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1  | INTRODUC TION

Colon cancer is one of the commonest cancers in the world. The surgi-
cal adjuvant chemotherapy (ADJC) based on combination of oxaliplatin, 

fluorouracil and leucovorin is an effective option in clinical practice of 
patients with stage II-III colon cancer,1,2 and over 80% of relapse cases 
developed within 3 years of the initial primary resection.3 Currently, 
the American Joint Committee on Cancer TNM staging system, which 
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Abstract
The heterogeneity in prognoses and chemotherapeutic responses of colon cancer pa-
tients with similar clinical features emphasized the necessity for new biomarkers that 
help to improve the survival prediction and tailor therapies more rationally and pre-
cisely. In the present study, we established a stroma-related lncRNA signature (SLS) 
based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model 
could not only distinguish patients with different recurrence and mortality risks 
through univariate analysis, but also served as an independent factor for relapse-free 
and overall survival. Compared with the conventionally used TNM stage system, the 
SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model 
also effectively screened chemotherapy-responsive patients, as only patients in the 
low-SLS group could benefit from adjuvant chemotherapy. The following cell infiltra-
tion and competing endogenous RNA (ceRNA) network functional analyses further 
confirmed the association between the SLS model and stromal activation-related 
biological processes. Additionally, this study also identified three phenotypically dis-
tinct colon cancer subtypes that varied in clinical outcome and chemotherapy ben-
efits. In conclusion, our SLS model may be a significant determinant of survival and 
chemotherapeutic decision-making in colon cancer and may have a strong clinical 
transformation value.
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assesses tumour invasion depth, lymph node metastatic status and 
remote metastasis,4 is still the most commonly used indicator for as-
sessing the recurrence risk of patients with colon cancer and whether 
they need ADJC or not. However, the predictive ability of this system 
is considered insufficient, as it does not predict the outcome of the 
patients precisely enough. Owing to high levels of heterogeneity found 
in colon cancer, prognoses and chemotherapeutic responses may vary 
widely between patients with similar clinical features. Therefore, it is 
necessary to develop novel biomarkers to help clinical workers tailor 
therapies more rationally and precisely.

Accumulating evidence has suggested that genetic difference 
of tumours is the major cause of heterogeneous anti-cancer drug 
response.5,6 However, previous efforts to develop models for pre-
dicting chemotherapy response based on expression and mutation 
profiling of protein-coding genes (PCGs) have been unsuccessful.7,8 
Similar to PCGs, long non-coding RNAs (lncRNAs), which used to 
be regarded as ‘transcript junk’,9,10 also act as key regulators that 
participate in multiple biological processes involved in tumour de-
velopment, progression and cancer therapy response.6,11 LncRNA is 
a transcript longer than 200 nucleotides that cannot be translated 
into proteins10 and is among the most prevalent transcriptional 
changes in tumour.11 In colon cancer, several prognostic predictive 
models have been developed based on lncRNAs.12-15 However, as 
none of them has been reported to provide potential treatment guid-
ance, these models may not meet clinical needs. Nevertheless, the 
clinical significance of lncRNAs in colon cancer still needs further 
exploration.

Here, we downloaded five datasets of colon cancer derived 
from Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/), which consisted of the transcriptome profile data of 988 
samples. To establish a lncRNAs-based model that could be used for 
improving the relapse risk prediction and tailoring therapies, we spe-
cially identified lncRNAs that were significantly associated with both 
cancer prognosis and biological processes including angiogenesis, 
hypoxia, TGFβ signalling and epithelial-mesenchymal transformation 
(EMT), which have been well-studied in multiple solid tumours, and 
defined as important stroma-related factors mediating tumour me-
tastasis and drug resistance, including in colon cancer.16-18

2  | METHODS

2.1 | Data source, study population and 
clinicopathological variables

The workflow chart is shown in Figure S1. A summary of all data-
set information used in this study is provided in Table S1. Sample 
tissues were excluded from the study if they came from a normal 
colon, stage IV patients, or patients without survival information on 
relapse. Then, all eligible samples were randomly separated into the 
training and validation (7:3) set groups using the ‘caret’ package. In 
addition, for gastric cancer exploration, the ‘GSE62254’ dataset was 
also downloaded and analysed. The demographic information and 

clinical information were retrieved using the ‘GEOquery’ package for 
GEO datasets. The end-points analysed in this study were relapse-
free survival (RFS), defined as the interval between the date of diag-
nosis and date of tumour relapse, and overall survival (OS), defined 
as the interval between the date of diagnosis and death.

2.2 | Microarray data processing and lncRNA 
profile mining

As all samples involved in the downloaded colon cancer datasets 
were hybridized to Affymetrix HG-U133 Plus 2.0, the raw microar-
ray data were all renormalized using a robust multiarray averaging 
method with ‘affy’ and ‘simpleaffy’ packages. The ‘ComBat’ algo-
rithm was applied to reduce the likelihood of batch effects from 
non-biological technical biases. The lncRNA annotations were col-
lected from three sources: (a) Based on the ‘Comprehensive gene an-
notation’ file provided by the GENCODE website, we screened the 
official gene annotation documents of the Affymetrix HG-U133 Plus 
2.0 platform for the lncRNA gene; (b) all GPL570 platform probes 
were mapped to the ‘Transcript sequences’ file downloaded from the 
GENCODE website using SeqMap and re-annotated with ensembl 
ID.19 Then, the lncRNA probes were extracted based on a gene 
transfer format file for ‘Long non-coding RNA gene annotation’. Of 
note, the probes were dropped if the lncRNA gene type was marked 
as a TEC gene; and (c) lncRNA annotation files generated by Zhang 
et al were also downloaded and checked as a supplement.20 Finally, 
4037 distinct annotated lncRNA transcripts with corresponding 
Affymetrix probe IDs were generated.

2.3 | Determination of lncRNA function

lncRNA function was explored using the triple competing endog-
enous RNA (lncRNA-miRNA-mRNA) network21 constructed through 
the following steps: First, we predicted the miRNA target of each 
lncRNA using the miRCODE website; then, the corresponding PCGs 
were identified using miRDB, miRTarBase and TargetScan; the corre-
lation between lncRNA and PCGs was further tested by calculating 
the Pearson correlation coefficients. The PCGs significantly posi-
tively correlated with lncRNA (correlation coefficient > .5, adjusted 
P value  <  .001) were considered lncRNA-related PCGs, and these 
genes were entered into the Gene Ontology (GO) enrichment analy-
sis to determine the lncRNA function. Finally, we chose 50 lncRNA-
related PCGs with the highest correlation as representatives to draw 
the triple ceRNA network using Cytoscape software, to show the 
interaction between genes more clearly.

2.4 | Gene set variation analysis (GSVA)

Gene set variation analysis is the most often used method to esti-
mate biological process activity.22 In the present study, gene sets for 

http://www.ncbi.nlm.nih.gov/geo/
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F I G U R E  1   The survival impact of SLS model. A, Circos plot shows the survival impact of 52 lncRNAs selected by LASSO Cox regression 
analysis (risk factor, red; protect factor, green); B-C, Kaplan-Meier curves (left) and TDROC curves (right) of relapse-free survival according 
to SLS groups in the training cohort; (B) and validation cohort (C); D, Kaplan-Meier curves (left) and TDROC curves (right) of overall survival 
according to SLS groups; E-F, Forest plots of the associations between SLS and relapse-free survival (E) and the associations between SLS 
and overall survival (F) in various subgroups. Unadjusted HRs (boxes) and 95% confidence intervals (horizontal lines) are depicted. AUC, area 
under ROC curve; CI, confidence interval; CMS, consensus molecular subtypes; HR, hazard ratio; SLS, stroma-related lncRNA signature
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‘EMT’, ‘angiogenesis’, ‘hypoxia’ and ‘TGFβ signalling’ were retrieved 
from the ‘hallmark gene sets’ collection of the ‘molecular signatures 
database’ and were employed for GSVA using the ‘GSVA’ package. 
The sum of the GSVA score obtained from the above four gene sets 
was defined as the stromal activation level of the corresponding 
sample.

2.5 | Characterization of tumour microenvironment

To quantify the infiltration levels of stromal cells located in tumour 
microenvironment, the single-sample gene set enrichment analy-
sis (ssGSEA) method was applied using the ‘GSVA’ package.23 The 
marker genes of immune and stromal cells used for ssGSEA were 
retrieved from the works of Bindea et al24 (24 types of innate and 
adaptive immune cells covering multiple functional subtypes, and 
blood and lymph vessel cells) and Becht et al25 (endothelial cells and 
fibroblasts). The stromal score developed by Yoshihara et al was 
calculated using the ‘ESTIMATE’ R package.26

2.6 | LASSO Cox regression and survival analysis

The least absolute shrinkage and selection operator (LASSO) 
regression is a commonly used method for feature selection 
and has been applied to the Cox proportional hazard regression 
model.27 As previously described,28,29 only lncRNAs which passed 
the 1000-times bootstrapping robustness test were selected for 
LASSO regression analysis and all lncRNA expression values were 
dichotomized and respectively assigned as 1(represents lower ex-
pression) and 2 (represents higher expression). The genes repre-
sented by the minimum penalty parameter, λ, would be chosen 
to establish the prognostic risk score formula via Cox regression 
analysis in the training cohort. The optimal cut-off values for 
each gene were calculated using the ‘survminer’ R package. The 
Kaplan-Meier method was applied to calculate the survival rate, 
and the log-rank test was performed to assess the statistical sig-
nificance. Uni- and multivariate analyses were performed using 
the Cox proportional hazard models with a stepwise ‘LR forward’ 
method. The time-dependent receiver operating characteristic 
curve (TDROC) and Harrell's concordance index (c-index) analyses 

TA B L E  1   Harrell's concordance indexes of the SLS model and 
stage in different cohorts

Survival Cohort SLSa Stage6th

RFS Training 0.80 ± 0.03 0.62 ± 0.04

Validation 0.74 ± 0.06 0.63 ± 0.06

Entire 0.79 ± 0.03 0.63 ± 0.03

OS Entire 0.65 ± 0.04 0.55 ± 0.04

Abbreviation: OS, overall survival; RFS, relapse-free survival; SLS, 
stroma-related LncRNA signature.
aContinuous variables. 
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F I G U R E  2   The predictive effect of SLS model on treatment outcome of adjuvant chemotherapy. A-B, Kaplan-Meier curves of overall 
survival for patients in subgroups stratified by both stromal activation level (A)/SLS model (B), and receipt of adjuvant chemotherapy; C, 
Forest plot showing the benefit of adjuvant chemotherapy in different subgroups stratified by both stromal activation level/SLS model, and 
stage; D-E, Nomograms incorporating SLS model and clinical variables for predicting patient relapse (D) and death (E); F, Calibration plots 
show the agreement of prediction performance of nomogram and ideal model (45-degree dotted line); G, Decision curve plots depict the 
clinical usefulness of the nomograms and TNM stage. ADJC, adjuvant chemotherapy; OS, overall survival; Pr, probability; RFS, relapse-free 
survival; SLS, stroma-related lncRNA signature
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were conducted to evaluate the predictive value of the prognostic 
models.

2.7 | Other statistical analyses

The ‘CancerSubtypes’ R package was used for identifying mo-
lecular cancer subtypes based on aggregating multiple genomic 
platform data.30 The chemotherapy response of each sample was 
predicted by a predefined FOLFIRI (a chemotherapy regimen com-
bination of irinotecan, 5-fluorouracil and leucovorin deployed in 
first-line treatment of patients with metastatic colon cancer) re-
sponse signature31 using the nearest template prediction (NTP) al-
gorithm32 module from GenePattern as described by Sadanandam 
et al.33 The unpaired Student's t test (two groups) and one-way 
ANOVA test (more than two groups) were used for normally dis-
tributed data comparison; otherwise, the Mann-Whitney U test 
(two groups) and Kruskal-Wallis test (more than two groups) were 
performed. Nomogram construction and validation were per-
formed following Iasonos’ guide.34 All statistical analyses were 
conducted using R software (version 3.5.0) and SPSS software 
(version 25.0), and P values were two-tailed. Statistical signifi-
cance was set at P < .05.

3  | RESULTS

3.1 | Identification of robust prognostic stroma-
related lncRNAs

The patient cohort of this research included 988 patients. Pearson's 
correlation test identified a total of 2654 lncRNAs significantly 
related with the stromal activation level (adjusted P value  <  .05). 
Among them, 372 lncRNAs were significantly correlated with RFS 
via the Cox univariate regression analysis in the entire cohort. Next, 
we used 1000-times bootstrapping to test the predictive robust-
ness of the above 372 genes as we mentioned in ‘Methods’ section. 
Finally, 82 lncRNAs, the expression levels of which were stably and 
significantly correlated with prognosis, were identified and defined 
as robust prognostic stroma-related lncRNAs (see Table S2).

3.2 | The stroma-related lncRNA signature (SLS) 
generation and validation

The 988 colon cancer samples were randomly regrouped into train-
ing (n  =  692) and validation cohorts (n  =  296) as described in the 
‘Methods’ section. Comparison of patient characteristics between 
the two groups showed no significant differences (P > .05; see Table 
S3). Through LASSO analysis (see Figure S2), 52 lncRNAs were 
screened out as predictors to generate the SLS model and their sur-
vival impact is shown in Figure 1A. The cut-off values and risk coef-
ficients of these 52 lncRNAs used for creating the risk score formula 
are listed in Table S4. The patients were divided into two groups 
based on the optimal cut-off values of the SLS model obtained for 
the entire cohort (−8.49). In both training and validation sets, pa-
tients in the high-SLS group had a significantly shorter RFS time 
(Figure 1B-C) and the predictive ability for relapse of the SLS model 
was obviously higher than that of the TNM stage system, revealed 
by both TDROC (Figure 1B-C) and c-index analyses (Table 1). The 
association of the SLS risk score with RFS was also tested in the mul-
tivariate Cox regression model as a continuous variable. As shown 
in Table 2, the SLS model was a demonstrably strong independent 
risk factor for RFS in both patient cohorts. Similar results were also 
found for the analysis of 678 patients with documented OS infor-
mation (Figure 1D, Tables 1 and 2). In addition, we also conducted 
subgroup analyses to further validate the prognostic role of the SLS 
model. The forest plots indicated that regardless of whether it was 
referring to RFS (Figure 1E) or OS (Figure 1F), a higher SLS score was 
significantly associated with a poorer prognosis in all subgroups but 
the stage I patients.

3.3 | SLS and the therapeutic benefit of adjuvant 
chemotherapy

Several studies have reported that EMT, TGFβ signalling, angiogen-
esis and hypoxia are all important biological processes influencing 
chemotherapy efficacy. Correspondingly, through analysing the 
GSE39582 dataset, we found that patients with a high stromal ac-
tivation level could not benefit from adjuvant chemotherapy (ADJC) 
(Figure 2A). As the SLS model consisted of stromal activation 

F I G U R E  3   Cell infiltration, clinical significance and biological function analyses of SLS model. A, Unsupervised clustering of patients 
based on 28 types of tumour microenvironment cell infiltration which characterized by single-sample gene set enrichment analysis. Patient 
stage, relapse status, stroma activation level, SLS group and SLS value were annotated above the heat map. Four distinct cell clusters 
are defined; B, The interactions between each cell and their survival impact. The size of each cell represents survival impact of each cell 
type, calculated using the formula log10 (log-rank test P value). The lines connecting cells represent cellular interactions. The thickness of 
line represents the strength of correlation estimated by Spearman's correlation analysis. Favour for relapse-free survival was coloured as 
green, risk for relapse-free survival as red; C-D, SLS values in different clinical subgroups (C) and in patient group with different response to 
FORFIRI (D); E, The overall ceRNA network of lncRNAs. In the network, protein-coding genes are coloured in blue, miRNAs are coloured in 
green and lncRNAs are coloured in red; F, The bubble plot shows the GO enrichment results of lncRNA-related protein-coding genes.aDC, 
activated dendritic cell; CIMP, CpG island methylator phenotype; CIN, chromosome instability; CMS, consensus molecular subtypes; CS, c 
subtype; DC, dendritic cell; iDC, immature dendritic cell; LS, live status; MMR, mismatch repair; MT, mutant type; RS, relapse status; SLS, 
stroma-related lncRNA signature; T gamma delta; Tcm, T central memory; Tem, T effector memory; TFH, T follicular helper; Tgd, NK, natural 
killer; Th, T helper; WT, wild type

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
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level-related lncRNAs, we were interested in knowing whether the 
SLS model also helps to find patients who could potentially benefit 
from chemotherapy. As expected, ADJC could only significantly re-
duce the mortality risk of patients in the low-SLS group, but did not 
confer survival benefits to patients in the high-SLS group (Figure 2B). 
Moreover, the survival benefit of ADJC was more obvious for pa-
tients with a low-SLS value in both stage II and stage III subgroups, 
although the P value did not reach a statistical significance in stage 

II patients (Figure 2C). We then conducted multivariate analyses in 
the GSE39582 dataset (see Table S5) and obtained the independ-
ent prognostic factors for RFS and OS, respectively, to construct the 
nomograms (Figure 2D-E). The calibration plots showed that both 
nomograms performed well compared with the performance of the 
ideal models (Figure 2F). Decision curve analysis revealed that the 
clinical usefulness of the nomograms significantly overwhelmed that 
of the TNM stage system (Figure 2G).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
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3.4 | The relationship between SLS signature, 
tumour microenvironment, clinical parameters and 
biological processes

The correlation between SLS signature and tumour microenviron-
ment (TME) landscape was evaluated. Using unsupervised clustering, 
we identified four distinct TME infiltrated cell clusters (Figure 3A), 
and the survival impact of each cells is exhibited in Figure 3B. As 
shown in the heat map, the cells whose infiltration levels were signif-
icantly positively associated with SLS scores mainly fell into cell clus-
ter D, which was characterized by a high infiltration level of multiple 
stromal cells, macrophages, neutrophils, eosinophils and some T-cell 
subtypes (fibroblasts and endothelial cells were of the highest cor-
relation level). An increased infiltration level of these cells indicated 
a poor prognosis. Contrarily, cells that were significantly negatively 
associated with SLS mainly included activated dendritic cell (aDC), 
CD56dim natural killer (NK) cells, Th17 cells and Th2 cells, which 
acted as protective prognostic factors. Exploring the clinical indica-
tions of SLS showed that male, advanced stages, relapse or death, 
proficient mismatch repair status and chromosome instability-pos-
itive patient characteristics all had significantly raised SLS scores 
(Figure 3C). In terms of molecular subtypes, patients in molecular 
subtypes C4 and CMS4 exhibited significantly higher SLS model val-
ues than others. Moreover, in consistency with the results of ADJC 
analysis, we also found that the SLS score was significantly higher 
in patients that were classified into a FOLFIRI-insensitive group 
compared with a FOLFIRI-sensitive group (Figure 3D). Finally, we 
built the triple ceRNA (lncRNA-miRNA-mRNA) network (Figure 3E) 
to further determine the function of lncRNAs involved in SLS mod-
els. The following GO functional analysis of the PCGs in the ceRNA 
networs also showed the enrichment of multiple stromal activation-
related terms (Figure 3F), including cell adhesion to various extracel-
lular matrix component, angiogenesis and hypoxia.

3.5 | Evaluation of novel colon cancer subtypes by 
aggregating lncRNA and mRNA data

In a previous study, we identified 100 robust prognostic TME genes 
and found that a panel consisting of these genes could not only pre-
cisely predict the relapse and mortality risks in patients with colon 
cancer, but also discriminate patients who would potentially benefit 
from ADJC.28 However, it has been widely believed that aggregating 
multiple types of genomic data could help to reflect the complexity of 

the tumour genetic characteristics. Therefore, we attempted to con-
struct a novel molecular subtype based on both the 52 stroma-related 
lncRNAs identified in this study and 100 TME genes. We chose three 
as the optimal clustering number (see Figure S3) and samples were 
then divided into three distinct subtypes based on SNF-CC approach 
(combination of ‘similarity network fusion’ method and ‘consensus 
clustering’ method) 30 using ‘CancerSubtypes’ R package (Figure 4A). 
The survival analyses revealed a significant survival difference be-
tween the three subtypes: The relapse and death risks were high-
est in subtype 3, whereas subtype 2 showed the best prognosis 
(Figure 4B). The chemotherapy treatment effect analysis (Figure 4C) 
showed that only patients from subtype 2 could significantly ben-
efit from ADJC, whereas subtype 1 and subtype 3 patients could 
not. In particular, for subtype 3 patients, the ADJC conduction was 
a risk factor for an unpromising prognosis. We then, respectively, 
compared the FOLFIRI response rate (Figure 4D) and stroma score 
(calculated by ESTIMATE algorithm, Figure 4E) between the differ-
ent patient subtypes. The result showed that both the non-response 
rate and the stroma score were also highest in subtype 3 patients 
and lowest in subtype 2 patients. Referring to cell infiltration, both 
the heat map (Figure 4F) and triangle plot (Figure 4G) showed that 
it was cell cluster D, including multiple stromal cells, that exhibited 
the significant difference of infiltration between the three subtypes. 
Finally, we evaluated the relationship between the current classifica-
tion with other established colon cancer molecular subtypes (CMS 
subtype and C subtype). As shown by the Sankey plot (Figure 4H), 
the subtype 3 patients mainly fell into the CMS4 subtypes, mostly 
representing mesenchymal phenotypes, whereas the subtype 2 pa-
tients mainly fell in CMS2, mostly displaying epithelial phenotype 
characteristics. Similarly, the samples in subtype 2 were distributed 
in the C subtypes apart from C4 and C6 (both characterized by EMT 
pathway upregulation) subtypes, whereas subtype 3 samples were 
mainly distributed in C4.

3.6 | The role of SLS in gastric cancer

We also analysed the role of the SLS model in the GSE62254 data-
base to verify whether it was also correlated with relapse and ADJC 
treatment effect in patients with gastric cancer. The clinical char-
acteristics of this cohort were also listed (see Table S6). The cut-off 
values for each lncRNA were re-calculated because of the poten-
tial existence of heterogeneity between different tumour types. As 
shown in Figure 5A-B, this dataset confirmed the ability of the SLS 

F I G U R E  4   Unsupervised clustering of lncRNAs (from SLS) and mRNAs (from TMRS) in colon cancer. A, Average silhouette width 
representing the coherence of clusters; B, The survival curve of three distinct subtypes for relapse-free survival (left) and overall survival 
(right); C, Forest plot showing the benefit of adjuvant chemotherapy in different subtypes; D, Sunburst chart depicting the non-response 
rate to FOLFIRI in different subtypes; E, Stroma score in different subtypes; F, Heat map shows the tumour microenvironment cell 
infiltration status in different subtypes. Patient stage, relapse status, stroma activation level, TMRS value, SLS value and cancer subgroup 
were annotated above the heat map. Four distinct cell clusters are defined as previous; G, Ternary plot of infiltration status in cell clusters 
comparing different subtypes; H, Sankey chart displaying the distribution of the novel subtypes in C1-C6 subtypes and CMS subtypes. aDC, 
activated dendritic cell; CMS, consensus molecular subtypes; DC, dendritic cell; iDC, immature dendritic cell; Sub, subtype; T gamma delta; 
Tcm, T central memory; Tem, T effector memory; TFH, T follicular helper; Tgd, NK, natural killer; Th, T helper

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
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model in predicting survival and tailoring therapies for patients with 
stage I-III gastric cancer. In the multivariable Cox regression model, 
the SLS model also was significantly associated with RFS as a con-
tinuous variable in the GSE62254 cohort (see Table S7). Finally, we 
compared the SLS scores of gastric cancer patients with different 
Asian Cancer Research Group subtypes. The results showed that the 
SLS scores were significantly higher in the ‘EMT’ and ‘MSS/TP53-’ 
subtypes compared with the ‘MSI’ and ‘MSS/TP53+’ subtypes 
(Figure 5C). The following scatter plot also confirmed that SLS scores 
were significantly positively associated with stromal activation level 
in patients with gastric cancer (Figure 5D).

4  | DISCUSSION

The rapid development of high-throughput technology has ena-
bled researchers to study cancer heterogeneity more deeply and 
comprehensively, and identify ideal molecular biomarkers that 
could be used to precisely predict prognosis and guide treat-
ment. Among them, lncRNAs, which possess tissue-specific and 
cancer-specific expression patterns and play essential roles in tu-
morigenesis and cancer progression,11 are specifically regarded 
as important candidates for building diagnostic and prognostic 
signatures in various types of solid tumours. In colon cancer, sev-
eral lncRNA-based prognostic signatures have been established to 
improve survival prediction. For example, the 4-lncRNA signature 

proposed by Wang et al,14 the 2-lncRNA signature built by Xue et 
al15 and the 15-lncRNA signature developed by Wang et al13 were 
all reported to be an ideal tool to identify colon cancer patients 
with a high mortality risk. Most recently, Cai's group developed 
an integrated mRNA-lncRNA signature with predictive values spe-
cially for early colon cancer relapse (recurrence between 3 months 
and 1 year after initial primary resection) and found that the prog-
nostic ability of the model was stronger than that of the TNM 
stage system.12 However, the current available signatures only 
provide prognosis-related information; none of these studies dis-
cussed the role of these signatures in treatment guidance. The 
clinical practicality of these signatures was therefore limited.

To construct an lncRNA-based model that could provide in-
formation on patient prognosis and therapeutic benefit, we first 
used correlation analysis to obtain 2654 lncRNAs that were sig-
nificantly associated with the biological processes that trigger 
tumour metastasis and chemotherapy resistance, including angio-
genesis, hypoxia, EMT and TGFβ signalling activation.16-18 Then, by 
consistently using the bootstrap and LASSO regression methods, 
we selected 52 robust stroma-related prognostic lncRNAs to build 
a novel prognostic model, the SLS model. The following survival 
and prediction power analyses revealed that the SLS model was 
a reliable tool for prognostic prediction and had much better pre-
dictive accuracy than the AJCC TNM stage system. More impor-
tantly, by applying the SLS signature to the GSE39582 dataset, 
we noticed that only patients in a low-SLS group could benefit 

F I G U R E  5   The role of SLS model in gastric cancer. A, Kaplan-Meier curves (left) and TDROC curves (right) of relapse-free survival 
according to SLS groups; B, Kaplan-Meier curves of overall survival for patients in subgroups stratified by both SLS model and receipt of 
adjuvant chemotherapy; C, SLS values in different ACRG subtypes; D, Scatter plot showing the correlation between SLS value and stomal 
activation level. ADJC, adjuvant chemotherapy; AUC, area under ROC curve; SLS, stroma-related lncRNA signature

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
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from ADJC, which indicated that the SLS model could effectively 
screen patients who are chemotherapy-responsive. We also un-
covered a difference in SLS value between FOLFIRI-sensitive and 
FOLFIRI-insensitive groups, which further implied that our SLS 
model had the potential to differentiate between chemotherapy 
benefits in either adjuvant or metastatic settings. These findings 
suggested that the primary chemotherapy resistance caused by 
high activation levels of stroma-related biological process could 
be one reason for the unpromising prognosis of high-SLS patient; 
the development of new therapeutic models by a combination of 
chemotherapy and molecule-targeted drugs that could inhibit ac-
tivation of specific stroma-related pathways might be helpful for 
improving their curative effect. Moreover, the SLS signature also 
showed excellent performance in recurrence prediction and the 
identification patients for whom ADJC may be more beneficial in 
gastric cancer, indicating a broad applicability of this signature in 
gastrointestinal cancer. Taken together, our results suggest that 
the SLS signature may be a significant determinant of survival and 
chemotherapeutic decision-making in colon cancer and have a 
strong clinical transformation value. Of note, due to limitations of 
the sample size in the datasets, additional prospective studies are 
required to further verify our findings.

In this study, we also constructed a new colon cancer molecular 
subtype by SNF-CC method that aggregates the expression data of 
52 lncRNAs and 100 robust prognostic TME genes identified in our 
previous study.28 Similar to SLS signature, this derived subtype was 
also associated with a significant difference in survival outcome 
and the curative effect of ADJC and FOLFIRI regimens, indicating 
that such a genomic classification offers insights to the stratified 
management of patients and further personalized therapeutic de-
cision-making. Notably, in subtype 3 patients, ADJC did not benefit 
patients and even increased the mortality risk by 2.16 times. We 
speculated that it might be due to the fact that chemotherapy itself 
increased the metastatic potential of the drug-resistant cells, and 
accelerated tumour progression.35,36 Therefore, research on devel-
oping new strategies for subtype 3 patients is warranted.

Among the 52 lncRNAs involved in the SLS signature, 14 have 
been experimentally demonstrated to be linked with cancer. Therein, 
four lncRNAs including CYTOR, MEG3, MIR100-HG and MIR31HG 
have been previously reported to play an oncogenic role in colon 
cancer. Wang et al reported that CYTOR could directly interact with 
NCL and Sam68, and the latter two further activated the NF-κB 
pathway and EMT to contribute to colon cancer progression.37,38 
MEG3 level has been widely reported to decrease in a growing list of 
primary human tumours and plays a key role in tumour suppression. 
In colon cancer, down-regulation of lncRNA MEG3 promotes cancer 
cell proliferation and migration via upregulating clusterin,39TGF-β1 
and SPHK1.40 MIR100HG is a kind of microRNA host gene, the in-
tron of which encodes three kinds of microRNA, including miR-100, 
miR-125b-1 and let-7a-2. There has only been one study showing 
that MIR100HG could form a double-negative feedback loop with 
GATA6 and activate the Wnt/β-catenin pathway, causing cetuximab 
resistance in colon cancer cells.41 As for MIR31HG, Eide et al found 

that MIR31HG was an independent prognostic factor for patients 
with colon cancer.42 Meanwhile, the cell lines with high MIR31HG 
outlier expression were characterized by an elevated EMT signature 
and TGFβ signalling activation.42 This result is consistent with our 
findings. However, the functions of most lncRNAs enrolled in the 
signature have not been investigated. As our research has shown 
that the expression of these lncRNAs was correlated with stroma 
activation level and robustly associated with increased recurrence 
risk, they deserve further clinical and basic investigation.

Limitations to our study include the following: First, as this study 
was conducted based on publicly available datasets, some important 
clinicopathological features were not available for analysis and could 
lead to potential error or bias. Second, all colon cancer transcriptome 
profiling collected in the present study was produced by the GPL570 
platform; the lncRNA candidates identified here may not represent 
the complete lncRNA populations underlying colon cancer biological 
behaviour, owing to the fact that the GPL570 platform only contains 
a small part of all possible lncRNAs. Moreover, the lncRNAs that 
were identified by re-annotation of probes should also be validated 
by further studies. Finally, as mentioned above, the biological func-
tion of some lncRNAs involved in SLS signatures still requires exper-
imental verification.

5  | CONCLUSIONS

In conclusion, our study developed a novel lncRNA signature that 
can be used as a reliable tool for personalized prognosis prediction 
and for treatment decision-making in patients with colon cancer. 
Further prospective clinical trials are warranted to validate our 
findings.
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