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Abstract

Assessment of differential gene expression by qPCR is heavily influenced by the choice of

reference genes. Although numerous statistical approaches have been proposed to deter-

mine the best reference genes, they can give rise to conflicting results depending on experi-

mental conditions. Hence, recent studies propose the use of RNA-Seq to identify stable

genes followed by the application of different statistical approaches to determine the best

set of reference genes for qPCR data normalization. In this study, however, we demonstrate

that the statistical approach to determine the best reference genes from commonly used

conventional candidates is more important than the preselection of ‘stable’ candidates from

RNA-Seq data. Using a qPCR data normalization workflow that we have previously estab-

lished; we show that qPCR data normalization using conventional reference genes render

the same results as stable reference genes selected from RNA-Seq data. We validated

these observations in two distinct cross-sectional experimental conditions involving human

iPSC derived microglial cells and mouse sciatic nerves. These results taken together show

that given a robust statistical approach for reference gene selection, stable genes selected

from RNA-Seq data do not offer any significant advantage over commonly used reference

genes for normalizing qPCR assays.

Author summary

RTqPCR is a powerful technique that is widely used to quantify gene expression in

research and diagnostics of different diseases. The technique involves making multiple

copies (amplification) of a specific target DNA. The amplified target DNA binds to a
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molecule that emits fluorescence upon binding. The extent of fluorescence correlates to

the amount of DNA present. To precisely quantify this fluorescence (and thus the quanti-

ties of target DNA), internal control genes also called as reference genes need to be deter-

mined. Such genes, in principle, do not have varied expression across samples and would

exhibit the same fluorescence in all samples. They can thus be used to normalize the

expression of the Target DNA. Unfortunately, choosing the right reference gene is very

tricky and poor choice of reference genes results in unreliable data both in research and in

diagnostics. In this study, we validate a statistical approach to find stably expressed refer-

ence genes for any experimental setting using a given set of candidates. We compare our

approach to RNA sequencing which quantifies the expression of thousands of genes at the

same time. We highlight the advantages of our approach which is cost effective and saves

a lot of time when compared to sequencing.

Introduction

Normalization of relative gene expression using qPCR assays relies crucially on the use of ref-

erence genes that exhibit minimal variation across experimental conditions [1–5]. Thus, the

choice of reference genes has a significant bearing on the normalized profiles of target genes.

In the last two decades, many statistical approaches have been proposed to help researchers

identify stable reference genes from a given set of candidates [6–11]. However, the calculations

and assumptions employed in these approaches fundamentally differ and could give rise to

conflicting results [12]. To address these concerns, we recently reviewed these approaches and

following a comparison of existing methods including Coefficient of Variation (CV) analysis,

GeNorm, NormFinder, pairwise ΔCT method and Best Keeper, we proposed an effective

qPCR analysis workflow [12]. Our approach combining visual representation and statistical

testing of intrinsic variation, CV analysis for identifying overall reference gene variation and

the NormFinder algorithm, proved to be effective in determining stable reference genes from a

given set of candidates.

However, more recently, a growing number of studies have proposed the use of bulk RNA-

Seq to screen for stable reference genes followed by the application of existing statistical meth-

ods to obtain the “best” reference genes to normalize qPCR assays [13–21]. In these studies,

the intrinsic validity of screening for reference genes directly from the bulk RNA-Seq data is

clear, as they have used RNA-Seq to identify stable reference genes in an effort to standardize

the use of certain genes for their experimental setting. Although bulk RNA-Seq data analysis

pipelines quantify differential expression of target genes, performing a qPCR confirmation is

often prudent as genes that exhibit shorter transcript lengths and lower expression levels

exhibit discordant results between RNA-Seq and qPCR [22,23]. This is largely because fre-

quently used RNA-Seq normalization strategies are prone to overall and sample specific tran-

script-length bias wherein longer transcripts are attributed with more counts regardless of

expression levels [24,25]. Moreover, in a standard RNA-Seq experiment employing 3–4 biolog-

ical replicates per condition, a vast majority of the reads arise from a small set of highly

expressed genes and thus there is an inherent discrimination towards genes that are less

expressed in the system [26,27]. These factors are mostly likely at play when discordant differ-

ential expression results are obtained between qPCR and RNA-Seq [23]. Thus, the selection of

qPCR reference genes from RNA-Seq data is not the best strategy as it can potentially lead to

sub-optimal candidates. Moreover, the cost-benefit trade off in performing RNA-Seq to iden-

tify stable reference genes for qPCR assays is negligible. This approach is also not always feasi-

ble, especially in cases of sample scarcity or when dealing with poor yields of RNA. It is
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particularly relevant when we are interested in only a small number of target genes whose

expression can be assessed solely by qPCR. However, although qPCR is not prone to the same

biases as RNA-Seq, the strongest impediment to performing reliable qPCR data analysis is

poor reference gene selection for a given experimental setting. Thus, the approach used to vali-

date reference genes is of utmost importance and it should ideally not be dependent on a spe-

cific source of “stable” candidates. It is also advantageous if suitable reference genes can be

identified by the same technology rather than RNA-Seq.

In this study, we address these concerns by demonstrating that the statistical approach

employed to validate reference genes is more important than the preselection of stable genes

from bulk RNA-Seq data. Specifically, with the right statistical approach, reference genes fil-

tered from any conventional set of candidates generate the same differential expression results

when compared to stable genes preselected from bulk RNA-Seq data. Furthermore, the results

obtained are also comparable with the fold changes observed in RNA-Seq for the genes that we

tested in qPCR. These results taken together demonstrate that the preselection of candidate

reference genes is not of any significance for data normalization and hence, RNA-Seq data is

not an essential requisite to obtain robust reference genes for qPCR data normalization.

Materials and methods

Ethics statement

All aspects of animal care and animal experimentation were performed in accordance with the

relevant guidelines and regulations of INSERM, Université de Paris, and approved by the

French National Committee of Animal experimentation and ethics.

Sample procurement

iPSC Microglia. The CRISPR/Cas gene edited TREM2 knock-out iPSC line BIONi010-C-

17 (TREM2 KO) and its isogenic control BIONi010-C (TREM2 WT) were purchased from

EBISC and maintained at 37˚C 5% CO2 with E8-Flex medium. Microglia were differentiated

from these lines as previously described [28]. In short, using AggreWell 800 (34850, StemCell

Technologies), embryonic bodies (EBs) were prepared from iPSCs in E8-Flex medium supple-

mented with 50 ng/ml VEGF (PHC9394, ThermoFisher), 50 ng/ml BMP4 (120-05ET, Pepro-

tech), and 20 ng/ml SCF (300–07, PeproTech) for 3 days with 75% medium change each day.

EBs were transferred to a T75 flask in X-VIVO15 (BE02-060F, Lonza) medium supplemented

with 25 ng/ml IL-3 (PHC0031, ThermoFisher), 2 mM Glutamax (35050061, ThermoFisher),

100 ng/ml M-CSF (300–25, PeproTech), and 0.055 mM β-mercaptoethanol (31350–010, Ther-

moFisher). Precursor cells started to emerge from the EBs approximately 4 weeks later, and

were collected by gently tapping the flask. These precursor cells are differentiated to microglia

over 7-days in DMEM F:12, Neuronal basal medium plus (1:1) supplemented with 100 ng/ml

IL-34, 10 ng/ml GM-CSF, and 100 ng/ml M-CSF.

Sciatic nerves. To assess the stability of commonly used reference genes during myelina-

tion of the sciatic nerves, P3 and P21 C57BL6/J mice (3 Males and 4 females per time point)

were dissected and the sciatic nerves were harvested for RNA extraction. The RNA-seq data

for these time points was mined from a publicly available dataset as explained in the “Bulk
RNA-seq and data analysis” section below.

Total RNA extraction

iPSC microglia. Approximately 2x105 iPSC derived microglial cells were harvested using

TRIzol reagent (Ambion Life Technologies 15596018) for total RNA isolation. Total RNA was
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isolated using Direct-ZolTM RNA microprep columns (Zymo research R2062) according to

the manufacturer’s protocol.

Sciatic nerves. Total RNA was extracted from sciatic nerves using 1 mL of TRIzol reagent

(Ambion Life Technologies 15596018) on ice using the manufacturer’s instructions with slight

modifications. Briefly, 100% ethanol was substituted for isopropanol to reduce the precipita-

tion of salts. In addition, RNA precipitation was carried out overnight at -20˚C in the presence

of glycogen (0.02mg/mL final concentration). The following day, precipitated RNA was pel-

leted by centrifugation and washed at least 3 times with 70% Ethanol to eliminate any residual

contamination. Tubes were then spin-dried in a vacuum centrifuge for 5 minutes and RNA

was resuspended in 20 μL of RNA resuspension buffer containing 0.1mM EDTA, pH 8. RNA

was then stored at -80˚C till RTqPCR.

RNA quality, integrity, and assay

iPSC Microglia. RNA quantity was assayed using UV spectrophotometry on Nanodrop

One (Thermo Scientific). Optical density absorption ratios A260/A280 & A260/A230 of the

iPSC microglia samples were 2.0 (±0.1 SD) and 2.1 (±0.1 SD) respectively. RNA integrity was

verified using Agilent bioanalyzer. All the samples exhibited a RIN score� 9 and were subse-

quently used for downstream analysis including paired-end bulk RNA-seq and qPCR.

Sciatic nerves. RNA quantity was assayed using UV spectrophotometry on Nanodrop

One (Thermo Scientific). Optical density absorption ratios A260/A280 & A260/A230 of sciatic

nerve samples were 1.84 (±0.04 SD) and 1.54 (±0.53 SD) respectively. RNA integrity was veri-

fied using Agilent bioanalyzer at the Genomics Platform at Institut Cochin, Paris. All samples

exhibited a RIN score� 8.8 and were used for qPCR analysis.

Bulk RNA-seq and data analysis

For the iPSC samples, total RNA was extracted and sent to Genewiz, Germany for paired-end

bulk RNA-seq. The raw data, final processed data and the metadata are available in the GEO

database (GSE178924). For the sciatic nerves, bulk RNA-Seq data was obtained from a previ-

ously published study [29]. The raw data can be accessed at the Zenodo repository (https://

zenodo.org/record/1154250). Only the WT datasets at P3 and P21 were mined and re-ana-

lyzed. Fastq files were aligned using the STAR algorithm (version 2.7.6a). Reads were then

counted using RSEM (v1.3.1) and the statistical analyses on the read counts were performed

with the DESeq2 package (DESeq2_1.28.1) to determine the proportion of differentially

expressed genes between the two experimental conditions [30]. The standard DESeq2 normal-

ization method (DESeq2’s median of ratios with the DESeq function) was used, with a pre-fil-

ter of reads and genes (reads uniquely mapped on the genome, or up to 10 different loci with a

count adjustment, and genes with at least 10 reads in at least 3 different samples). The biomaRt

package (v2.44.4) was used to substitute gene names for the Ensembl IDs in the count matrix

[31]. The DESeq2 pipeline was used to fit a generalized linear model (GLM) for the expression

of each gene relative to the experimental groups. To determine the variation in gene expres-

sion, the dispersion value computed by the GLM was tabulated into the results data frame.

Square root of dispersion was calculated using sqrt function from base functions in R (v4.0.2).

The coefficient of dispersion (CVfromDisp) was calculated by multiplying square root of dis-

persion by 100.

Reference gene selection from RNA-Seq

The data frame was subjected to 4 filtration methods to select stable genes in both the iPSC

and Sciatic nerve datasets. First filtration was done by retaining all the genes with padj value
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above 0.05. The resulting data frame was ordered based on the log2FoldChange (log2FC) col-

umn and the second filtration was performed by retaining all the genes with log2FC between

-0.1 to 0.1 implying negligible intergroup variation. Third filtration was done by retaining all

the genes that lie in the CVfromDisp range between 10 & 20. The fourth and last filtration was

performed by retaining all the genes that exhibited a Basemean value greater than or equal to

500 implying sufficient expression for qPCR detection.

Once these criteria were applied, 683 genes were obtained (basemean values ranging from

500 to 123000) in the iPSC dataset and 42 genes were obtained (basemean values ranging from

500 to 48000) in the sciatic nerve dataset. To obtain stable reference genes with both low and

high expression, the final list of candidates was partitioned into quartiles based on basemean

expression. 3 reference genes from each of the first three quartiles and 1 reference gene from

the last quartile were chosen; thereby generating 10 candidates. This selection strategy resulted

in candidate reference genes that exhibit Cq values between 18 cycles (high expression) and 26

cycles (relatively lower expression) in qPCR.

Conventional reference gene selection

All conventional reference genes chosen do not have any proven stability for the experimental

setting in question. For the iPSC dataset, the conventional human reference genes chosen were

ACTB, GAPDH, GUSB, HPRT, PGK1, PPIA, RPL13A, TBP, and UBC. For the sciatic nerve

dataset, the conventional mouse reference genes chosen were Actb, Gapdh, Tbp, Sdha, Pgk1,

Ppia, Rpl13a, Hsp60, Mrpl10, Rps26. These mouse reference genes have been previously used

to establish the qPCR data analysis workflow [12]

Target gene selection

Differentially expressed genes that exhibited Padj<0.05 were first retained from the results

dataframe. Next, genes that exhibited log2FC values above +0.6 and below -0.6 were retained

and partitioned into 2 separate lists. 3 target genes were randomly chosen from each of these

lists for differential expression analysis in the iPSC dataset. In the Sciatic nerve dataset, 3 upre-

gulated genes and 3 downregulated genes were chosen based on the recently published Sciatic

Nerve Atlas https://www.snat.ethz.ch [32].

Primer design

All primers used in the study were designed using the Primer 3 plus software (https://

primer3plus.com/cgi-bin/dev/primer3plus.cgi). Splice variants and the protein-coding

sequence of the genes were identified using the Ensembl database (www.ensembl.org). Consti-

tutively expressed exons among all splice variants were then identified using the ExonMine

database [33]. Primers that spanned two subsequent constitutively expressed exons were then

designed using the Primer 3 plus software. The amplicon size of all primers was between

88bp– 200bp. For detailed information on Primer sequences refer to the metadata - https://

doi.org/10.6084/m9.figshare.15169104.v2

Amplification efficiencies

The amplification efficiencies of primers were calculated using serial dilution of cDNA mole-

cules. Briefly, cDNA from both the experimental groups of the sciatic nerve (for mouse prim-

ers) and iPSC (for human primers) were serially diluted four times by a factor of 10 (1, 1:10,

1:100 & 1:1000). qPCR was then performed using these dilutions and the results were plotted

as a standard curve against the respective concentration of cDNA. If the Cq values of the 4th
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dilution fell beyond the detection range of the machine or closer to the No-RT Control, only

the first three dilutions were taken into consideration. Amplification efficiency (E) was calcu-

lated by linear regression of standard curves using the following equation: E = 10(-1/Slope of the

standard curve). Primer pairs that exhibited an Amplification Efficiency (E) of 1.9 to 2.1 (95% -

105%) and an R2 value (Determination Coefficient) of 0.99 or above were chosen for this

study. The Cq values of all genes across different groups were well within the range of the stan-

dard dilution curve. Standard curves and amplifications efficiencies of all primers used can be

accessed from the metadata - https://doi.org/10.6084/m9.figshare.15169104.v2

RT-qPCR

iPSC microglia. 1000 ng of total RNA was first subjected to DNase digestion (Thermo sci-

entific EN0525) at 37˚C for 30 minutes to eliminate contaminating genomic DNA. Next,

DNase activity was stopped using EDTA (Thermo scientific) and cDNA synthesis was done

using iSCRIPTTM cDNA synthesis kit from BioRad (1708891) to a total volume of 20 μl.

cDNA was diluted 1:10 with nuclease free water for qPCR analysis. qPCR was performed using

Takyon ROX SYBR 2X MasterMix (Eurogentec UF-RSMT-B0701) as a fluorescent detection

dye. All reactions were carried out in a final volume of 8 μl in 384 well plates with 300 nM

gene-specific primers, around 5 ng of cDNA (at 100% RT efficiency) and 1X SYBR Master

Mix in each well. Each reaction was performed in triplicates. All qPCR experiments were per-

formed using ThermoFisher Scientific QuantStudio 7 with a No-Template-Control (NTC) to

check for primer dimers and a No-RT-Control (NRT) to check for any genomic DNA

contamination.

Sciatic nerves. 500 ng of total RNA was reverse transcribed with Random Primers (Pro-

mega C1181) and MMLV Reverse Transcriptase (Sigma M1302) according to prescribed pro-

tocols. qPCR was performed using Absolute SYBR ROX 2X qPCR mix (Thermo AB1162B) as

a fluorescent detection dye. All reactions were carried out in a final volume of 7 μl in 384 well

plates with 300 nM gene-specific primers, around 3.5 ng of cDNA (at 100% RT efficiency) and

1X SYBR Master Mix in each well. Each reaction was performed in triplicates. All qPCR exper-

iments were performed on BioRad CFX384 with a No-Template-Control (NTC) to check for

primer dimers and a No-RT-Control (NRT) to check for any genomic DNA contamination.

qPCR statistical analysis and data visualization

qPCR readouts were analyzed in Precision Melt Analysis Software v1.2 (Sciatic nerve samples)

and QuantStudio Real-Time PCR Software v1.7.1 (iPSC samples). The amplicons were sub-

jected to Melt Curve analysis and were verified for a single dissociation peak at a Melting Tem-

perature (Tm) > 75˚C as expected from the primer constructs. The Cq data was exported to

Microsoft Excel for further calculations. Each biological sample had three technical replicates

thereby generating three individual Cq values. The arithmetic mean of the triplicates was

taken to be the Cq representing the biological sample. The standard deviation (SD) of the trip-

licates was also calculated and samples that exhibited SD> 0.20 were considered inconsistent.

In such cases, one outlier Cq was removed to have at least duplicate Cq values for each biologi-

cal sample and an SD< 0.20.

Reference gene validation was performed according to our qPCR data analysis workflow

[12]. Visual representation of potential intrinsic variation in reference genes was identified by

plotting the raw expression profiles (2-ΔCq) of all candidate reference genes. Due to reduced

sample sizes, a non-parametric Mann Whitney U-Test was performed to assess statistically sig-

nificant expression variation between experimental groups. The alpha value was set at 0.05 for

statistical significance. The genes were then screened using Coefficient of variation (CV)
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analysis to eliminate genes that exhibited CV>50% as they could impede the robustness of the

Normfinder algorithm [12]. Normfinder was then used to determine the best pair of reference

genes (least S value) to compute the Normalization Factor (NF) for qPCR data normalization

[8]. From the resulting pair of stable reference genes, the NF was then calculated as the arith-

metic mean of the Cq values of the 2 genes for each sample. Relative expression of target genes

was then quantified using the 2-ΔΔCt method and data was normalized by the NF calculated

from the 2 best reference genes [34,35]. Relative fold change data was then analysed and visual-

ised using R studio. Statistical tests used for comparing experimental groups are indicated in

the respective Figure legends.

Results

Reference gene selection from RNA-Seq of microglia (WT vs TREM2KO)

A growing body of literature promotes the use of RNA-Seq to identify stable reference genes

for qPCR data normalization in different experimental conditions. However, we believe that

this approach is superfluous and that stable reference genes can readily be identified by starting

out with any conventional set of candidates and adopting the right statistical approach to

determine the best reference genes for a given experimental condition. To test this hypothesis,

we first performed paired-end bulk RNA-Seq on iPSC-derived WT and TREM2KO microglia,

an experimental model used to study the role of microglia in neuroinflammation and neurode-

generation [36,37]. Based on the criteria detailed in the Materials and Methods section (see

Reference gene selection from RNA-Seq), we shortlisted 10 candidate reference genes (ANXA7,

APIP, CCNT2, CNBP, DDX42, FOXK1, KIF13A, MRPL37, PPP1R10, and USP5) from our

RNA-Seq data. The base mean values of these genes and other RNA-Seq data features are

detailed in S1 Table.

Reference gene validation of RNA-Seq derived reference genes (WT vs

TREM2KO)

The reference genes selected from RNA-Seq were then subjected to validation using the qPCR

workflow that we developed recently [12]. We first computed the intrinsic variation of reference

genes by linearizing the Cq values (2-Cq) followed by visually representing the non-normalized

expression levels (2-ΔCq) of the genes in both experimental groups (Fig 1). The WT group was

used as the experimental calibrator. Subsequently, statistical testing was performed using a non-

parametric Mann Whitney Test to determine significant differences between the groups.

Among the 10 genes tested, only 2 genes (MRPL37 and PPP1R10) showed significant variation

in non-normalized expression levels between the WT and TREM2KO groups (Fig 1).

In accordance with our workflow, we next performed Coefficient of Variation analysis on

linearized Cq values (2-Cq) to assess the overall variation (both groups included) of the refer-

ence genes (Table 1). The genes tested exhibited CV values between 5.99% and 15.75% and

they were ranked as shown in Table 1. As all genes exhibited CV<50%, they could therefore

be screened using the NormFinder algorithm to determine the best combination of reference

genes to be used for data normalization. This is a crucial step of reference gene validation as

genes that exhibit CV>50% can compromise the robustness of the algorithm [12]. NormFin-

der determines the stability of a reference gene by factoring the intergroup as well as the

intragroup variation and computes a Stability S Score [8]. The lower the S score, the higher the

stability of the gene across all experimental groups. The algorithm also suggests the best pair of

reference genes that can be used for robust data normalization. NormFinder results of the

selected reference genes from RNA-seq are represented in Table 1 along with their respective
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S Scores and ranks. The algorithm further revealed CNBP and KIF13A to be the best combina-

tion of genes with a grouped Stability S score of 0.05 (Table 1). The Cq values of these two

genes were then combined to compute the Normalization Factor (NF). Evidently and as

expected, the non-normalized expression level of the NF does not vary significantly between
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Fig 1. Non-normalized expression profiles (2-ΔCq) of reference genes derived from RNA-Seq data of iPSC derived

microglia. WT group was used as the experimental calibrator. (A) ANXA7, (B) APIP, (C) CCNT2, (D) FOXK1, (E)

KIF13A, (F) USP5, (G) CNBP, (H) DDX42, (I) MRPL37, (J) PPP1R10 and (K) Normalization Factor (NF) assessed by

NormFinder that combines CNBP & KIF13A. Non-parametric Mann Whitney U test was used to assess differences

between the groups. The alpha value was set at 0.05 and P values are annotated as follows: � P<0.05.

https://doi.org/10.1371/journal.pcbi.1009868.g001
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the two groups (Fig 1K). It is to be noted that the combination of the two best reference genes

exhibits lesser intergroup and intragroup variation (Fig 1K versus the rest) including the top

ranked CNBP (Fig 1G). This is an inherent feature of the algorithm.

Reference gene validation of conventional human reference genes (WT vs

TREM2KO)

In addition to the reference genes derived from the RNA-Seq data, we next sought to validate com-

monly used human reference genes chosen arbitrarily. We selected 10 reference genes (ACTB,

GAPDH, GUSB, PPIA, RPLP0, TBP, HPRT, PGK1, UBC, and RPL13A) and assessed their inter-

group variation by plotting their non-normalized profiles (Fig 2). This was followed by statistical

testing for significant differences between the two experimental groups. Among the 10 genes tested,

none of the genes exhibited significant variation in their non-normalized expression levels (Fig 2).

These genes were then subjected to CV analysis to assess the overall variation (Table 2).

They exhibited CV values ranging from 5.29% to 32.37%. However, all genes satisfied the

CV<50% criterion for NormFinder screening. NormFinder results for these genes are also

shown in Table 2. Interestingly and in contrast to the reference genes derived from the RNA--

Seq data (Table 1), the Stability S score of the conventional genes are largely lower than the

genes derived from RNA-Seq, thus indicating better stability. The first 6 ranks from RPL13A

to GAPDH have S scores less than 0.1 whereas in the previous dataset (Table 1), only the first

2 ranks (CNBP & CCNT2) exhibit scores less than 0.1. Finally, among all the conventional ref-

erence genes screened, NormFinder suggested the use of RPLP0 and GUSB as the best pair for

data normalization with a grouped stability of 0.03 (Table 2); which in comparison, is lesser

than the Stability Score of 0.05 from CNBP and KIF13A (Table 1). In principle, these results

show that conventional reference genes could potentially exhibit better stability than stable ref-

erence genes filtered from RNA-Seq data.

Differential expression of target genes by qPCR and RNA-Seq (WT vs

TREM2KO)

Following reference gene validation of conventional and RNA-Seq-derived candidates, we

picked 6 target genes that were differentially expressed based on the RNA-Seq results (see

Table 1. CV and NormFinder analysis RNA-Seq derived reference genes in iPSC microglia. Expression stability of candidate reference genes derived from bulk RNA--

Seq data were evaluated using Coefficient of Variation (CV) Analysis & NormFinder.

CV Analysis NormFinder

Gene %CV Rank Gene Stability S Rank

CNBP 5.99 1 CNBP 0.07 1

KIF13A 6.36 2 CCNT2 0.08 2

PPP1R10 6.87 3 KIF13A 0.1 3

CCNT2 7.46 4 PPP1R10 0.1 4

MRPL37 7.74 5 USP5 0.1 5

ANXA7 10.58 6 MRPL37 0.11 6

USP5 10.81 7 DDX42 0.12 7

DDX42 11.41 8 ANXA7 0.15 8

APIP 14.61 9 FOXK1 0.15 9

FOXK1 15.75 10 APIP 0.16 10

Normfinder Best Pair: CNBP/KIF13A

Grouped Stability: 0.05

https://doi.org/10.1371/journal.pcbi.1009868.t001

PLOS COMPUTATIONAL BIOLOGY Efficient method to obtain the best reference genes for qPCRs in any experimental setting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009868 February 28, 2022 9 / 24

https://doi.org/10.1371/journal.pcbi.1009868.t001
https://doi.org/10.1371/journal.pcbi.1009868


Target gene selection from Materials &Methods). We included 3 target genes (TREM2,

P2RY12 and CD52) that were significantly downregulated and 3 others (ACSS3, SYDE1 and

TBX10) that were significantly upregulated. The relative expression of these genes was then

computed by qPCR using the Normalization Factor (NF) from conventional candidate refer-

ence genes (RPLP0 & GUSB or Conventional NF) or from RNA-Seq-derived candidate
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Fig 2. Non-normalized expression profiles (2-ΔCq) of conventional human reference genes in iPSC derived

microglia. WT group is used as the experimental calibrator. (A) ACTB, (B) GAPDH, (C) GUSB, (D) PPIA, (E) RPLP0,

(F) TBP, (G) HPRT, (H) PGK1, (I) UBC, (J) RPL13A, and (K) Normalization Factor (NF) assessed by NormFinder

that combines RPLP0 & GUSB. Non-parametric Mann Whitney U test was used to assess differences between the

groups. The alpha value was set at 0.05 and P values are annotated as follows: � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pcbi.1009868.g002
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reference genes (CNBP & KIF13A or RNA-Seq derived NF) (Fig 3). To compare our qPCR

results, we also computed the fold change assessed by RNA-Seq using the Normalized counts

of these genes.

Regarding the downregulated genes, TREM2 expression in the TREM2KO group, when

assessed through qPCRs, exhibited expression fold change values of 0.31 ± 0.05 (mean

FC ± SD, conventional NF, Fig 3A) and 0.35 ± 0.04 (RNA-Seq derived NF, Fig 3B). In RNA--

Seq, the fold change values were 0.23 ± 0.03 (Fig 3C). P2RY12 fold change values in the

TREM2KO group were 0.04 ± 0.02 when assessed using qPCRs (both conventional NF and

RNA-Seq derived NF, Fig 3D and 3E). However, RNA-Seq fold change values of P2RY12 were

comparatively higher at 0.62 ± 0.19 (Fig 3F). CD52 fold change in the TREM2KO group when

assessed by qPCR were 0.38 ± 0.06 (Conventional NF, Fig 3G) and 0.40 ± 0.05 (RNA-Seq

derived NF, Fig 3H). RNA-Seq fold changes were comparatively lower at 0.16 ± 0.01 (Fig 3I).

For upregulated genes, ACSS3 in the TREM2KO group exhibited fold change values of

3.72 ± 0.79 (Conventional NF, Fig 3J) and 3.40 ± 0.88 (RNA-Seq derived NF, Fig 3K). The

fold changes in RNA-Seq were 4.54 ± 1.25 (Fig 3L). SYDE1 fold change values assessed by

qPCR were at 3.58 ± 1.18 (Conventional NF, Fig 3M) and 3.29 ± 1.28 (RNA-Seq derived NF,

Fig 3N). RNA-Seq expression levels of SYDE1 were at 3.62 ± 0.34 (Fig 3O). Finally, TBX10
expression fold changes assessed by qPCR were at 3.06 ± 1.51 (Conventional NF, Fig 3P) and

2.82 ± 1.60 (RNA-Seq derived NF, Fig 3Q). RNA-Seq fold changes were at 3.24 ± 0.61 (Fig

3R). These results taken together with the visual representation of differential expression

described in Fig 3 show that qPCR normalization using conventional NF or RNA-Seq derived

NF render the same results. They do not always concur with RNA-Seq fold changes in magni-

tude but do so in tendency.

Comparison of fold changes between qPCRs and RNA-Seq (WT vs

TREM2KO)

We next investigated in detail if the Fold Change distributions in the TREM2KO experimental

group computed across the 3 methods differed significantly from one another. To this end, we

compared the distributions by a non-parametric ANOVA (Kruskal Wallis Test) of ordinal dis-

tributions followed by Dunn’s multiple comparison post-test (S1 Fig). qPCR Fold changes

Table 2. CV and NormFinder analysis of conventional reference genes iPSC microglia. Expression stability of conventional candidate reference genes were evaluated

using Coefficient of Variation (CV) Analysis, NormFinder.

CV Analysis NormFinder

Gene %CV Rank Gene Stability S Rank

GUSB 5.29 1 RPL13A 0.03 1

TBP 7.56 2 GUSB 0.04 2

RPL13A 8.16 3 RPLP0 0.05 3

RPLP0 8.18 4 TBP 0.05 4

PGK1 9.56 5 PGK1 0.06 5

GAPDH 11.35 6 GAPDH 0.07 6

PPIA 13.75 7 PPIA 0.10 7

ACTB 14.31 8 UBC 0.11 8

UBC 17.47 9 ACTB 0.14 9

HPRT 32.27 10 HPRT 0.18 10

NormFinder Best Pair: RPLP0/GUSB

Grouped Stability S: 0.03

https://doi.org/10.1371/journal.pcbi.1009868.t002

PLOS COMPUTATIONAL BIOLOGY Efficient method to obtain the best reference genes for qPCRs in any experimental setting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009868 February 28, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1009868.t002
https://doi.org/10.1371/journal.pcbi.1009868


NextSeq550Dx

illumina

RNAseqqPCR
(NF from

conventional candidates)

qPCR
(NF from

RNAseq candidates)

A B

D E F

C

G H I

J K L

M N O

P Q R

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

TBX10
*

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

TBX10

*

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

SYDE1

*

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

SYDE1

*

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

ACSS3

*

WT TREM2KO
0

2

4

6

8

FC
 (2

-Δ
Δ

C
q )

ACSS3

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0
FC

 (2
-Δ

Δ
C

q )
CD52

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (2

-Δ
Δ

C
q )

CD52

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (2

-Δ
Δ

C
q )

P2RY12

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (2

-Δ
Δ

C
q )

P2RY12

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (2

-Δ
Δ

C
q )

TREM2

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (2

-Δ
Δ

C
q )

TREM2

*

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (N

or
m

. C
ou

nt
s) CD52

6.08x10-20

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (N

or
m

. C
ou

nt
s) TREM2

2.05x10-21

WT TREM2KO
0.0

0.5

1.0

1.5

2.0

FC
 (N

or
m

. C
ou

nt
s) P2RY12

1.77x10-3

WT TREM2KO
0

2

4

6

8

FC
 (N

or
m

. C
ou

nt
s) ACSS3

1.50x10-6

WT TREM2KO
0

2

4

6

8

FC
 (N

or
m

. C
ou

nt
s) SYDE1

7x10-13

WT TREM2KO
0

2

4

6

8

FC
 (N

or
m

. C
ou

nt
s) TBX10

3.68x10-4

Fig 3. Differential expression of target genes between WT and TREM2KO iPSC cells assessed by qPCRs and

RNA-Seq. The target genes (TREM2, P2RY12, CD52, ACSS3, SYDE1, TBX10) have been normalized with the

normalization factor (NF) computed from conventional reference genes RPLP0 & GUSB in the first column (A, D, G,
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computed using Conventional NF were used as the control for multiple comparisons. There-

fore, the first comparison was made between the conventional and RNA-Seq derived NF

groups (difference in qPCRs, hereafter referred to as Comparison 1) and the second compari-

son was made between the Conventional NF group and RNA-Seq differential expression (dif-

ference between qPCR and RNA-Seq, hereafter referred to as Comparison 2).

The WT experimental group was omitted from this analysis as it was used as the experi-

mental calibrator for differential expression. The mean Fold Change of the WT group is always

at 1 regardless of the gene/method in question and therefore it is redundant to test for statisti-

cal significance of the WT fold change levels across different methods for each gene.

Non-parametric ANOVA revealed no significant difference between the FC distributions

of the upregulated genes ACSS3, SYDE1 and TBX1 (S1D, S1E and S1F Fig) suggesting that the

qPCR fold changes concur with RNA-Seq fold changes in these genes. As for the downregu-

lated genes, TREM2 FC distributions varied significantly between the groups (Kruskal Wallis

P< 0.5); however, Dunn’s post test revealed no significant difference in Comparison 1 and

Comparison 2 (S1A Fig). P2RY12 FC distributions varied significantly between the groups

(Kruskal Wallis P<0.01). Multiple comparisons revealed no difference in Comparison 1 but a

significant difference in Comparison 2 (Dunn’s Post Test P<0.05) (S1B Fig) CD52 FC distri-

butions varied significantly between the groups (Kruskal Wallis P < 0.5). Multiple compari-

sons, yet again, revealed no difference in Comparison 1 but a significant difference in

Comparison 2 (Dunn’s Post Test P<0.05) (S1C Fig). These results show firstly that no signifi-

cant difference exists between the FC distributions of all the genes between the qPCRs (Com-

parison 1). Secondly, FC distributions of qPCRs and RNA-Seq do not show any difference for

the upregulated genes ACSS3, SYDE1 and TBX10 (Comparison 2). However, for the downre-

gulated genes, although no differences exist between qPCRs (Comparison 1); P2RY12 & CD52
FC distributions differ significantly between qPCR and RNA-Seq. In summation, these results

prove beyond reasonable doubt that differential expression assessed by qPCR using conven-

tional reference genes and “stable” reference genes filtered from RNA-Seq render similar

expression profiles of target genes without any significant difference among the two normali-

zation strategies. However, concordance with RNA-Seq results was only observed in the upre-

gulated genes and could not be observed in the downregulated genes.

Reference gene selection from RNA-Seq of mouse sciatic nerves (P3 vs P21)

To rule out any circumstantial evidence that may support our observations in the iPSC dataset,

we sought to validate our results using a completely different experimental setting. We wanted

to rule out the possibility that the conventional reference genes that we chose in the iPSC data-

set were indeed stable reference genes by mere happenstance and thus they rendered the same

profiles of differential expression as the reference genes filtered from RNA-Seq.

Therefore, in a confirmatory experimental approach we mined and re-analyzed RNA-Seq

data that was previously generated from mouse sciatic nerves at Postnatal day 3 (P3) and P21

[29]. This dataset permits us to study RNA expression changes in the sciatic nerves during

postnatal myelination. We applied the same criteria to select 10 candidate reference genes

J, M, P) or from RNA-Seq derived reference genes CNBP & KIF13A in the second column (B, E, H, K, N, Q). The third

column contains the Fold Changes computed from RNA-Seq (C, F, I, L, O, R). The normalized counts for each gene in

each group were used to calculate the fold changes in RNA-Seq. The WT group was used as the experimental control.

The Padj value of RNA-Seq is indicated in the TREM2KO group for each gene in the RNA-Seq column. For the qPCRs,

Non-parametric Mann Whitney U test was used to assess differences between the groups. The alpha value was set at

0.05 and P values are annotated as follows: � P<0.05.

https://doi.org/10.1371/journal.pcbi.1009868.g003
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(Ppp3ca, Fkbp4, Vcp, Lama2, Ank2, Coq9, Chmp2a, Laptm5, Leprotl1, Supt4a). The basemean

values of these genes and other RNA-Seq data features are detailed in S2 Table.

Reference gene validation of RNA-Seq derived reference genes from mouse

sciatic nerves (P3 vs P21)

We evaluated the intrinsic intergroup variation of these reference genes by visual representa-

tion of their non-normalized profiles (2-ΔCq) using P3 samples as the calibrator (Fig 4). As pre-

viously described, statistical inference was then assessed using the non-parametric Mann

Whitney U test owing to reduced sample sizes. Interestingly, and in contrast to the iPSC data-

set, 6 out of 10 genes (Fkbp4, Lama2, Coq9, Chmp2a, Leprotl1 & Supt4a) exhibit significant

intergroup variation across the two experimental groups (Fig 4A, 4B, 4C, 4D, 4E and 4F).

We next performed the CV analysis to assess overall variation (Table 3). The genes tested

exhibited CV values between 12.32% and 36.24% and they were ranked as shown in Table 3.

As all genes exhibited CV<50%, they could therefore be screened using the NormFinder algo-

rithm. NormFinder analysis further revealed Ppp3ca and Coq9 to be the best combination of

genes with a grouped Stability S score of 0.04 (Table 3). Although Coq9 exhibited significant

intergroup variation (Fig 4E), the combination of the gene with Ppp3ca resulting in the Nor-

malization Factor (NF) does not exhibit any (Fig 4K). Interestingly, the RNA-Seq data features

of the 6 genes that exhibit significant intergroup variation (Fig 4A, 4B, 4C, 4D, 4E and 4F)

show that they are not differentially expressed. However, if these genes were to be normalized

using the NF computed herein, some of them could potentially exhibit differential expression

in qPCR as the NF is stable across experimental groups. It is a striking example to demonstrate

the discordance of RNA-Seq and qPCR results in this dataset. However, the computation of a

stable NF despite the presence of genes with significant intrinsic variation confirms the

strength of the NormFinder algorithm and the validity of using the two best reference genes

proposed by the method.

Reference gene validation of conventional mouse reference genes (P3 vs

P21)

To obtain stable reference genes from a set of conventional genes, we used 10 candidate mouse

reference genes that we had previously used to establish our workflow (Actb, Gapdh, Tbp,

Sdha, Pgk1, Ppia, Rpl13a, Hsp60, Mrpl10, Rps26) [12]. As explained above, visual representa-

tion followed by inferential statistics were performed and the results are described in Fig 5. 4

out of 10 genes (Gapdh, Pgk1, Rps26 and Sdha) exhibited significant intrinsic variation

between the experimental groups (Fig 5G, 5H, 5I and 5J)

CV analysis was then performed on these genes and the results are depicted in Table 4. CV

values ranged from 12.3% to 30.44% and the genes were ranked accordingly. As all genes

exhibited CV<50%, we screened these genes through the NormFinder algorithm to determine

the best combination of reference genes for qPCR normalization. NormFinder determined

Hsp60 and Ppia to be the best combination of reference genes with a grouped Stability S Score

of 0.06 (Table 4). Both Hsp60 (Fig 5C) & Ppia (Fig 5D) did not exhibit any intergroup varia-

tion and the same was true for the NF computed by combining these genes (Fig 5K).

Differential expression of target genes by qPCR and RNA-Seq (P3 vs P21)

Following reference gene validation of conventional and RNAseq-derived candidates, we

picked 6 target genes that were known to be differentially expressed during postnatal develop-

ment of the sciatic nerve [32]. 3 target genes (Mpz, Mbp and Cd90) that were chosen are
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significantly upregulated and the other 3 target genes (p75NTR, Mki67 and Sox2) are signifi-

cantly downregulated at these time points. The relative expression of these genes was then

computed by qPCR using the Normalization Factor (NF) from conventional candidate refer-

ence genes (Hsp60 & Ppia or Conventional NF) or from RNAseq-derived candidate reference
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Fig 4. Non-normalized expression profiles (2-ΔCq) of reference genes derived from RNA-Seq analysis of sciatic nerves at

post-natal day 3 (P3) and 21 (P21). P3 group is the experimental calibrator. (A) Fkbp4, (B) Lama2, (C) Leprotl1, (D) Supt4a,

(E) Coq9, (F) Chmp2a, (G) Ank2, (H) Vcp, (I) Laptm5, (J) Ppp3ca, and (K) Normalisation Factor (Ppp3ca + Coq9). Non-
parametric MannWhitney U test was used to assess differences between the groups. The alpha value was set at 0.05 and P values
are annotated as follows: � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pcbi.1009868.g004
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genes (Ppp3ca & Coq9 or RNAseq derived NF) (Fig 6). To compare our qPCR results, we also

computed the fold change assessed by RNA-Seq using the Normalized counts of these genes.

Regarding the downregulated genes, Mki67 expression in the P21 group, when assessed

through qPCRs, exhibited fold change values of 0.14 ± 0.10 (mean FC ± SD, conventional NF,

Fig 6A) and 0.12 ± 0.08 (RNA-Seq derived NF, Fig 6B). In RNA-Seq, the fold change values

were 0.08 ± 0.01 (Fig 6C). p75NTR expression fold change in the P21 group were 0.30 ± 0.04

(conventional NF, Fig 6D) and 0.26 ± 0.02 (RNA-Seq derived NF, Fig 6E) when assessed

using qPCRs. However, RNA-Seq fold change values of p75NTR were comparatively higher at

0.63 ± 0.18 (Fig 6F). Sox2 expression fold change in the P21 group when assessed by qPCR

were 0.49 ± 0.05 (Conventional NF, Fig 6G) and 0.42 ± 0.03 (RNA-Seq derived NF, Fig 6H).

RNA-Seq changes were at 0.39 ± 0.09 (Fig 6I).

For the upregulated genes, Mbp expression levels in the P21 group exhibited fold change

values of 1.73 ± 0.15 (Conventional NF, Fig 6J) and 1.49 ± 0.19s (RNA-Seq derived NF, Fig

6K). The fold changes in RNA-Seq were 2.02 ± 0.62 (Fig 6L). Mpz expression levels assessed

by qPCR were at 1.76 ± 0.38 (Conventional NF, Fig 6M) and 1.53 ± 0.35 (RNA-Seq derived

NF, Fig 6N). However, RNA-Seq expression fold change of Mpz were significantly higher at

3.49 ± 0.26 (Fig 6O). Finally, Cd90 expression fold change assessed by qPCR were at

1.83 ± 0.35 (Conventional NF, Fig 6P) and 1.57 ± 0.30 (RNA-Seq derived NF, Fig 6Q). RNA--

Seq fold changes were at 4.81 ± 2.77 (Fig 6R). Yet again, these results taken together with the

visual representation of differential expression described in Fig 6 show that qPCR normaliza-

tion using conventional NF or RNA-Seq derived NF render very similar results. We observe

again that they do not always concur with RNA-Seq fold changes in magnitude, but they do so

in tendency.

Comparison of differential expression between qPCRs and RNA-Seq (P3 vs

P21)

Similar to the analysis performed in the iPSC dataset, we next investigated in detail if the Fold

Change distributions in the P21 experimental group computed across the 3 methods differed

significantly from one another. We used non-parametric ANOVA (Kruskal Wallis Test) of

ordinal distributions followed by Dunn’s multiple comparison post-test (S2 Fig). As shown in

the iPSC dataset, we performed multiple comparisons between qPCRs (Comparison 1) and

also between qPCR and RNA-Seq (Comparison 2).

Table 3. CV and NormFinder analysis of reference genes derived from RNA-Seq in sciatic nerves.

CV Analysis NormFinder

Gene %CV Rank Gene Stability S Rank

Laptm5 12.32 1 Ank2 0.07 1

Ppp3ca 12.96 2 Ppp3ca 0.08 2

Supt4a 14.79 3 Coq9 0.08 3

Coq9 16.26 4 Laptm5 0.16 4

Ank2 16.31 5 Supt4a 0.16 5

Vcp 19.59 6 Leprotl1 0.23 6

Leprotl1 24.49 7 Fkbp4 0.26 7

Fkbp4 25.86 8 Vcp 0.27 8

Lama2 29.96 9 Chmp2a 0.47 9

Chmp2a 36.24 10 Lama2 0.56 10

Normfinder Best combination: Ppp3ca + Coq9

Grouped Stability: 0.04

https://doi.org/10.1371/journal.pcbi.1009868.t003
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Non-parametric ANOVA revealed no significant difference between the FC distributions

of Mki67 and Mbp (S2A and S2E Fig) suggesting that the qPCR fold changes concur with

RNA-Seq fold changes in these genes. Sox2, p75NTR and Mpz FC distributions varied signifi-

cantly between the groups (Kruskal Wallis P< 0.05, P< 0.01 and P<0.01 respectively);
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Fig 5. Non-normalized expression profiles (2-ΔCq) of conventional reference genes of sciatic nerves at post-natal day 3

(P3) and 21 (P21). P3 group is the experimental calibrator. (A) Actb, (B) Mrpl10, (C) Hsp60, (D) Ppia, (E) Rpl13a, (F) Tbp,

(G) Gapdh, (H) Pgk1, (I) Rps26, (J) Sdha, and (K) Normalisation Factor (Hsp60 + Ppia). Non-parametric Mann Whitney U

test was used to assess differences between the groups. The alpha value was set at 0.05 and P values are annotated as follows: �

P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pcbi.1009868.g005
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however, Dunn’s post test revealed no significant difference in both Comparison 1 and Com-

parison 2 (S2B, S2C and S2F Fig). Cd90 FC distributions varied significantly between the

groups (Kruskal Wallis P<0.01). Multiple comparisons revealed no difference in Comparison

1 and Comparison 2 (S2D Fig). In summation, all the genes tested in the sciatic nerve dataset

show no significant differences between Conventional NF and RNA-Seq-derived NF results.

In summation, these results show once again that stable reference genes filtered from RNA-Seq

data do not give any added advantage to qPCR data normalization and that not all genes

exhibit comparable Fold Changes when comparing qPCR results and RNA-Seq.

Discussion

The central premise of this article was to demonstrate that stable reference genes for qPCR

data normalisation can be obtained from any conventional set of candidates provided the sta-

tistical approach of reference gene validation is sound and consistent. To this end, using our

qPCR workflow we have shown using two separate and unique datasets that conventionally

chosen reference genes can render the same results of differential expression when compared

to stable references selected from RNA-Seq data.

The advantage of this approach in filtering the best candidates from any conventional set

lies in combining 3 methods that are complementary to each other. Although multiple statisti-

cal methods have been proposed before, we have previously highlighted the potential pitfalls

and assumptions of these computational methods [12]. We thus devised this workflow com-

bining the well-known NormFinder method with CV analysis and the visual representation of

non-normalized expression followed by statistical testing. Indeed, it should be noted the core

method of this approach is the NormFinder algorithm. However, this method was first

described and validated with larger sample sizes (typically between 10–20 or more) and with a

high number of candidate genes chosen from microarrays (typically between 15–20) exhibiting

very little overall variation [8]. In our previous study, we identified that lower sample sizes and

candidate genes with high overall variation can skew the results of this method because of the

algorithm’s construct [12]. Although scores of studies have used this algorithm without due

diligence to the prerequisites, our combined approach resolves these issues. The CV analysis

helps in the identification of genes with high overall variance and their successive elimination

from analysis gives rise to more robust results from NormFinder. Visual representation of the

Table 4. CV and NormFinder analysis of conventional reference genes in sciatic nerves.

CV Analysis NormFinder

Gene %CV Rank Gene Stability S Rank

Mrpl10 12.30 1 Tbp 0.03 1

Gapdh 13.06 2 Mrpl10 0.04 2

Hsp60 14.36 3 Hsp60 0.05 3

Tbp 15.24 4 Ppia 0.05 4

Pgk1 15.83 5 Pgk1 0.06 5

Ppia 19.36 6 Actb 0.07 6

Actb 21.07 7 Rpl13a 0.10 7

Rps26 22.04 8 Gapdh 0.11 8

Rpl13a 26.78 9 Rps26 0.14 9

Sdha 30.44 10 Sdha 0.18 10

Normfinder Best combination: Hsp60 + Ppia

Grouped stability: 0.06

https://doi.org/10.1371/journal.pcbi.1009868.t004
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Fig 6. Differential expression of target genes between P3 and P21 mouse sciatic nerves assessed by qPCRs and

RNA-Seq. The target genes (Mki67, p75NTR, Sox2, Mbp, Mpz, Cd90) have been normalized with the normalization

factor (NF) computed from conventional reference genes Hsp60 & Ppia in the first column (A, D, G, J, M, P) or from

RNA-Seq derived reference genes Ppp3ca and Coq9 in the second column (B, E, H, K, N, Q). The third column

contains the Fold Changes computed from RNA-Seq (C,F,I,L,O,R). The normalized counts for each gene in each

group were used to calculate the fold changes in RNA-Seq. The WT group was used as the experimental control. The

Padj value of RNA-Seq is indicated in the P21 group for each gene in the RNA-Seq column. For the qPCRs, Non-

parametric Mann Whitney U test was used to assess differences between the groups. The alpha value was set at 0.05

and P values are annotated as follows: � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pcbi.1009868.g006
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non-normalized profiles (2-ΔCq) followed by statistical testing further validates the results of

NormFinder as the Normalization Factor computed from the two best reference genes does

not exhibit any significant differences between the experimental groups regardless of experi-

mental conditions (Figs 1K, 2K, 4K and 5K). Thus, in combining CV analysis and statistical

testing of non-normalized profiles, we extrapolated the NormFinder approach to be used for

experimental setups involving lower sample sizes similar to those used in this study.

The cut off at 50% CV to qualify for NormFinder analysis is rooted in the fact that at 50%,

the standard deviation of the expression distribution is half the mean expression level. Previous

datasets that we published have indicated that the Normalization Factor (NF) computed by

NormFinder when including genes that exhibit CV>50% exhibit significant intergroup varia-

tion in the non-normalized profiles [12]. Below this cut off, NF expression levels are stable

across experimental groups. Indeed, the user can be more stringent by using a lower CV cut

off but our data from this study and the previous one suggests that this is not necessary. How-

ever, this criterion gives rise to a theoretical limitation of our approach. In a given experimen-

tal setup, if all the candidate reference genes tested exhibit CV values of above 50%, then our

approach will fail and NormFinder results would no longer be reliable. In such cases, a new list

of candidates is required. However, our experience suggests that as little as 6 genes after elimi-

nating genes exhibiting CV>50% can still provide a sound NF for qPCR data normalization

[12].

Although not the primary objective of the study, the comparison of qPCR results with

RNA-Seq merits discussion. In the iPSC dataset, comparisons made between qPCR and RNA--

Seq results revealed that 4 out of 6 genes (ACSS3, SYDE1, TREM2 and TBX10) showed no sig-

nificant difference between the fold changes computed by both the methods (S1D, S1E, S1F

and S1C Fig). However, changes in the expression of CD52 and P2RY12 significantly differed

between the two methods (Figs 3, S1A and S1B). In the sciatic nerve dataset, 5 out of 6 genes

tested show no difference between qPCR and RNA-Seq data in multiple comparisons (S2A,

S2B, S2C, S2E and S2F Fig). However, this analysis is not optimal as the number of samples

used in qPCR is much higher (N = 7) than the number of samples in RNA-Seq data that we

mined (N = 3). In reality, only 3 genes (Mki67, Sox2 &Mbp) exhibited overlapping fold change

distributions across the methods (S2A, S2B and S2E Fig). However, regardless of the magni-

tudes of the change observed, the pattern of expression changes was always conserved across

qPCR and RNA-Seq for the genes that we tested. Indeed, it is possible that if we include more

target genes, we can potentially notice disagreements in expression patterns as well. However,

as stated earlier, our objective is restricted to demonstrating the futility of selecting reference

genes from RNA-Seq data for qPCR data normalization. The comparison of the two methodol-

ogies falls beyond the scope of this study but it has been amply addressed elsewhere [23,38,39].

These studies have indeed tried to validate RNA-Seq data with RTqPCR for a large set of

target genes typically ranging from a few hundred to the entire transcriptome. The consensus

from these studies is that the extent of correlation between RTqPCR and RNAseq data is

dependent on how the sequencing data was aligned, mapped and counted based on existing

protocols. Additionally, though not discussed in these articles, we believe that this would

equally depend on how reference genes were selected for qPCR assays that validate the RNA-

seq data. Overlooking these technicalities, these studies also show that around 85% of all genes

tested show concordant differential expression (comparable magnitudes with the same ten-

dency) between the two methodologies with correlation coefficients typically above 0.8.

Although these numbers are relatively reassuring at the outset, from an absolute perspective,

the implications raise important concerns. For a hypothetical bulk RNA-Seq dataset of around

18000 protein-coding transcripts, 85% concordance leaves 2700 genes whose differential

expression is discordant between RNA-Seq and qPCR. Of note, the study conducted by
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Everaert and colleagues [23] conclude that discordant genes typically are smaller, have fewer

exons and are expressed at lower levels. Indeed, and as mentioned in the introduction, these

observations can be possibly substantiated by the transcript-length bias and the bias against

genes with lower expression in RNA-Seq. In our study, the discordant genes CD52 and

P2RY12 in the microglia dataset have only 2 exons. The other 4 concordant genes have

between 4–13 exons and therefore are relatively larger. The basemean values (and therefore

the expression levels) of the 2 discordant genes are largely higher than the 4 concordant genes.

Therefore, number of exons appears to be more important than expression levels for concor-

dance between qPCR and RNA-Seq for these target genes. On the contrary, we did not observe

any correlation between discordance and small gene size or lower expression in the sciatic

nerve samples. These observations show that an objective approach to identify discordant

genes is lacking in literature. As RNA-Seq data analysis is particularly prone to certain biases

while computing differential gene expression, it would be valuable to computationally suggest

qPCR validation for specific genes that are susceptible to these normalization biases based on

their transcript length, expression levels and other unidentified parameters. Ideally, these sug-

gestions should be integrated into the data analysis pipelines and represented in the differential

gene expression data frames. This would provide the foundation for an objective and struc-

tured validation of Sequencing data rather than an obtuse overall validation of RNA-Seq

results by qPCR which is indeed burdensome. If these computational RNA-Seq validation sug-

gestions are achieved, the methodology used in our study would aptly address the necessity of

performing robust and reproducible qPCR assays using any conventional set of reference

genes.

Supporting information

S1 Fig. Comparison of fold changes in the TREM2KO iPSC group among the three meth-

ods. qPCR FCs were computed using Normalization factors from conventional candidates

(NF Conv) or RNA-Seq derived candidate (NF RNA-Seq). RNA-Seq fold changes were calcu-

lated from the normalized counts. (A) P2RY12 (B) CD52 (C) TREM2 (D) ACSS3 (E) SYDE1

(F) TBX10. Non-parametric ANOVA was performed using the Kruskal Wallis test (red line

comparing the means of the three groups). Multiple comparisons were performed using the

Dunn’s post hoc test using the NF conv. group as the control condition (green lines). The

alpha value was set at 0.05 and P values are annotated as follows: � P<0.05, �� P<0.01, ���

P<0.001.

(EPS)

S2 Fig. Comparison of fold changes in the P21 sciatic nerve group among the three

methods. qPCR FCs were computed using Normalization factors from conventional candi-

dates (NF Conv) or RNA-Seq derived candidate (NF RNA-Seq). RNA-Seq fold changes

were calculated from the normalized counts. (A) Mki67 (B) Sox2 (C) p75NTR (D) Cd90 (E)

Mbp (F) Mpz. Non-parametric ANOVA was performed using the Kruskal Wallis test (red

line comparing the means of the three groups). Multiple comparisons were performed using

the Dunn’s post hoc test using the NF conv. group as the control condition (green lines).

The alpha value was set at 0.05 and P values are annotated as follows: � P<0.05, �� P<0.01,
��� P<0.001.

(EPS)

S1 Table. RNA-Seq data features of the reference genes shortlisted from the sequencing

data of WT vs TREM2KO iPSC microglia.

(XLSX)
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S2 Table. RNA-Seq data features of the reference genes shortlisted from the sequencing

data of P3 vs P21 mouse sciatic nerves.

(XLSX)
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