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Abstract: Adult mammalian cardiomyocytes demonstrate scarce cycling and even lower proliferation
rates in response to injury. Signals that enhance cardiomyocyte proliferation after injury will be
groundbreaking, address unmet clinical needs, and represent new strategies to treat cardiovascular
diseases. In vivo methods to monitor cardiomyocyte proliferation are critical to addressing this
challenge. Fortunately, advances in transgenic approaches provide sophisticated techniques to
quantify cardiomyocyte cycling and proliferation.
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1. Introduction

Adult mammalian cardiomyocytes, the muscle cells of the heart, have limited ability to
re-enter the cell cycle and even lower rates of division to produce new cardiomyocytes. The
inability of adult cardiomyocytes to cycle and proliferate significantly impacts myocardial
responses to injuries. For example, cardiomyocytes are lost during myocardial infarctions
even with successful reperfusion, and this loss contributes to adverse left ventricular
remodeling, ischemic cardiomyopathy, heart failure, arrhythmia, and death. Heart failure
affects 5.7 million Americans with a projected 46% increase in prevalence by 2030, has a
~50% mortality rate at five years despite current medication and device-based therapies,
and accounts for ~2 million physician office visits and ~USD 30 billion in direct medical
costs annually [1]. FDA-approved medications to treat heart failure fall within a few
classes designed to dampen the adrenergic (e.g., beta-adrenergic receptor antagonists) or
renin-angiotensin signaling systems (e.g., ACE inhibitors, ARBs) [2]. Unfortunately, current
therapies can only slow or reverse isolated aspects of heart failure. Moreover, there are no
reliable therapies available to replace the cardiomyocytes lost to myocardial infarction.

Identifying the drugs that enhance cardiomyocyte proliferation after injury will be
groundbreaking, address unmet clinical needs, and represent new strategies to treat car-
diovascular diseases. However, methods are needed to quantify adult cardiomyocyte
cycling and replication accurately [3]. Rigorous practices are fundamental to investigate
the mechanisms that prevent cycling events under conditions of normal growth, aging,
and response to injury, and establish new therapies that may enhance cardiomyocyte
cycling to improve myocardial function. We will review the in vivo methods to monitor
cardiomyocyte proliferation, focusing on transgenic mice.

1.1. Normal Mammalian Heart Cycling, Exit from the Cell Cycle, and Estimates of Cardiomyocyte
Turnover in Human Hearts

Mammalian cardiomyocytes exit the cell cycle during postnatal heart growth. In
mice, the majority of cardiomyocytes are determined within the first week of postnatal life,
followed by two waves of DNA synthesis leading to binucleation and increased ploidy,
a measure of genome size [4]. A small fraction of cardiomyocytes re-enter the cell cycle
in response to injury [5–13]; however, cytokinesis is incomplete after cardiomyocytes re-
enter the cell cycle, leading to further polyploidization and limited generation of new
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cardiomyocytes [14]. Human cardiomyocyte turnover is ~0.04% in the first year of life
and ~0.01% per year in adulthood based on nuclear bomb test-derived radioisotope decay
estimates [4,5,15,16]. Cardiomyocyte cycling increases to ~0.1% after an injury; however,
the turnover is likely overestimated because of polyploidy [14,17].

The detection of endogenous expression of cell cycle proteins (Ki67 [18–20], Aurora
kinase B [21–23], Histone H3 phosphorylation [24,25], Anillin [26–28], among others), when
combined with nucleotide analog incorporation into genomic DNA during S-phase, has
been used to estimate cardiomyocyte cycling [3,14]. Measurements of cycling cardiomy-
ocytes based on marker expression range from 0% to 0.8% and 0.01% to 3.8% for uninjured
and injured myocardium, respectively [7,29,30]. Measurements of nucleotide analog in-
corporation using Bromodeoxyuridine, 5-Ethynyl-2-deoxyuridine, or 13N-thymidine into
mammalian cardiomyocytes range from 0% to 0.6% in uninjured models and 0.015% to 3.2%
after injury [4,10,12,13,29–32]. Derks and Bergman recently produced a table describing
the fractions of labeled cardiomyocytes in different models [14]. The low rates of cardiomy-
ocyte cycling present challenges to their detection and manipulation by transgenic methods.
This is particularly important because Bromodeoxyuridine-labeled cardiomyocytes are
vastly outnumbered by Bromodeoxyuridine-labeled non-myocytes (fibroblasts, inflamma-
tory cells, etc.). However, quantification of nucleotide analog incorporation into cycling
cardiomyocytes can be achieved using cardiomyocyte markers and careful approaches, as
described by the Field group [12,33–35].

The incorporation of thymidine analogs and transgenic mice revealed spatial and
regional distribution of cycled cardiomyocytes after injuries, such as myocardial infarc-
tion [6,7,10,34]. Generally, most cardiomyocyte cycling occurs in the border zones, defined
as the regions of the heart nearest the infarcted area. The remote zone, defined as the region
most distant form the infarct, usually has few cycling cardiomyocytes. The infarcted region
may have cycling cardiomyocytes depending on the type of myocardial infarction. Perma-
nent left anterior descending artery occlusion creates a full thickness, thin scar of collagen,
myofibroblasts, and few surviving cardiomyocytes. In contrast, the limited occlusion of the
left anterior descending artery followed by reperfusion produces a limited infarcted area
that is not full thickness and has many surviving cardiomyocytes. Understanding the type
of myocardial infarction is necessary to interpret the literature pertaining to cardiomyocyte
cycling and cardiac regeneration.

Additionally, the accurate measurement of proliferating cardiomyocytes requires
detecting cytokinesis and daughter cells derived from replication, an additional challenge
because cycling cardiomyocytes also undergo endoreplication and multinucleation. Many
of the transgenic methods described below are based on cell cycle protein expression and
can effectively label cycling events, and sometimes karyokinesis, the process of nuclei
division to produce bi- and multinucleated cardiomyocytes. However, few reporters have
labelled cytokinesis. Therefore, methods that label the clonal expansions of daughter cells
are often used to infer cardiomyocyte proliferation.

1.2. Cardiomyocyte Endoreplication and Binucleation vs. Proliferation

Under normal growth conditions and in response to stress and injury, mammalian car-
diomyocytes can reenter the cell cycle and undergo increased ploidy, a measure of genomic
DNA content (Figure 1) [14]. The increase in ploidy, also called polyploidization, occurs
through endoreplication (also called endoreduplication), in which a cell proceeds through
the four canonical phases of the cell cycle. However, cytokinesis is incomplete, producing
bi-nucleated or mono-nucleated polyploid cells. Additionally, incomplete cytokinesis and
karyokinesis produce nuclei that have greater than 2N ploidy. Deciphering the signal
pathways and proteins that a cell uses to drive proliferation and endoreplication are being
actively investigated.
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Figure 1. Simplified overview of cardiomyocyte cycling. After G2, failed karyokinesis (nuclear di-
vision) produces a single nucleus with >2N genomic DNA content. After mitosis and karyokinesis 
failed cytokinesis produces a binucleated cell. Further endomitosis of binucleated (on multinucle-
ated) cells produces nuclei with >2N genomic content. 

Polyploidy occurs throughout the plant and animal kingdoms [36,37]. Teleologically, 
polyploidization serves two possible objectives in nature. First, an increase in gene copy 
number provides increased protein products needed for the specialized cell function. Sec-
ond, an increase in gene copy number may protect a cell from environmental stresses (i.e., 
radiation exposure) that could inactivate genes essential to cell survival and lead to detri-
mental effects in an organism [38–41]. 

Cardiomyocyte polyploidization can occur in hypertension, cardiac hypertrophy, 
and myocardial infarction [5,42–44]. Cardiomyocyte binucleation may be a barrier to pro-
liferation, limiting mammalian myocardial regeneration. Recently, we observed that ~90% 
of cardiomyocytes reentering the cell cycle did not produce neighboring cells, suggesting 
that cycling failed to proliferate and may have undergone endoreplication [6]. These ob-
servations were consistent with prior results in the field. Whether the endoreplicative 
events resulted in complete genome duplications is unclear. Certainly, investigating the 
mechanisms that control polyploidy will lead to new insights into targets to promote con-
trolled cardiomyocyte proliferation as a therapy to treat cardiovascular diseases, but in 
vivo methods are necessary to quantify cycling events accurately. 

1.3. Concept of Actively Cycling and Previously Cycled Cardiomyocytes and Overview of 
“Snapshot” vs. “Integration of Events” Using an Indelible Mark 

The literature regarding the detection of cycling cardiomyocytes in vivo describes 
various methods that we will review below. The methods can be broadly divided into 
those that label “actively cycling” and “previously cycled” cardiomyocytes. (Figure 2A,B). 
Measuring actively cycling cardiomyocytes provides a snapshot of events at the time of 
tissue analyses based on the colocalization of markers expressed in cycling cells, including 
phospho-histone-3, Ki67, or Aurora B. These markers are expressed when a cell is actively 
cycling. Therefore, the detection is dependent on the time tissue is analyzed after injury 
and can lead to an over or underestimation of cycling events. Current methods cannot 

Figure 1. Simplified overview of cardiomyocyte cycling. After G2, failed karyokinesis (nuclear
division) produces a single nucleus with >2N genomic DNA content. After mitosis and karyokinesis
failed cytokinesis produces a binucleated cell. Further endomitosis of binucleated (on multinucleated)
cells produces nuclei with >2N genomic content.

Polyploidy occurs throughout the plant and animal kingdoms [36,37]. Teleologically,
polyploidization serves two possible objectives in nature. First, an increase in gene copy
number provides increased protein products needed for the specialized cell function.
Second, an increase in gene copy number may protect a cell from environmental stresses
(i.e., radiation exposure) that could inactivate genes essential to cell survival and lead to
detrimental effects in an organism [38–41].

Cardiomyocyte polyploidization can occur in hypertension, cardiac hypertrophy, and
myocardial infarction [5,42–44]. Cardiomyocyte binucleation may be a barrier to prolif-
eration, limiting mammalian myocardial regeneration. Recently, we observed that ~90%
of cardiomyocytes reentering the cell cycle did not produce neighboring cells, suggest-
ing that cycling failed to proliferate and may have undergone endoreplication [6]. These
observations were consistent with prior results in the field. Whether the endoreplicative
events resulted in complete genome duplications is unclear. Certainly, investigating the
mechanisms that control polyploidy will lead to new insights into targets to promote
controlled cardiomyocyte proliferation as a therapy to treat cardiovascular diseases, but
in vivo methods are necessary to quantify cycling events accurately.

1.3. Concept of Actively Cycling and Previously Cycled Cardiomyocytes and Overview of
“Snapshot” vs. “Integration of Events” Using an Indelible Mark

The literature regarding the detection of cycling cardiomyocytes in vivo describes
various methods that we will review below. The methods can be broadly divided into
those that label “actively cycling” and “previously cycled” cardiomyocytes. (Figure 2A,B).
Measuring actively cycling cardiomyocytes provides a snapshot of events at the time of
tissue analyses based on the colocalization of markers expressed in cycling cells, including
phospho-histone-3, Ki67, or Aurora B. These markers are expressed when a cell is actively
cycling. Therefore, the detection is dependent on the time tissue is analyzed after injury
and can lead to an over or underestimation of cycling events. Current methods cannot
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distinguish endoreplication and proliferation, although markers specific to the midbody of
cytokinesis may suggest proliferative events.
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Figure 2. Detecting “Actively cycling” and “Previously cycled” cells. Events represent cycling cells.
After an injury, there is an increase and decrease in cycling cells. (A) The “snapshot” approach mea-
sures cycling events in blue at a distinct time point after the injury. Typically, cycling cells are detected
by the co-localization of markers of cycling (Ki67, PH3, Aurora B, and Anillin) with cardiomyocytes
or transgenic mice that report phases of the cell cycle (FUCCI, Ki67-RFP, eGFP-Anillin). (B) The
“summation” approach relies on indelibly marking cycling events and measuring total events after
an injury. Cycled cells are labeled by incorporating nucleotide analogs into synthesizing genomic
DNA (3H-Thymidine, Bromodeoxyuridine, or 5-Ethynyl-2-deoxyuridine) or transgenic mice that
mark cells that cycled or underwent mitosis (MADM, Confetti/Brainbow, and αDKRC::RLTG). Figure
adapted from Bradley et al., Circ Res 2021, 128, 155–168.

The second approach relies on indelibly marking cells that have cycled and provides a
summation measurement of cycling events. Typically, this approach measures the incorpo-
ration of thymidine analogs (Bromodeoxyuridine or 5-Ethynyl-2-deoxyuridine) into DNA
during S-phase using antibodies or Click-It chemistry to identify cycling cells [32,45,46].
The dose, route of administration, and duration of exposure of Thymidine analogs vary
among published investigations. Pulsed dosing or continuous administration of Bro-
modeoxyuridine or 5-Ethynyl-2-deoxyuridine must be considered when designing and
interpreting cell cycling. The disruption of vascularity that occurs in the setting of injury
potentially limits the access of Bromodeoxyuridine or 5-Ethynyl-2-deoxyuridine to regions
of the myocardium, confounding the interpretation of cycling cells. Moreover, nucleotide
analog incorporation occurs during S-phase and cannot distinguish between endorepli-
cation (polyploidy) and proliferation of cardiomyocytes, although careful measurements
of nuclear DNA content and nuclei number such as combined with FACS can provide an
overall estimation of endoreplication and proliferation. However, the use of dissociated
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cells, or isolated nuclei, results in the loss of information regarding the spatial distribution
of cells in tissues.

This review will focus on recent advances in transgenic mice designed to monitor
in vivo cardiomyocyte cycling and proliferation.

2. Transgenics Reporter Mice of Actively Cycling Cells

Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) reporters. During
regular cell cycling, proteins are targeted for degradation through orchestrated ubiquitina-
tion reactions. Two E3 ligases responsible for ubiquitin reactions, APCCdh1 and SCFSkp2,
have significant roles in targeting proteins for degradation during cell cycle phases [47–52].
SCFSkp2 is a substrate and a direct inhibitor of APCCdh1, creating reciprocal oscillations
such that APCCdh1 is active in late M and G1 phases while SCFSkp2 is active in S and
G2. Moreover, the proteins Cdt1 and Geminin are substrates of SCFSkp2 and APCCdh1,
respectively, and undergo coordinated ubiquitination and degradation, causing Cdt1 and
Geminin to be expressed during the G1 to S phase and S phase to G2/M. Therefore, the
creation of fluorescent protein chimeras that harbor Cdt1 or Geminin tags recognized by
SCFSkp2 and APCCdh1 serve as probes to identify specific cell cycle phases in cultured cells
and in vivo. These chimeras are referred to as Fluorescent Ubiquitination-based Cell Cycle
Indicator (FUCCI) reporters [49] (Figure 3A).

The first-generation FUCCI probe pairs were separate reporters of fusion of monomeric
Kusabira Orange (mKO2) with a truncated human Cdt1 (hCdt1) containing amino acids
30-120 and monomeric Azami Green (AG) and the 110 amino acid N-terminus of the
human Geminin (hGem) protein [49]. The transgenes were driven by a constitutively
active synthetic CAG promoter containing the cytomegalovirus (CMV) early enhancer
element, the promoter and the first exon and the first intron of the chicken beta-actin
gene, and the splice acceptor of the rabbit beta-globin gene [53]. The mKO2-hCdt1(30/120)
reporter accumulates during the G1 phase and is degraded at the G1-S transition. The
mAG-hGem(1/110) probe accumulates during S/G2/M phases and is degraded prior to
cytokinesis. The next generation of FUCCI reporters consisted of mCherry-hCdt1 (30-120)
and mVenus-hGem (1-110) [54] (Figure 3B).

The initial FUCCI reporter mice were generated from two lines, CAG-mKO2-hCdt1
(30/120) and CAG-mAG-hGem(1/110), each produced by conventional transgenesis [49].
Since the CAG promoter is constitutive, approaches using the alpha-myosin heavy chain
(αMHC) promoter to drive FUCCI have been described to provide cardiomyocyte-specific
reporter expression [55]. In this case, a mix of αMHC-mKO-hCdt1 and αMHC-AG-hGem1
was co-injected to create transgenic mice. The first-generation CAG- and αMHC-FUCCI
mice provided important insights into cycling in vivo; however, there are significant limita-
tions. First, the random insertion of transgenes is associated with positional variegation,
causing problems with the amounts of expressed reporters. Positional variegation is a
significant issue because the accurate identification of the cell cycle phases depends on
each reporter’s expression levels, and baseline differences in expression attributed to the
transgene insertion site may confound the results.

The second-generation FUCCIs were designed to avoid the problems of positional
variegation associated with separate transgenesis of individual reporters. Bidirectional
R26p-Fucci2 mice harbor bidirectionally conjugated mCherry hCdt1(30/120) and mVenus-
hGem(1/110), each driven by the constitutive R26 promoter and separated by chicken
hypersensitive site 4 (cHS4) transcriptional insulators [54] (Figure 3C). The bidirectional
R26p-Fucci2 mice had low expression of the reporters and were lethal as homozygotes.

Newer-generation FUCCIs (FUCCI2a) harbor mCherry hCdt1(30/120) and mVenus-
hGem(1/110) as a polycistronic transgene with the probes separated by a Thosea asigna
virus 2A peptide (T2A) cleavage site [56] (Figure 3D,E). The Fucci2a is driven by a Cre
recombinase-inducible CAG promoter and targeted to the mouse Rosa26 locus (designated
Fucci2aR mouse). The Fucci2aR mouse provides a robust expression of an inducible
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FUCCI2a with initial equimolar concentrations of each probe, whose subsequent levels are
dictated by the cell cycle phases.
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FUCCI (A) and FUCCI2 (B). Second-generation Bidirectional R26p-FUCCI2 (C) and polycistronic
FUCCI2aR (D). (E) Schematic of cell cycle phase-dependent differential expression of FUCCIs.

αMHC-Cre::Fucci2aR, when used with thymidine analog incorporation into synthesiz-
ing DNA, can facilitate the detection of actively cycling and previously cycled cardiomy-
ocytes. In combination with Bromodeoxyuridine incorporation into genomic DNA during
the S phase and counterstains for cytokinesis (Aurora B), Fucci has the power to detect
one aspect of in vivo proliferation. We generated and characterized cardiomyocyte-specific
reporter αMHC::Fucci2aR mice and examined Fucci expression in postnatal hearts during
the window when cardiomyocytes transition from proliferation to polyploidy [6]. Mono-
nucleated cardiomyocytes in G1, S, and G2/M were seen in early postnatal hearts and
transitioned to bi-nucleated G0/G1 cardiomyocytes by P10. Cardiomyocytes of adult hearts
were almost exclusively mCherry+/mVenus- (red) with the rare presence of mVenus+
cells. Our observations of postnatal αMHC::Fucci2aR hearts were consistent with post-
natal cardiomyocyte growth described in the literature. Although αMHC::Fucci2aR mice
label actively cycling cells, the approach is limited by the scarcity of actively cycling car-
diomyocytes in adult hearts after injury and the inability to label daughter cells to identify
proliferative and endoreplicative events.

Mki67TagRFP mice. The Ki67 protein was initially defined by a monoclonal antibody
Ki-67, generated by immunizing mice with nuclei of the Hodgkin lymphoma cell line
L428 [18–20]. The name was derived from the city of origin (Kiel) and the original clone
number from a 96-well plate. Ki67 is a nucleolar protein expressed when cells enter the
cycle during G1-S-G2-M phases but absent in the G0. The Ki-67 antigen is present in all
proliferating cells, both standard and tumor cells, and therefore a marker of the growth
fraction of cell populations. Antibodies against the Ki-67 protein serve as diagnostic tools
in different types of neoplasms, immunohistochemically stratify tumors and identify cells
committed to entering the cell cycle.

Basak and colleagues created Mki67TagRFP mice by knocking a TagRFP red fluorescent
protein in frame with the C-terminus of the Ki67 coding sequence to label actively cycling
cells [57,58]. The percentage of Ki67-RFP+ cells in the hearts of one-week-old Mki67TagRFP

mice was ~10%, and less than 0.05% of Ki67-RFP+ cells were detected from the hearts of
adult mice. The Mki67TagRFP mice were subsequently used to profile proliferative cells in
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injured mouse hearts. Ki67-RFP+ cells doubled seven days after permanent left anterior
descending (LAD) artery ligation myocardial infarction and reached 1% enrichment two
weeks after the injury. Of note, TagRFP is expressed in any cell type undergoing cycling,
a limitation of Mki67TagRFP mice to quantify cycling cardiomyocytes. However, careful
co-localization of cardiomyocyte-specific markers improves analyses.

Ki67iresCreER mice. Basek et al. also created Ki67iresCreERT2 mice by knocking in a tamoxifen-
inducible Cre recombinase (CreERT2) linked to an internal ribosomal entry sequence (IRES) to
drive Cre expression in cycling cells when treated with Tamoxifen [58] (Figure 4). Experiments
used Ki67iresCreERT2::Lox-STOP-Lox-tdTomato mice to label all cycling cells in the heart one
day and 1.5 years after Tamoxifen treatment. No tdTomato+ cardiomyocytes were detected
one day after treatment. Few tdTomato+ cardiomyocytes (~0.16%) were detected after 1.5
years. However, the majority of proliferating cells in the myocardium were CD31+ endothelial
cells, PDGFRα+ fibroblasts, and CD45+ hematopoietic cells, suggesting a continuous cellular
turnover of non-cardiomyocyte lineages in the adult homoeostatic murine heart. Thus, the
Ki67iresCreER mice provide another potential strategy to label cycling cardiomyocytes but share
limitations similar to the Mki67TagRFP mice, namely that any cell undergoing cycling will be
labeled. Therefore, careful co-localization of the tdTomato signal to cardiomyocytes is needed
to avoid the overestimation of cycling events.
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Figure 4. Ki67iresCreER mice. Example of Ki67iresCreER::CAG-Lox-STOP-Lox-tdTomato mice. In the
presence of tamoxifen, cells undergoing cycling as defined by Ki67 expression have activated Cre
recombinase. The activated Cre excises a STOP cassette allowing tdTomato expression under the
control of the constitutively active CAG promoter.

Enhance Green Fluorescent Protein (eGFP)-Anillin mice. Anillin is an integral compo-
nent of the contractile ring during cytokinesis and undergoes cell cycle-dependent changes
in a subcellular location [26–28]. During the late phase of G1-, S- and G2-phase of the
cell cycle, Anillin is located in the nucleus and then transitions to the cytoplasm and cell
cortex in the early M-phase before the contractile ring and mid-body during cytokinesis.
After mitosis, Anillin undergoes ubiquitination in early G1 by the anaphase-promoting
complex associated with Cdh1 and degraded by the proteasome [26–28]. Based on the
cell cycle-dependent subcellular location, particularly to the contractile ring and midbody
during cytokinesis, Anillin serves as a potential substrate for creating transgenics to identify
proliferating cells. Hesse and colleagues generated transgenic mice (CAG-eGFP-Anillin) that
ubiquitously expressed a chimeric of the mouse Anillin cDNA fused to the C-terminus of
eGFP under the control of the CAG promoter [59] (Figure 5). The adult CAG-eGFP-Anillin



J. Cardiovasc. Dev. Dis. 2022, 9, 73 8 of 17

mice underwent cryoinjuries of the left ventricular or permanent LAD artery ligation
myocardial infarctions, and eGFP–anillin-expressing cells were quantified. Four days af-
ter the injuries, most eGFP–anillin-expressing cells were identified as myofibroblasts by
α-smooth muscle actin + staining with ~8% having the eGFP-Anillin localized to the con-
tractile ring or midbody. Very few cardiomyocytes in the border zones of the injured
myocardium expressed eGFP-Anillin, and none of the eGFP–Anillin+ signal was located in
the midbody or contractile ring. The data suggest that cardiomyocytes in the adult heart
did not divide in response to injury. Instead, the cells re-entered the cell cycle without
progressing to cytokinesis. Confocal microscopy and quantification of cardiomyocyte DNA
content, using endothelial cells as a standard of 2C DNA content, identified that most eGFP–
Anillin-negative cardiomyocytes had a 4C DNA content, whereas eGFP–anillin-positive
cardiomyocytes had a DNA content between 4C and 8C. The results were consistent with
cardiomyocytes undergoing endoreduplication after injury to the myocardium. Similar
to the above-described transgenic mice, eGFP-Anillin mice label all cycling cells and re-
quire careful co-localization of the eGFP-Anillin to cardiomyocytes to avoid the potential
overestimation of cycling events.
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Aurora kinase B (Aurkb)-ER Cre/+ mice. Aurkb is a component of the chromosomal
passenger complex and localizes to the centromeres and midbody during mitosis and
cytokinesis, respectively [21–23]. Antibody staining of Aurkb in histological samples is
often used to quantify mitotic events. Recently, Aurkb-ER Cre/+ mice have been generated by
targeting a Cre-Ert2 cassette into the start codon of the Aurkb locus to induce the expression
of Cre recombinase in cells undergoing mitosis during tamoxifen administration [60]. The
advantage of the Aurkb-ER Cre/+ mice is that tamoxifen activation of Aurkb-ER Cre labeled
proliferating cells during development and adult stem and progenitor cells, but not post-
mitotic cell in vivo. However, limitations of the Aurkb-ER Cre/+ mice include the potential
need for continuous Tamoxifen administration to ensure induction of the Cre recombinase
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and the generalized expression of Cre in any cell type that is undergoing mitosis, thus
requiring co-localization of cardiomyocytes markers for accurate quantification of events.

3. Transgenic Reporter Mice of Previously Cycled Cells

BrainBow/Confetti mice. Fluorescent protein expression is fundamental to in vivo
investigations of cells. Advances in the combinatorial expression of fluorescent reporters
using Cre-Lox technology facilitate the detection of clonal expression of proliferating
cardiomyocytes. Livet and colleagues first described a genetic strategy, called Brainbow,
for stochastic expression of multiple fluorescent proteins from a single transgene [61].
The technology used a series of tandem and inverted LoxP, LoxN, and Lox2272 sites
flanking different fluorescent cassettes (cytosolic RFP, nuclear-localized GFP, cytosolic
YFP, and membrane-associated CYP) that recombine stochastically in the presence of Cre
recombinase (Figure 6).
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Figure 6. CAG-loxP-STOP-loxP-Confetti (Brainbow). (A) The tamoxifen-induced expression of Cre-
dependent causes stochastic recombination of a multi-fluorescent reporter. Identifying of clusters of
cells expressing the same fluorescent reporters are used to infer clonal expansion. (B) Schematic of
the interpretation of Confetti expression used to identify random stochastic events (left) and clonal
expansion consistent with proliferation (right).

Using Brainbow, the combinatorial expression of the different pairs of fluorescent
reporters facilitated the identification of clonal expansion of cells in a tissue is identified
because the daughter cells of a particular clone combinatorically express the different
pairs of fluorescent reporters of the parent cell. This powerful technology has been used
to investigate neuronal network architecture [61–63], the expansion of crypt cells in the
gastrointestinal tract [64], and endothelial cell proliferation [65–67]. A Brainbow 1.0 L
transgenic strategy was used to identify that clonally dominant cardiomyocyte direct
heart morphogenesis in Zebrafish hearts [68]. Sereti and colleagues created a R26VT2/GK

transgenic mouse by a knock-in of a CAG promoter-driven Rainbow construct based on
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BrainBow principles into the Rosa26 locus [11]. Before Cre recombination, all cells express
GFP. In the presence of Cre, the GFP is excised and Cerulean, mOrange, or mCherry
fluorescent proteins are expressed stochastically. αMHC-Cre::R26VT2/GK drives the reporters
in mouse cardiomyocytes from developmental stage E11.5 labeled neonatal cells with the
predicted proportions of each reporter. αMHC-CreER::R26VT2/GK mice that drove expression
of reporters in adult cardiomyocytes after Tamoxifen induction showed the postnatal
cardiomyocytes had limited proliferative capacity in the absence of injury, consistent with
prior investigations.

Of note, the efficiency of Cre-mediated recombination is a major consideration when
using Rainbow/BrainBow/Confetti mice because the efficiency of recombination events
can confound the quantification of proliferative events. For example, a small number of
clonally expanded cells may be labeled and rare populations of cells may not be labeled
using this strategy.

Mosaic Analysis with Double Markers (MADM) mice. MADM mice are a powerful
strategy to identify proliferation by marking cells that undergo mitosis [69,70]. The MADM
mice harbor two split chimeric genes encoding the N-terminus of GFP and C-terminus of
red fluorescent protein (dsRed) and N-terminus of dsRed and C-terminus of GFP. Each
construct that has an intron containing a single LoxP site is targeted for homologous
recombination to the identical loci of homologous chromosomes (Figure 7). There is no
reporter expression in the absence of recombination. However, Cre-induced recombination
between the LoxP sites restored GFP and dsRed expression in dividing cells after DNA
replication at the G2 phase. Then, different outcomes are possible based on chromosome
segregation into daughter cells during subsequent mitosis. The two recombinant sister
chromatids can segregate into different daughter cells and express only GFP or dsRed,
marking proliferated cells. Alternatively, the two recombinant sister chromatids segregate
into one daughter cell with no fluorescence, similar to the parental cell. Finally, both
recombinant chromatids segregate together to produce a daughter cell expressing GFP and
dsRed. Of note, recombination in G1 or post-mitotic G0 generates cells that express both
fluorescent reporters.

The MADM mice provide a readout of cytokinesis, a significant advantage when
investigating cardiomyocytes because of endoreplication and multinucleation that oc-
curs due to reentering the cell cycle. One limitation of the MADM strategy is the effi-
ciency of labeling recombination events that can potentially underestimate the quantifi-
cation of mitosis. Subsequent developments to improve the efficiency of labeling mitotic
events included the creation of MADM-ML mice [71], which contains three mutually ex-
clusive, self-recognizing LoxP variant sites as opposed to a single LoxP site present in
the original MADM system. The initial MADM lines targeted the chimeric reports to
chromosome 6 [70]. Recently, a genome-wide library of MADM mice has been created and
validated to facilitate proliferation labeling [72].

The MADM technology has been used to quantify cardiomyocyte mitotic events [73–75].
Cardiomyocyte mitosis was readily observed during development, diminished in the first
month of life, and was rare in uninjured adult Myh6CreERT2(αMHC-CreERT2)::MADM-11GT/TG

mice [73]. Additionally, Myh6CreERT2(αMHC-CreERT2)::MADM-11GT/TG mice were used to
confirm that pre-existing cardiomyocytes are the source of new cardiomyocytes after ischemic
injury. More recently, Myh6CreERT2(αMHC-CreERT2)::MADM-11GT/TG mice have been used
to examine the effects of Meis1–Hoxb13 double-knockout on cardiomyocyte mitosis [75],
Pkm2 in cardiac regeneration [74], and Cdk1/CyclinB1 and Cdk4/CyclinD1 complexes (4F)
to induce transient cardiomyocyte cycling [76].

Importantly, the MADM mouse technology has limitations in addition to the efficiency
of labeling recombination events that can potentially underestimate the quantification of
mitosis. The MADM strategy does not restrict Cre expression to only cells undergoing
mitosis, limiting the ability to specifically ablate or express transgenes in specifically to
these cells. Additionally, since MADM is based on the availability of a pair of MADM
knock-ins between the gene of interest and the centromere, there is a need to generate
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knock-in cassettes for other chromosomes in order to investigate gene-specific function in
the heart.
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Figure 7. Mosaic Analysis with Double Markers (MADM). (A) Schematic of MADM-11GT and
MADM-11TG transgenes that harbor spilt GFP and dsRed constructs with intronic LoxP sites.
(B) Tamoxifen exposure induces the Cre recombinase expression that catalyzes an inter-chromosomal
rearrangement of split fluorescent reporters and labels mitotic events. (C) Recombination during
G1 or G1 produces double colored “Yellow” cells. The detection of “Green” or “Red” cells in panel
(B) allows the quantification of mitotic events. Figure adapted from Zong, H. et al., Cell 2005, 121,
479–492.

αMHC-MerDreMer-Ki67p-RoxedCre (αDKRC) mice. Advanced non-Cre DNA recombi-
nases, such as Dre [77–79], VCre [80,81], SCre [80,81], and FLP [82,83] with DNA recognition
sites other than LoxP, have unlocked the possibilities to engineer more sophisticated trans-
genic mice and interrogate temporal and lineage-specific cell biology [6,78,84]. Combining
inducible non-Cre recombinases (MerDreMer) with modified Cre recombinases (RoxedCre)
facilitates existing LoxP transgenics to answer previously unsolved questions in biology
and disease.

Recently, we developed a new transgenic reporter mouse restricting Cre recombinase
expression to adult cardiomyocytes that re-entered the cell cycle, as defined by the activation
of a minimal Ki67 promoter [6] (Figure 8). Our goal was to create a transgenic mouse
line that would facilitate the quantification and genetic manipulation of adult cycling
cardiomyocytes and investigate these cells in the context of myocardial injury. To achieve
this goal, we realized that tandem DNA recombinases recognizing distinct DNA motifs for
recombination would be necessary to achieve the restricted expression of Cre. Additionally,
the strategy needed to avoid the Rosa26 locus and be adaptable to existing LoxP transgenic
mice to ensure the ability to use the vast resources of established transgenic mice for
future investigations.
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from the RLTG reporter, resulting in the expression of tdTomato and RoxedCre to generate catalyt-

Figure 8. αDKRC::RLTG. (A) The αDKRC transgene. (B) Schematic outlining the expression of
GFP in adult cycling cardiomyocytes. Tamoxifen exposure induces the cardiomyocyte-specific Dre-
recombinase and subsequent excision of derived poly(A) signal repeats and flanked by two loxP
sites from the RLTG reporter, resulting in the expression of tdTomato and RoxedCre to generate
catalytically active Cre recombinase under control to the Ki67 cell cycle promoter. Cardiomyocytes
reentering the cell cycle, as defined by activation of the Ki67 promoter, express Cre and excise the
tdTomato-STOP cassette resulting in the expression of eGFP (enhanced green fluorescent proteins) in
cardiomyocytes. A short duration of Tamoxifen exposure activates that reporter system. Schematic of
expected changes in tdTomato and eGFP-labeled cardiomyocytes. Figure adapted from Bradley et al.,
Circ Res 2021, 128, 155–168.

Therefore, we developed a transgenic approach based on the distinct specificities of
Dre and Cre recombinases that recognized different DNA recombination sites sequentially.
Dre recombinase is a Type I topoisomerase identified from a screen of P1-like bacteriophage
and recognizes Rox DNA sites for recombination [77,79]. Dre recombinase is similar to Cre
Recombinase; however, the Rox DNA sequences recognized by Dre are different from the
LoxP DNA sites recognized by Cre recombinases, providing the ability to control recombi-
nation events. Dual Dre and Cre recombinases have been used to lineage trace cell fates,
including the contributions of non-myocytes to myocytes [85], hepatocyte regeneration in
liver injury [86], and neurogenesis [87]. Instead of using promoters to label cell lineages,
we adapted the technology to create a new transgenic mouse αMHC promoter driving
a Tamoxifen-inducible Dre recombinase in tandem with a minimal Ki67 promoter [88]
that drives a Roxed-Cre, requiring Dre for the activation of Cre. The mouse harbors a
αMHC-MerDreMer-Ki67p-RoxedCre transgene generated by conventional transgenesis, and
nested, inverse PCR subsequently mapped the transgene to the endogenous αMHC region
on chromosome 14, a genomic region that is transcriptionally active in cardiomyocytes.
The αDKRC was then bred to Rox-Lox-tdTomato-eGFP (RLTG) mice that harbor tdTomato
and eGFP promoters flanked by Rox and LoxP sites [89].
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In adult αDKRC::RLTG mice, tamoxifen exposure induces the cardiomyocyte-specific
Dre recombinase and subsequent excision of STOP cassettes of three identical SV40-derived
poly(A) signal repeats and flanked by two loxP sites from the RLTG reporter, resulting
in the expression of tdTomato and the generation of catalytically active Cre recombi-
nase under control of the Ki67 cell cycle promoter. Then, any cardiomyocyte that reen-
ters the cell cycle, as defined by activation of the Ki67 promoter, expresses Cre and ex-
cises the tdTomato-STOP cassette, resulting in the expression of eGFP (enhanced green
fluorescent proteins).

Using αDKRC and Bromodeoxyuridine, we estimated ~0.07% and ~0.02% eGFP+ cy-
cled cardiomyocytes per total cardiomyocytes per section after sixty minutes of LAD artery
ligation-mediated ischemia and reperfusion myocardial infarction and sham groups, respec-
tively [6]. The results were comparable to published estimates of cycling cardiomyocytes
based on the incorporation of Bromodeoxyuridine or 5-Ethynyl-2-deoxyuridine and the ex-
pression of cell cycle markers [4,7,10,12,13,29–32]. Additionally, using αDKRC/+::RLTG/RLTG
mice and examining cycling events across multiple short-axis sections of the myocardium
suggests that endoreplication was the predominant outcome of cycling cardiomyocytes,
with a ratio of 9:1 single to paired eGFP-positive cardiomyocytes.

The αDKRC mouse has a few important advantages. First, only a short duration
of Tamoxifen exposure activates the reporter system, avoiding the potential problems of
prolonged Tamoxifen that can confound experiments in terms of labeling and Tamoxifen-
dependent effects of cardiac function [90]. For example, a ten-day course of Tamoxifen
administration is sufficient to activate the αDKRC reporter system. However, some trans-
genic reporter systems, such as Brainbow/Confetti or MADM, require the presence of
tamoxifen continuously to induce Cre activation during cycling that is needed to ensure
appropriate labeling. Second, LoxP-based transgenic mice can be used with αDKRC to
express transgenes or ablate endogenous genes, specifically in adult cardiomyocytes that
reenter the cell cycle. The approach provides the ability to interrogate the contributions
of specific signals to cardiomyocyte cycling after myocardial injury without affecting all
cardiomyocytes. Third, αDKRC::RLTG mice offer the ability to potentially isolate cycled
cardiomyocytes that are sparsely present for the characterization of differential gene ex-
pression. Fourth, αDKRC::RLTG facilitates the quantification of cycling cardiomyocytes,
and proliferation or endoreplication can be inferred based on clustered or individual
GFP-positive cardiomyocytes, respectively.

There are potential limitations of αDKRC/+::RLTG/RLTG mice. First, the activation of
the 1.5 bp Ki67 promoter defines cycling. Although unlikely, a cardiomyocyte entering the
cycle may fail to proceed through S-phase, leading to overestimating cycling events. Second,
tamoxifen may not uniformly activate the αDKRC reporter across the entire myocardium,
resulting in an underestimation of cycling cardiomyocytes. However, this is a limitation
of all tamoxifen-dependent transgenic systems. Third, if Dre excised both LoxP and
Rox-flanked cassettes, then a false-positive eGFP+ cardiomyocyte would be produced,
potentially overestimating cardiomyocyte cycling. However, dual Dre and Cre approaches
are rigorously specific enough for lineage-tracing transgenic models, as we validated in
experiments in cell culture.

Recently, similar approaches using Dre and Cre DNA recombinases have been used to
investigate the withdrawal cardiomyocyte cycling in preadolescent mice [91], supporting
the power of tandem DNA recombinases to identify proliferating cells.

4. Future Directions

The evolution of transgenic technologies has improved the quantification and ma-
nipulation of cardiomyocyte cycling. Transgenic-based strategies have the potential to
interrogate the unique molecular signatures of proliferating cardiomyocytes and their con-
tributions to health and disease, with the promise of identifying mechanisms to promote
regenerative medicine.
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