable

source of uncertainty in neural recordings that might lead to inaccurate parameter estimation.

Various methods were developed to reduce the impact of such noise (including power line

noise) in signals (e.g., see [24, 25]). In the context of inferring parameters of a dynamical sys-

tem from noisy observation, it was recently shown that using approaches based on numerical

integration (instead of the differentiation) can improve parameter estimation task [26, 27].

Although the recorded PSC might be contaminated by measurement noise, one advantage of

the steady-state estimate, in the dual optimization approach, is that the steady-state PSC in

response to DBS pulses can be inferred from the average (over time) of recorded PSC, making

our approach reasonably robust to the measurement noise.

3. Methods

3.1. Discrete-time Tsodyks-Markram model of STP

Despite intrinsic spike firing of the presynaptic neuron in stimulation-induced STP, it is

assumed that all evoked spikes are equal during each stimulation pulse. Since the presynaptic

firing events happen every 1

FDBS
sec, we can only calculate the state of the variables (u, r, I) at

tspk 2 1

FDBS
; 2

FDBS
; 3

FDBS
; . . . ; n

FDBS

n o
. Hence, the discrete-time TM model or I½n� ¼ I n

FDBS

� �
can

be described by a recursive function. We started by defining the following equations:

uðtÞ ¼ DunsðtnÞ þ unðtÞ; ð12Þ

Dun ≜ uðtn
þÞ � uðtn

� Þ; ð13Þ

unðtÞ≜uðtÞ ; tn� 1 < t � tn; ð14Þ

where u(t) in Eq 12 is defined as summation of the rapid changes Δun at the stimulation arrival

time tn (Eq 13), and the exponential dynamics between the stimulation pulses were denoted as

Fig 8. Inferring the model parameters from the experimental data. (A) The output generated by the estimated parameters perfectly fitted the

experimental data. (B) Distribution of the estimated parameters by 100 trials of the dual optimization approach with different initial guesses. The estimated

parameters are low variance which shows the confidence of the method.

https://doi.org/10.1371/journal.pone.0273699.g008
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un(t) (Eq 14). We calculated both parts as follow to infer Eq 15 for the model states at the time

tn+ which is right after arrival of the n-th stimulation pulse:

Dun ¼ uðtnþÞ � uðtn � Þ

¼ lim
s!0

Z tnþs

tn � s

U � uðtÞ
F

þ f � ð1 � uðtn
� Þ

� �

� dðt � tspÞÞdt

¼ f � ð1 � uðtn � ÞÞ

uðtn
þÞ ¼ f þ ð1 � f Þ � uðtn

� Þ ð15Þ

As the first term inside the integral (Eq 15) has no Dirac delta component, it can be ignored

in calculating the integral in the narrow boundaries of tn−σ to tn + σ. A similar approach can

be applied for the state value between to stimulation pulses to infer the Eq 16 which shows for-

mulate u(tn−) based on the u(tn−1
+):

unðtÞ ¼
Z tn �

tn� 1
þ

U � uðtÞ
F

þ f � ð1 � uðtn
� ÞÞ � dðt � tspÞ

� �

dt

¼

Z tn

tn� 1

U � uðtÞ
F

dt

¼ U þ ðuðtn� 1
þÞ � UÞexp

� ðt � tn� 1Þ

F

� �

;

unðtn � Þ ¼ unðt ¼ tn � Þ

¼ U þ ðuðtn� 1
þÞ � UÞexp

� ðtn � tn� 1Þ

F

� �

;

unðtn � Þ ¼ U þ ðuðtn� 1
þÞ � UÞexp

� 1

FDBS � F

� �

:

ð16Þ

Similar to Eq 15, the Dirac delta function in the second component of the integral in Eq 16

has zero value in the boundary of tn−1
+ to tn− thus that term can be removed. By combining

Eqs 15 and 16, we achieve the recursive relation between u(tn+) and u(tn−1
+) which can be used

as the definition of the discrete-time TM model (Eq 18):

uðtn
þÞ ¼ f þ ð1 � f Þuðtn

� Þ;

uðtn
þÞ ¼ f þ ð1 � f Þ U þ ðuðtn� 1

þÞ � UÞexp
� 1

FDBStFac

� �� �

: ð17Þ

u½n�≜uðtnþÞ ;

u½n� ¼ f þ ð1 � f Þ U þ ðu½n � 1� � UÞexp
� 1

FDBStFac

� �� �

: ð18Þ

A similar process can be done on the state variable r(t). Similarly, we started by defining the

following equations:

rðtÞ ¼ Drn þ rnðtÞ; ð19Þ

Drn ≜ rðtn
þÞ � rðtn

� Þ; ð20Þ

rnðtÞ≜rðtÞ ; tn� 1 < t � tn; ð21Þ
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where r(t) in Eq 19 is the summation of the rapid changes Δrn at the stimulation arrival time tn
(Eq 20), and the exponential dynamics between two stimulation pulses were denoted as rn(t)
(Eq 21). We calculated both parts as follow to infer Eq 22 for the model states at the time tn+

which is right after arrival of the n-th stimulation pulse:

Drn ¼ rðtnþÞ � rðtn � Þ

¼ lim
s!0

Z tnþs

tn � s

1 � rðtÞ
D

� uðt� Þrðt� Þdðt � tspkÞ
� �

dt;

rðtn
þÞ ¼ rðtn

� Þ ð1 � uðtn
� ÞÞ; ð22Þ

A similar approach can be applied for the state value between two stimulation pulses to cal-

culate r(tn−) based on the r(tn−1
+). By replacing r(tn−) and u(tn−) in the Eq 22, discrete represen-

tation of the state r can be calculated as follow. Note that similar to Eq 16, the second term

inside the integral in Eq 22 is removed because the Dirac delta function has zero value within

the integral boundaries:

rnðtÞ ¼
Ztn
�

tn� 1
þ

1 � rðtÞ
D

� uðt� Þrðt� Þdðt � tspkÞ
� �

dt

¼

Z tn

tn� 1

1 � rðtÞ
D

dt

¼ 1 � ð1 � rðtn� 1
þÞÞexp

� ðt � tn� 1Þ

D

� �

;

rðtn
� Þ ¼ 1 � ð1 � rðtn� 1

þÞÞexp
� ðtn � tn� 1Þ

D

� �

;

rðtn
� Þ ¼ 1 � ð1 � rðtn� 1

þÞÞexp
� 1

FDBS � D

� �

; ð23Þ

r½n�≜rðtn � Þ;

r½n� ¼ 1 � ð1 � r½n � 1� � ð1 � u½n � 1�ÞÞexp
� 1

FDBS � D

� �

: ð24Þ

The discrete-time TM model will be completed by:

I½n� ¼ I½n � 1�exp
� 1

FDBS � tsyn

 !

þ Au½n�r½n�: ð25Þ

3.2. Calculating the steady-state value

By stimulating the presynaptic neuron with homogeneous pulses and having homogenous

action potential at the synaptic terminal the postsynaptic currents in response to these action

potentials settle down to a steady-state value. This value is a function of TM model parameters

and the stimulation frequency. We defined the steady-state values of r, u, and I in the discrete
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TM model as follow:

u½n� ¼ u½nþ 1� ¼ u1; ð26Þ

R½n� ¼ R½nþ 1� ¼ R1; ð27Þ

I½n� ¼ I½nþ 1� ¼ I1 ð28Þ

where tn represents the time of the n-th spike and u1, r1, and I1 are the steady-states of the

discrete-time TM model. The steady-state value of postsynaptic current can be calculated:

u1 ¼
f þ ð1 � f Þ � U � 1 � exp � 1

FDBS�F

� �� �

1 � ð1 � f Þ � exp � 1

FDBS�F

� � ; ð29Þ

r1 ¼
1 � exp � 1

FDBS�D

� �

1 � ð1 � u1Þ � exp � 1

FDBS�D

� �

0

@

1

A ð30Þ

I1 ¼
A� u1 � r1

1 � exp � 1

FDBS�tsyn

� � ð31Þ

3.3. Optimization and cost function

To fit the model output to the experimental data or synthetic reference data, the parameter

space should be explored to find a set of parameters that generates the most similar output to

the reference data. Assuming that the noise/measurement error has a Gaussian distribution,

we used MSE to calculate dissimilarity between the model output and the reference. Since we

inferred the analytical formula for the steady-state response PSC, calculating its gradient is fea-

sible, therefore we can apply gradient-based optimization algorithms. However, since the tran-

sient response of the PSC is provided by simulating the TM model, calculating the derivative

of the MSE over transient PSC is computationally intensive and impractical. Therefore, we

used a non-derivative optimization algorithm for minimizing this error.

To minimize the error of the steady-state estimation, we applied the Trust-Region optimi-

zation methods using built-in functions of MATLAB software. This method uses first- and sec-

ond-order derivatives of the cost function to calculate Tylor estimation of the values of the loss

function in a neighborhood points of the current parameters. It then updates the parameters

to the point with the least value and continues until the convergence or the maximum number

of iterations reaches. The trust-region algorithm is faster than non-derivative search-based

algorithms, because non-derivative algorithms call the loss function and wait for its results for

every single point. While the trust-region algorithm only calculates the first and second deriva-

tives and estimates all the other points using matrix multiplications all at once [28]. This

makes the trust-region algorithm faster than non-derivative search-based algorithms.

Although derivative-based algorithms are generally faster than non-derivative search-based

algorithms, they require the mathematical formula of the loss function to calculate the deriva-

tives. We successfully calculated the mathematical formula for the steady-state values of post-

synaptic currents in the TM model. However, the equations for the transient state are more

complex and we cannot employ the trust-region method or any other derivative based
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algorithms for fitting this part. Instead, we used Nelder-Mead optimization to optimize the

transient part of the PSC response. The Nelder-Mead method starts from a set of random pos-

sible answer and evaluates them by calling the loss function. The algorithm starts with a set of

possible answers and optimizes the set by replacing the worst member with a better value. The

substitute point is determined by moving the worst point toward the average point of all other

members of the set. This updating continues until reaching the convergence or the maximum

number of iterations. This algorithm requires function evaluation at each step and typically it

is not as fast as derivative-based algorithms [29, 30].

3.4. Detecting the transient PSCs

As we described in the result section, transient and steady-state parts of the PSC response have

different sensitivity to TM parameters, which introduce an error on the whole time trace of the

response and decrease the estimation accuracy of some parameters. Therefore, to fit both of

these parts correctly in the dual optimization algorithm, we calculated the transient part of

postsynaptic response for each individual frequency of electrical stimulation as follow:

Transient PSCs ¼ fI½1�; I½2�; . . . ; I½Ntrans� j 8n � Ntrans ; I½n� � I½n � 1� < 0:05� I½n � 1�g ð32Þ

where Ntrans is referred to the stimulation number corresponding to the end of the transient

part of the PSC. Ntrans is defined as the least n that for every n after it the PSP has less than %5

changes. The criterion defined in Eq 32 must be applied to the reference data and can be

adjusted as a hyper-parameter of the algorithm. In both synthetic and experimental data, we

observed that the steady-state part begins from the Ntrans = 15 for most of the stimulation’s fre-

quencies. Thus, Ntrans = 15 can be considered as a rule of thumb for distinguishing between

transient and steady-state parts of the PSC.

3.5. Iterative dual optimization algorithm

Since the sensitivity of each part of the response to the model parameters is different, overfit-

ting the model to any of these parameters interferes with the estimation of parameters with

lower sensitivity. Therefore, we have to constrain both optimizers (for transient and steady-

state parts of the PSC) to avoid overfitting. To control the optimizers, we constrain the number

of iterations inside each of them and repeat the algorithm of fitting the steady-state and tran-

sient state multiple times. Moreover, we penalize the distance from the initial guesses in fitting

the transient part to eliminate big jumps from the values estimated by the steady-state-based

part.

3.6. Methods for experimental data

Methods for collection of experimental data shown in Fig 8 have been previously described in

detail in [7]. 300-μm-thick brain slices containing the STN were cut from acutely isolated rat

brains. The slice is provided from a juvenile (P14-P21) transgenic Wistar rat. Whole-cell

patch-clamp recordings were performed in a submerged-type recording chamber continu-

ously perfused with artificial cerebrospinal fluid (containing the following (in mM): 126 NaCl,

2.5 KCl, 1.2 NaH2PO4, 11 glucose, 19 NaHCO3, 2.4 CaCl2, 1.2 MgCl2) held at 34˚C. Somatic

whole-cell patch-clamp recordings were performed using pipettes pulled from borosilicate

glass capillaries (2 mm outer/1 mm inner diameter) on a horizontal puller (P-97, Sutter Instru-

ment). The pipettes were filled with an intracellular solution containing the following (in

mM): 145 K-gluconate, 6 KCl, 10 HEPES, 0.2 EGTA, 5 Na2-phosphocreatine, 2 Na2ATP, 0.5

Na2GTP, and 2 MgCl2 (290–300 mOsm, pH adjusted to 7.2 with KOH). Filled pipettes had a
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resistance of 3–7 MΩ. For extracellular stimulation, a tungsten bipolar electrode (tip diameter

30 μm) was placed in the rostral part of the STN. The electrode was lowered 50 μm into the

slice. For the experiment shown stimulation intensity was set to and 500 μA, with a pulse dura-

tion of 100 μs. To study frequency-dependent dynamics of synaptic inputs to STN neurons, sti-

muli were applied at 10, 20, and 130 Hz. Each stimulation train was applied for 1 s, and the

stimulation interval was followed by a 4 s break. Thus, the total sweep duration was 5 s. A total

of 10 sweeps were recorded for each stimulation frequency. The four neurons displayed were

recorded simultaneously in a single experiment.

3.7. Offline analyses

To fully replicate the PSC in the experimental study, we convolved a double exponential kernel

to match with the empirical recordings. Fig 9 demonstrates the double exponential kernel that

is used for replicating the PSC compared to the experimental recordings. Note that the record-

ings consist of a compound effect of the excitatory and inhibitory trans-synaptic inputs. This

could potentially challenge the design of the estimation algorithm because excitatory and

inhibitory inputs have different STP dynamics, and their compound effect cannot necessarily

be separated. As discussed in [7], the rat STN consists of multiple regions that have different

proportions of excitatory and inhibitory inputs. Therefore, to minimize the problem of com-

pound inputs, we chose the recordings with dominant inhibitory inputs. Furthermore, Steiner

et al. [7] proved experimentally using neuroreceptor blockers, that the excitatory and inhibi-

tory responses appear in the recorded PSC response, as separatable negative and positive

peaks, respectively. Since the kernel of excitatory PSCs are different from that of the inhibitory,

we can easily distinguish between these two responses by a visual analysis of the recorded

Fig 9. Generating the PSC kernel using a double exponential function. The red line shows the estimated kernel

generated by a double exponential function. Black line represents the experimental recordings of the acute slice of the

rat STN. A is the stimulation artifact; B is the positive peak of representing the inhibitory response and C is the

negative (reversed) peak representing the excitatory response. The difference between PSC signal and the estimated

PSC kernel, which is maximized at the reversed excitatory peak, can be considered as the effect of the excitatory inputs.

https://doi.org/10.1371/journal.pone.0273699.g009
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signal. The estimated PSC kernel and the recorded signal of the PSC in response to a single

DBS pulse is shown in Fig 9. The chosen trial has predominant GABAergic inhibitory inputs,

which appeared as the positive peak in the signal. The effect of the excitatory input is slower

than that of inhibitory, which is observable as a reversed peak in the PSC current.

By separating the inhibitory response from the excitatory, we can model the STP dynamics

with the four-parameter Tsodyks-Markram model. Although there is more than one excitatory

synapse responsible for the generation of the PSC, it is assumed that all excitatory synapses fol-

low the similar STP dynamics. In [2], the presynaptic inputs were simulated by multiple Tso-

dyks-Markram models and the effect of axonal failure could be adjusted in the model [2, 11].

In this method, the effect of axonal failure can be easily incorporated by the absolute synaptic

activation parameter (A in Eq 3).

The code for the dual optimization algorithm is available at: https://github.com/nsbspl/

Daul_Optimization.

4. Discussion

STP induced by DBS-like stimulation was observed in both human and animal studies [2, 7].

By utilizing the well-known Tsodyks and Markram (TM) model of STP, we developed a novel

algorithm to infer model parameters from the postsynaptic current (PSC) of a stimulated neu-

ron in response to DBS-like stimulations with different constant frequencies. We used concep-

tual findings from a recent theoretical work [2] on the cellular mechanism of DBS to propose a

parameter estimation algorithm that incorporates stimulation pulses as pre-synaptic spikes.

Unlike other model-based estimation methods for STP, we distinguished between the steady-

state and transient responses of recorded PSCs and estimated TM model parameters in two

steps. First, the steady-state PSC was calculated for the extended TM model (four-parameter

TM model) analytically. We fit the analytical steady-state PSC to that obtained from recorded

PSCs from stimulations with different frequencies in the interval of [0–100] Hz. Second, we

optimized TM model parameters by fitting the transient part of the model to that obtained by

PSCs across all stimulation frequencies utilizing parameters estimated in the first step as initial

values of a non-derivative optimization algorithm. This two-step algorithm was referred to as

dual optimization algorithm.

Using extensive synthetic data, we demonstrated that the performance of dual optimization

method was significantly better than that of conventional LMSE method. Specifically, we

showed that the dual optimization algorithm reliably estimated TM parameters in the presence

of noise. To further validate the performance of dual optimization algorithm for experimental

data, we applied our algorithm to PSCs recorded from acute rodent brain STN slices during

DBS-like stimulation with three different frequencies [7]. We showed that reconstructed PSCs

with estimated parameters were accurately fit to recorded PSCs from STN neurons with inhib-

itory-dominant inputs. The proposed dual optimization algorithm provided a strategy to illus-

trate the dynamics of stimulation-induced STP with the TM model. As the TM model is a

phenomenological model, the estimated stimulation-induced STP dynamics describe the

interaction between activated presynaptic afferents and postsynaptic responses of the stimu-

lated neuron. Therefore, it is essential to obtain STP parameters that are consistent across dif-

ferent frequencies of stimulation. To the best of our knowledge, the dual optimization

algorithm is first in its kind that infers stimulation-induced STP from recorded PSCs in

response to different frequencies of stimulation.

Although the idea of dual optimization has not been directly used in the previous works,

Costal et al. [12] showed that increasing the length of the stimulation can increase the accuracy

of the estimated parameters of the TM model. However, after 20 to 50 pulse the increase of
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stimulation length did not improve the estimation accuracy. This observation is consistent

with the fact that the PSC response to DBS-like stimulations reach a steady-state value after

around 20 pulse and no more information adds to the observation. It can be shown that the

transient- and steady-states of a PSC response to DBS-like stimulation have various sensitivity

to the TM model parameters. As shown in Fig 10, decreasing the depression time constant, D
(see Eq 2), does not significantly affect the transient part of the PSC response, but it increases

the steady-state value. On the other hand, changing the facilitation time constant, F (see Eq 1),

greatly affects the transient part of the PSC while the steady-state part remains almost

unchanged.

Since the steady-state of the PSC is less sensitive to the facilitation time constant (parameter

F), the MSE cost function defined on the whole length of the PSC is less sensitive to this

parameter. Thus, for the PSC responses with long lengths (approximately with more than 30

pulses), the conventional LMSE method is not successful to infer this parameter accurately.

Furthermore, Costa et al. [12] showed that using a Poisson process as the presynaptic simu-

lation significantly improves the accuracy of the parameter estimation. It was discussed that

the Poisson train improves the accuracy of estimated parameters because, unlike the periodic

train, the PSC does not reach a steady-state value. Although available DBS-like stimulations in

Fig 10. The sensitivity of the transient and steady-state section of the postsynaptic response to changing the TM

model parameters. The postsynaptic response of the discrete-time TM model to 50 Hz periodic pulse stimulation. The

parameters F, and D are changed to demonstrate the sensitivity of the different sections of the PSC response to these

parameters. The transient section is considered as the first part of the response that maximum EPSC is still changing

for each spike. The steady section is the following part that PSCs converge to a value and remain unchanged.

Considering θ = [F, D, f, U] the vectorized form of the parameters: θblue = [2, 0.05, 0.1, 0], θred = [1, 0.05, 0.1, 0] and

θpurple = [2, 0.5, 0.1, 0]. Considering the blue trace as the reference case changing decreasing D leads to increase in the

steady-state value in the red trace. As it is shown despite changing D the transient sections of blue and red traces are

almost similar. The purple trace is generated by a larger F which leads to change in the transient state of the PSC

response while having a steady-state value close to that of the blue trace.

https://doi.org/10.1371/journal.pone.0273699.g010
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the present study had constant inter-pulse intervals (similar to periodic stimulations), incorpo-

rating all individual frequencies of stimulations in the dual optimization algorithm enhanced

the accuracy of estimated parameters.

Despite the robustness of the dual optimization algorithm for estimating parameters of the

TM model, characterizing dynamics of stimulation-induced STP may involve several chal-

lenges and limitations. First, the TM model parameters underlying stimulation-induced STP

do not necessarily describe the dynamics of specific types of STP which exist in various synap-

ses of stimulated neurons. As discussed in [2], each DBS pulse can simultaneously activate var-

ious presynaptic inputs of the stimulated nucleus, thus one cannot expect that the estimated

TM model parameters during electrical stimulation lie within a range of STP values calculated

for glutamatergic and GABAergic synapses in double cell patch clamping experiments [6].

Nevertheless, using a well-known model for STP to characterize changes to postsynaptic cur-

rents (or potentials) of a neurons in response to different frequencies of electrical stimulation

provides a standard approach to represent dynamics of STP induced by these stimulations.

Second, electrical stimulation is not the only source of variation in the recorded postsynap-

tic responses, the stochasticity of vesicle release and changes in the excitability of the postsyn-

aptic neuron might alter the statistics of the postsynaptic responses [15]. Ghanbari et al [15]

studied how these sources of variability affect estimation of the STP parameters (given presyn-

aptic and postsynaptic spikes) by introducing each of these variables separately [15]. It was

shown that changes in the excitability of the postsynaptic neuron–modelled by after-hyperpo-

larization current to the postsynaptic neuron–does not significantly change STP estimation

whereas stochastic vesicle release can lead to biases in the estimated STP parameters. To vali-

date the accuracy of estimated STP parameters in the present study, we added white noise with

a standard deviation of 20 percent of the maximum amplitude of the PSC and tested if the dual

optimization algorithm reliably estimated STP parameters. As shown in Fig 4, the STP param-

eters estimated by the dual optimization algorithm were accurate, and significantly more reli-

able than those obtained by conventional LMSE algorithm in the presence of noise.

In addition to abovementioned sources of variability in the postsynaptic responses, the

impact of other types of plasticity (e.g., long-term depression [31] and long-term potentiation

[32]) and other postsynaptic factors like desensitization [33, 34], depolarization blockade [35],

or saturation of postsynaptic receptors [36] can vary synaptic weights in time scales that are

different, but not necessarily distinct, from those related to the STP. Therefore, these factors

influence the interaction between the pre- and postsynaptic neurons which cannot be captured

by the dynamics of STP solely. It was suggested that alternative models of plasticity with less

biophysical constraints like generalized bilinear model [15] and linear-nonlinear cascade

model [19] could provide more flexible representation of STP dynamics compared to the TM

model. Despite such limitations, the conventional three-parameter TM model is sufficient to

describe STP in many cases [12]. Here, we used a four-parameter TM model [14] that provided

more degrees of flexibility compared to the conventional one.

In the context of electrical stimulation with constant frequencies, we discussed that at least

4 different individual frequencies were required to reliably estimate the TM model parameters

from the steady state response of the recorded PSCs. However, the proposed dual optimization

algorithm can still be useful when less than 4 individual frequencies of electrical stimulation

are available. As demonstrated in Section 2.6, one can freeze the parameter U in the four-

parameter TM model and run the dual optimization algorithm with more iterations between

the steady-state and transient parts of the postsynaptic responses to achieve sufficiently accu-

rate estimates. Using the synthetic dataset, we demonstrated that this modification does not

affect the accuracy of the algorithm.
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