

Supporting Information

Engineering 2-Deoxy-D-ribose-5-phosphate Aldolase for *anti*- and *syn*-Selective Epoxidations of α,β -Unsaturated Aldehydes

H. Zhou, A. Kunzendorf, G. Xu, H. O. T. Frietema, A.-M. W. H. Thunnissen, G. J. Poelarends*

Supporting Information

Engineering 2-Deoxy-D-ribose-5-phosphate Aldolase for *anti*- and syn-Selective Epoxidations of α , β -Unsaturated Aldehydes

Hangyu Zhou¹, Andreas Kunzendorf¹, Guangcai Xu¹, Hylke O.T. Frietema², Andy-Mark W. H. Thunnissen² and Gerrit J. Poelarends¹*

¹Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

²Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

*Address correspondence to Prof. Dr. Gerrit J. Poelarends. Tel: +31-50-3633354; Fax: +31-50-3633000; E-mail: g.j.poelarends@rug.nl.

Contents

1.	General information	3
2.	Site-saturation mutagenesis	3
3.	Screening	6
4.	Enzyme expression and purification	7
5.	Enzyme activity assay	8
6.	Substrate scope analysis of DERA-EP	9
7.	Additional potential substrates tested	10
8.	Semi-preparative scale (hundred milligram) synthesis	11
9.	Directed evolution overview	12
10.	Proposed mechanism	14
11.	X-ray crystallography	14
12.	DNA and Protein Sequences	17
13.	NMR Spectra	18
14.	Normal-phase Chiral HPLC Analysis	28
15.	Reverse-phase Chiral HPLC Analysis	29
16.	Supplementary References	45

1. General information

All oligonucleotide primers used in this study (summarized in Table S1) were purchased from Eurofins Genomics. Cloning enzymes were purchased from Thermo Fisher Scientific or New England Biolabs. DNA was purified using a PCR purification kit (QIAquick®, QIAGEN). Proteins were analyzed by SDS-PAGE on precast gels (NuPAGETM 10% Bis-Tris protein gels). Substrate 1i was prepared according to previously published procedures using the Wittig reaction and its ¹H-NMR spectra match with earlier reported data. ^[1,2] The racemic reference compounds were synthesized according to literature procedures. [3] Other aldehyde substrates and chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA), BLD Pharmatech Ltd. (Shanghai, China), TCI Europe N.V. (Zwijndrecht, Belgium) or Thermo Fisher Scientific (Geel, Belgium). ESI-MS analysis of purified enzyme variants was performed by the Mass Spectrometry core facility of the University of Groningen. Spectrophotometric measurements were performed on a V-650 or V-660 spectrophotometer from Jasco (IJsselstein, The Netherlands), and measurements in a 96-well format were performed on a SPECTROstar Omega plate reader (BMG LABTECH, Isogen Life Science, de Meern, The Netherlands). Chiral reverse-phase high performance liquid chromatography (HPLC) was performed with a Shimadzu LC-20AD HPLC with a Shimadzu SPD-M20A diode array detector or SPD-20A uv/vis detector. Chiral normal-phase HPLC was performed with a Shimadzu LC-10AT HPLC with a Shimadzu SPD-M10A diode array detector. GC-MS was conducted with a Shimadzu GC-MS-QP2010 SE. NMR spectra were recorded on a Bruker 500 MHz machine at the Drug Design Laboratory of the University of Groningen. Chemical shifts (δ) are reported in parts per million (ppm).

2. Site-saturation mutagenesis

A collection of DERA variants was constructed previously^[4] and used directly for the first round of activity screening. Residues from the best mutant of the first screening round and located in the active site or in the access to the active site^[5] were targeted by site-saturation mutagenesis (Table S3).^[6] The DNA libraries were constructed by QuickChange PCR^[7] according to an earlier reported procedure.^[4] For the polymerase chain reactions, pET26b(+) containing the DERA gene served as a template. Primers containing degenerate NNK codons (Table S1) were used for the PCR reactions and each site was targeted individually. The whole length plasmid was amplified using Q5 High-Fidelity 2× Master Mix (New England Biolabs,

Ipswich, MA, USA) in a 50 μ L reaction volume. The following PCR program was used: 98 °C, 30 s (initial denaturation), followed by 18 cycles of 98 °C for 10 s, 60 °C (modified according to the primers Tm) for 30 s, 72 °C for 3 min, and a final elongation step at 72 °C for 5 min. Subsequently, the PCR product was purified by using the PCR purification kit, and 1 μ L of DpnI (Thermo Fisher Scientific, Waltham, MA, USA) was added to the reaction mixture and incubated at 37 °C for 1 h. The obtained DNA was used to transform *E. coli* DH5 α chemically-competent cells, which were spread on LB agar plates supplemented with 30 μ g/mL kanamycin. After outgrowth overnight, the colonies were combined for plasmid DNA isolation to obtain the DNA library for screening.

Table S1. Primers used for libraries construction.

Round	Name	Primer Sequence (5' →3')		
2, 3, 4	HZH-4B11-16NNKr	TCAGGGTGGACAG MNN CATCAATTTCAGTGCACGCA		
2, 3, 4	HZH-4B11-16NNKf	CACTGAAATTGATGNNKCTGTCCACCCTGAATGGCG		
2, 3, 4 HZH-4B11-17NNKr		GCCATTCAGGGTGGA MNN GTCCATCAATTTCAGTGCACG		
2, 3, 4	HZH-4B11-17NNKf	CTGAAATTGATGGAC NNK TCCACCCTGAATGGCGACTAC		
2	HZH-4B11-18NNKr	GTCGCCATTCAGGGTMNNCAGGTCCATCAATTTCAGTGC		
2	HZH-4B11-18NNKf	AAATTGATGGACCTG NNK ACCCTGAATGGCGACTACACC		
2, 3	HZH-4B11-20NNKr	TGTAGTCGCCATTMNNGGTGGACAGGTCCATCAAT		
2, 3	HZH-4B11-20NNKf	GGACCTGTCCACC NNK AATGGCGACTACACCGACG		
2, 3, 4	HZH-4B11-21NNKr	TGTAGTCGCCMNNCAGGGTGGACAGGTCC		
2, 3, 4	HZH-4B11-21NNKf	GTCCACCCTGNNKGGCGACTACACCGACG		
2	HZH-4B11-22NNKr	CGTCGGTGTAGTC MNN ATTCAGGGTGGACAGGTCCA		
2	HZH-4B11-22NNKf	TGTCCACCCTGAAT NNK GACTACACCGACGAGAAAG		
2	HZH-4B11-24NNKr	ACTTTCTCGTCGGT MNN GTCGCCATTCAGGGTGGACA		
2	HZH-4B11-24NNKf	CCCTGAATGGCGAC NNK ACCGACGAGAAAGTAATTGC		
2	HZH-4B11-47NNKr	AGCGAGGATAGAT MNN GATAGCGGCGGTATTGCCG		
2	HZH-4B11-47NNKf	TACCGCCGCTATCNNKATCTATCCTCGCTCTATCC		
2	HZH-4B11-52NNKr	GCGAGCAATCGGGAT MNN GCGAGGATAGATACTGATAGC		
2	HZH-4B11-52NNKf	AGTATCTATCCTCGC NNK ATCCCGATTGCTCGCAAAACA		
2, 3, 4	HZH-4B11-73NNKr	GTGTGGGAAGTTGGT MNN CGTAGCAATACGGATTTCCGG		
2, 3, 4	HZH-4B11-73NNKf	ATCCGTATTGCTACG NNK ACCAACTTCCCACACGGTAAC		
2, 3, 4	HZH-4B11-76NNKr	GTCGTTACCGTGTGGMNNGTTGGTTACCGTAGCAATACG		

2, 3, 4	HZH-4B11-76NNKf	GCTACGGTAACCAAC NNK CCACACGGTAACGACGACATC
2, 3, 4	HZH-4B11-102NNKr	GAACACCAC MNN AACTTCATCGGCTCCGTAGGC
2, 3, 4	HZH-4B11-102NNKf	GGAGCCGATGAAGTT NNK GTGGTGTTCCCGTAC
2, 3, 4	HZH-4B11-137NNKr	TTTCGATGATCAC MNN CAGCAGTACATTCGCTGCC
2, 3, 4	HZH-4B11-137NNKf	GAATGTACTGCTG NNK GTGATCATCGAAACCGGCG
2, 3, 4	HZH-4B11-138NNKr	GCCGGTTTCGATGATMNNTTTCAGCAGTACATTCGCTGCC
2, 3, 4	HZH-4B11-138NNKf	GAATGTACTGCTGAAA NNK ATCATCGAAACCGGCGAACTG
2, 3, 4	HZH-4B11-139NNKr	TTCGCCGGTTTCGAT MNN CACTTTCAGCAGTACATTCGC
2, 3, 4	HZH-4B11-139NNKf	GTACTGCTGAAAGTG NNK ATCGAAACCGGCGAACTGAAA
2, 3, 4	HZH-4B11-140NNKr	TCAGTTCGCCGGTTTC MNN GATCACTTTCAGCAGTACATTC
2, 3, 4	HZH-4B11-140NNKf	ACTGCTGAAAGTGATC NNK GAAACCGGCGAACTGAAAGACG
2, 3, 4	HZH-4B11-141NNKr	TTCAGTTCGCCGGT MNN GATGATCACTTTCAGCAGTACA
2, 3, 4	HZH-4B11-141NNKf	GCTGAAAGTGATCATC NNK ACCGGCGAACTGAAAGACGA
2, 3, 4	HZH-4B11-165NNKr	GTAGAGGTTTTGAT MNN GTCCGCACCCGCTTTGATGG
2, 3, 4	HZH-4B11-165NNKf	AAGCGGGTGCGGAC NNK ATCAAAACCTCTACCGGTAA
2, 3, 4	HZH-4B11-166NNKr	ACCGGTAGAGGTTTT MNN GAAGTCCGCACCCGCTTTGAT
2, 3, 4	HZH-4B11-166NNKf	GCGGGTGCGGACTTC NNK AAAACCTCTACCGGTAAAGTG
2, 3, 4	HZH-4B11-168NNKr	TACCGGTAGA MNN TTTGATGAAGTCCGCACCCGCTTTGAT
2, 3, 4	HZH-4B11-168NNKf	GCGGGTGCGGACTTCATCAAA NNK TCTACCGGTAAAGTGG
2, 3, 4	HZH-4B11-169NNKr	CCACTTTACCGGTMNNGGTTTTGATGAAGTCCGCACC
2, 3, 4	HZH-4B11-169NNKf	GACTTCATCAAAACC NNK ACCGGTAAAGTGGCTGTGA
2, 3, 4	HZH-4B11-170NNKr	CACTTTACC MNN AGAGGTTTTGATGAAGTCCGCACCCGC
2, 3, 4	HZH-4B11-170NNKf	GCGGACTTCATCAAAACCTCTNNKGGTAAAGTGGCTGTG
2, 3, 4	HZH-4B11-171NNKr	GTTCACAGCCACTTT MNN GGTAGAGGTTTTGATGAAGTC
2, 3, 4	HZH-4B11-171NNKf	ATCAAAACCTCTACC NNK AAAGTGGCTGTGAACGCGACG
2, 3, 4	HZH-4B11-172NNKr	CGTTCACAGCCAC MNN ACCGGTAGAGGTTTTGATG
2, 3, 4	HZH-4B11-172NNKf	AACCTCTACCGGT NNK GTGGCTGTGAACGCGACGC
2, 3, 4	HZH-4B11-185NNKr	GATCACTTCCAT MNN GATGCGCGCGCTTTCCGG
2, 3, 4	HZH-4B11-185NNKf	AGCGCGCGCATC NNK ATGGAAGTGATCCGTGAT
2	HZH-4B11-197NNKr	ACTTTGAAACCAAC MNN TTTTTCTACGCCCATATCACGGATC
2	HZH-4B11-197NNKf	TGATATGGGCGTAGAAAAA NNK GTTGGTTTCAAAGTGACGGG
2, 3, 4	HZH-4B11-201NNKr	ACGCCGCCGTCAC MNN GAAACCAACGGATTTTTCTA
2, 3, 4	HZH-4B11-201NNKf	AATCCGTTGGTTTC NNK GTGACGGGCGCGTGAGTAC
2	HZH-4B11-202NNKr	CCGCCGTMNNTTTGAAACCAACGGATTTTTCTACGCC
2	HZH-4B11-202NNKf	GAAAAATCCGTTGGTTTCAAA NNK ACGGGCGCGTGAG

2	HZH-4B11-203NNKr	ACTCACGCCGCCMNNCACTTTGAAACCAACGGATTTTTC			
2	HZH-4B11-203NNKf	TCCGTTGGTTTCAAAGTGNNKGGCGGCGTGAGTACTGCG			
2, 3, 4	HZH-4B11-204NNKr	CAGTACTCACGCCMNNCGTCACTTTGAAACCAACG			
2, 3, 4	HZH-4B11-204NNKf	TTTCAAAGTGACG NNK GGCGTGAGTACTGCGGAAG			
2, 3, 4	HZH-4B11-205NNKr	TCCGCAGTACTCAC MNN GCCCGTCACTTTGAAACCAA			
2, 3, 4	HZH-4B11-205NNKf	TCAAAGTGACGGGC NNK GTGAGTACTGCGGAAGATGC			
2	HZH-4B11-207NNKr	TTCCGCAGT MNN CACGCCGCCCGTCAC			
2	HZH-4B11-207NNKf	GGCGGCGTG NNK ACTGCGGAAGATGCG			
2	HZH-4B11-236NNKr	GGAAGC MNN AAAGCGGTAGTGACGCGCATC			
2	HZH-4B11-236NNKf	CGTCACTACCGCTTTNNKGCTTCCGGCCTG			
2, 3, 4 HZH-4B11-237NNKr		CCGGA MNN ACCAAAGCGGTAGTGACGCGC			
2, 3, 4	HZH-4B11-237NNKf	CACTACCGCTTTGGTNNKTCCGGCCTGCT			
2, 3, 4	HZH-4B11-238NNKr	CAGGCC MNN AGCACCAAAGCGGTAGTGACGC			
2, 3, 4	HZH-4B11-238NNKf	CTACCGCTTTGGTGCT NNK GGCCTGCTGGCA			
2	HZH-4B11-239NNKr	GCTTGCCAGCAG MNN GGAAGCACCAAAGCGGTA			
2	HZH-4B11-239NNKf	TTTGGTGCTTCCNNKCTGCTGGCAAGCCTGTTG			
5	HZH-2A7-48NNKr	ATAGAGCGAGGATA MNN ACTGATAGCGGCGGTATTGC			
5	HZH-2A7-48NNKf	CCGCCGCTATCAGTNNKTATCCTCGCTCTATCCCGAT			
5	HZH-2A7-49NNKr	GGATAGAGCGAGG MNN GATACTGATAGCGGCGGTA			
5	HZH-2A7-49NNKf	CGCTATCAGTATC NNK CCTCGCTCTATCCCGATTG			

Note: f = forward primer, r = reverse primer.

3. Screening

The DNA libraries were transformed into chemically-competent *E. coli* BL21 (DE3) cells, and transformants were selected on LB agar plates containing 30 μg/mL kanamycin and lactose (0.2% w/v). After incubation at 37 °C for approximately 16 h, the agar plates were stored at room temperature for 2-3 h. An agar plate-based pre-screening procedure developed earlier^[8] was first performed. A heated solution (~ 60 °C) of 0.6 % w/v agarose, 0.5 % v/v DMSO and 0.1 mg/mL 2-hydroxycinnamaldehyde in 10 mM sodium phosphate, pH 7.3 was poured on the agar plates. The plates were incubated for 10 min at room temperature to allow the agarose to solidify. Typically, the colonies producing active enzyme variants were stained red by the probe (2-hydroxycinnamaldehyde).^[8] Approximately 890-1300 stained colonies per library were picked with sterile toothpicks, which were used to inoculate 150 μL LB medium supplemented with 30 μg/mL kanamycin and 0.2 % w/v lactose. In each plate, 2 wells were inoculated with a

clean, sterile toothpick (negative control) and 5 wells were inoculated with fresh colonies producing the parental variant for activity reference. The 96-well plates were sealed with sterile gas-permeable seals (Breathe-Easy, Diversified Biotech, Boston, MA, USA) and incubated at 37 °C (180 rpm) overnight. After incubation, cell culture from 96 well plates (50 µL each well) were transferred into plates (96-well Masterblock, Greiner Bio-one, Kremsmünster, Austria) which contained 1 mL LB medium supplemented with 0.2 % w/v lactose, 0.05 % w/v glucose, and 30 µg/mL kanamycin. The 96-deep well plates were sealed with sterile gas-permeable seals and incubated at 37 °C (180 rpm) for 2h, followed by 25 °C (180 rpm) overnight. The bacterial culture was harvested and lysed in 50 µL BugBuster (EMD Biosciences, Madison, WI, USA) containing 0.5 µL/mL benzonase. After 20 min of incubation at room temperature under vigorous shaking, the cell lysates were diluted with 50 µL to 1 mL 20 mM HEPES, 100 mM NaCl, pH 6.5 followed by centrifugation to obtain the cell free extract (CFE). For the screening, 40 µL of the CFE was transferred to 96-well microtiter plate (UV-star F-bottom microplate, Greiner Bio-one, Kremsmünster, Austria) using a robotic pipetting system (JANUS, PerkinElmer). HEPES buffer containing the substrate mixture was then added to each well of the plate to initiate the activity screening. The final reaction mixture (100 µL volume) consisted of the following: 40 % v/v CFE, 0.25 mM 1a, 20 mM 2, 5 % (v/v) EtOH and 20 mM HEPES, 100 mM NaCl, pH 6.5. The reaction rate was measured by monitoring the cinnamaldehyde depletion (at 290 nm) at 25 °C in a plate reader (SPECTROstar Omega). The variants with the highest increase in activity compared to the reference were picked from the 96-well plate for plasmid isolation, DNA sequencing and further mutagenesis.

4. Enzyme expression and purification

The plasmid encoding the DERA variant with a C-terminal His-tag was transformed into chemically-competent *E. coli* BL21 (DE3) cells. A single colony was picked to inoculate 5 mL pre-culture (LB medium with 30 μg/mL kanamycin). Typically, following incubation at 37 °C and 200 rpm for 12-16 h, 1 mL pre-culture was used to inoculate 100 mL of LB medium containing kanamycin (30 μg/mL). The cells were incubated at 37 °C, 200 rpm until ~0.5 OD₆₀₀ (2-3 h) was reached, after which the expression was induced by adding 100 μM isopropyl-β-D-thiogalactopyranoside (IPTG), and the culture was further incubated overnight at 25 °C and 200 rpm. After harvesting the cells, the pellet was resuspended in 15 mL 20 mM potassium phosphate, 20 mM imidazole, pH 7, and the cells lysed by ultrasonication, followed by centrifugation to obtain the CFE. The lysate mixture was loaded on a column containing 1 mL

Ni-sepharose and the column washed with 10 mL 20 mM potassium phosphate, 30 mM imidazole, pH 7. The retained protein was eluted with 3 mL 20 mM potassium phosphate, 300 mM imidazole, pH 7. The buffer was exchanged to 20 mM potassium phosphate, pH 7, by using a PD-10 sephadex G-25 gel-filtration column (GE Healthcare, Chicago, IL, USA). The protein concentration was determined by measuring the absorbance at 280 nm with the theoretical molecular weight and extinction coefficient calculated with ProtParam (ExPASy, https://web.expasy.org/protparam/). Purified proteins were analyzed by ESI-MS to confirm the correct molecular mass. The remaining protein solution was snap-frozen in liquid nitrogen and stored at -20 °C until further use.

5. Enzyme activity assay

The DERA peroxygenase activity assays were performed at room temperature by following the decrease in absorbance at 290 nm, which corresponds to the consumption of cinamaldehyde (1a). Fresh stock solutions of 1a (20 mM in EtOH) and 2 (200 mM) were prepared. The final reaction mixture consisted of 1a (1 mM), 2 (20 mM), and DERA variant (5 μ M) in 20 mM HEPES, 100 mM NaCl (pH 6.5) with 5% (v/v) EtOH. For each enzymatic reaction, a negative control reaction without enzyme (enzyme replaced by buffer) was set up in parallel. After the addition of 2, 300 μ L of the reaction mixture was transferred into a 1 mm cuvette for the spectrophotometric analysis. The initial rates (first 10 min) were used for calculating the enzyme activity in Units (U) per mg of protein. 1 U of enzyme activity was defined as the amount of enzyme that catalyzes the conversion of 1 μ mol of 1a per minute (the molar extinction coefficient of 1a in HEPES buffer at 290 nm was determined to be 23,600 M⁻¹cm⁻¹). The initial rates of the enzymatic reactions were corrected by subtracting the rate of the background reaction when no enzyme was present.

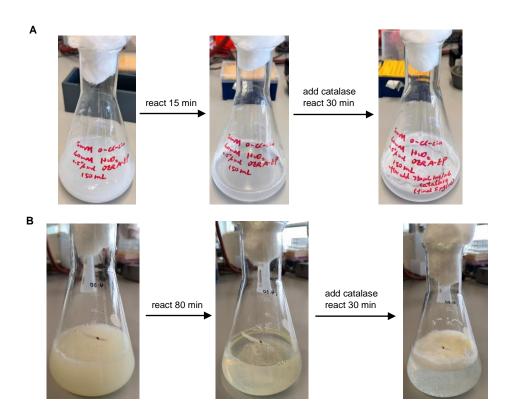
6. Substrate scope analysis of DERA-EP

All reactions were performed at room temperature. The reaction mixture (4 mL) consisted of substrate 1 (1 mM), 2 (20 mM), and purified DERA-EP (5 μ M) in 20 mM HEPES, 100 mM NaCl (pH 6.5) with 5% (v/v) EtOH (ACN for substrate 1f, 1g and 1h) as cosolvent. For each enzymatic reaction, a negative control reaction without enzyme (enzyme replaced by buffer) was set up in parallel. The reaction was monitored by measuring the depletion of absorbance at the maximum wavelength of the respective aldehyde substrate in a spectrophotometer (Table S2). After completion of the reaction, 200 μ L reaction mixture was used for extraction with EtOAc for GC-MS analysis to determine substrate conversion into the desired product. Besides, 1 mL reaction mixture was treated with NaBH₄ to reduce product 3 *in situ* to the corresponding alcohol 4, which was extracted with 500 μ L EtOAc and analyzed by chiral HPLC (Figures S14-S27).

Table S2. The maximum wavelength of aldehyde **1** determined by UV-vis analysis.

Compound	Absorption peak (nm)
1a	290
1b	288
1c	284
1d	298
1e	294
1f	300
1g	254
1h	308
1i	284
1j	244
1k	288

7. Additional potential substrates tested


enals and enones not accepted by DERA-EP

enals and enones converted by DERA-EP

Figure S1. Carbonyl compounds that have been tested as potential substrates for DERA-EP. Reactions were performed with 1 mM α , β -unsaturated carbonyl compound, 20 mM **2** in 20 mM HEPES, 100 mM NaCl, pH 6.5, 5% v/v EtOH (10% DMSO for chalcone and chalcone derivatives) at room temperature, reaction volume = 1 mL. Reaction times determined after UV-vis analysis indicated completion of the reaction. Substrate conversion estimated by GC-MS. [a] Reaction with 50 μM DERA-EP. [b] Conversion of *p*-OMe-cinnamaldehyde resulted mainly in *p*-OMe-benzaldehyde rather than the epoxy aldehyde product, whereas conversion of *o*-OMe-cinnamaldehyde resulted in a ~1:3 mixture of *o*-OMe-benzaldehyde and epoxy aldehyde products. [c] Poor substrates that require prolonged incubation with 150 μM DERA-EP.

8. Semi-preparative scale (hundred milligram) synthesis

A reaction mixture was set up containing 5 mM 1a-h and 1j, 40 mM 2, 5% (v/v) EtOH (ACN for substrate 1f and 1g) and 25 µM of DERA-EP in a final volume of 150 mL in 20 mM HEPES, 100 mM NaCl buffer (pH 6.5). For each reaction, a negative control reaction without enzyme (replaced by buffer) was set up in parallel. The reaction mixture was incubated in a 250 mL Erlenmeyer flask at room temperature, started by adding 5 mM 1 and monitored by following the depletion in absorbance at the maximum wavelength of the aldehyde substrate (Table S2). When the reaction was completed, 400 µL of reaction mixture was sampled for chiral RP-HPLC analysis (reduction by NaBH₄, extraction using ethyl acetate followed by evaporation of solvent) to determine the product enantiomeric ratio. Residual H₂O₂ (2) in the remaining reaction mixture was removed by the addition of catalase (0.125 mg catalase per mmol H₂O₂) to avoid the formation of peroxyhydrate between the enzymatic epoxy-aldehyde product and H₂O₂. ^[3,9,10] After 30 min, the mixture was extracted three times with 150 mL ethyl acetate (20 mL pentane for 1j). The organic layers were combined and washed with 30 mL brine, dried over anhydrous MgSO₄, concentrated in vacuo evaporation (if ethyl acetate was used) or dried by nitrogen (if pentane was used) followed by filtration, the resulting crude product was (first dried by lyophilization if ethyl acetate was used and) analyzed by NMR to determine the diastereomeric ratio.

Figure S2. Semi-preparative scale reaction set up and representative alter of reaction mixture. (A) Semi-preparative-scale reaction of **1b**; (B) Semi-preparative-scale reaction of **1h**.

9. Directed evolution overview

Table S3. Overview of the directed evolution of DERA towards enhanced peroxygenase activity.

Round	Input	Evolution strategy	Library size [a]	Output
1	wild-type DERA	Screen DERA variants library ^[4]	890	9A1, 9E1, 2A1, 4B11
2	4B11	SSM (36 positions, NNK) [b]	1246 (coverage 70%)	1E1 , 2D12, 14A9, 2A3, 2A8, 2B10, 10A7, 2B9
3	1E1	SSM (25 positions, NNK) [c]	890 (coverage 70%)	2A7 , 2B9, 10A9
4	2A7	SSM (24 positions, NNK) [d]	890 (coverage 70%)	5D12, 9F11, 8B8, 8B11, 2A7
5	5D12, 9F11, 8B8, 8B11, 2A7	SSM (position 48 and 49, NNK)	1246 (coverage 98%)	11A8 (DERA-EP)

[a] Transformants assayed in each round. [b] Residue positions targeted by site-saturation mutagenesis (SSM) in round 2 were: 16, 17, 18, 20, 21, 22, 24, 47, 52, 73, 76, 102, 137, 138, 139, 140, 141, 165, 166, 168, 169, 170, 171, 172, 185, 197, 201, 202, 203, 204, 205, 207, 236, 237, 238, 239. [c] Residue positions targeted by SSM in round 3 were: 16, 17, 20, 21, 73, 76, 102, 137, 138, 139, 140, 141, 165, 166, 168, 169, 170, 171, 172, 185, 201, 204, 205, 237, 238 (the same as targeted position in round 2 except the positions existing in the template DERA 1E1). [d] Residue positions targeted by SSM in round 3 were: 16, 17, 21, 73, 76, 102, 137, 138, 139, 140, 141, 165, 166, 168, 169, 170, 171, 172, 185, 201, 204, 205, 237, 238 (the same as targeted position in round 2 except the positions existing in the template DERA 2A7).

Table S4. Amino acid substitutions compared to wild-type DERA of the DERA variant selected after each round. Amino acid substitutions that newly emerged and are retained in the final variant are highlighted in bold.

Name	Amino acid substitutions compared to wild-type DERA
2A1	T18S, D22G, D24Y, C47S, F52S, T197S, P202V, A203T, S239G
4B11	T18S, D22G, D24Y, C47S, F52S, T197S, P202V, A203T, R207S, S239G
1E1	T18S, D22G, D24Y, C47S, F52S, T197S, P202V, A203T, R207S, G236S , S239G
2A7	T18S, L20S , D22G, D24Y, C47S, F52S, T197S, P202V, A203T, R207S, G236S, S239G
5D12	T18S, L20S, D22G, D24Y, C47S, F52S, M185V , T197S, P202V, A203T, R207S, G236S, S239G
9F11	T18S, L20S, D22G, D24Y, C47S, F52S, K172R , T197S, P202V, A203T, R207S, G236S, S239G
8B11	T18S, L20S, D22G, D24Y, C47S, F52S, V138S , T197S, P202V, A203T, R207S, G236S, S239G
8B8	T18S, L20S, D22G, D24Y, C47S, F52S, V138A , T197S, P202V, A203T, R207S, G236S, S239G
11A8 (DERA-EP)	T18S, L20S, D22G, D24Y, C47S, I48V , F52S, K172R , T197S, P202V, A203T, R207S, G236S, S239G

10. Proposed mechanism

$$R^2$$
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2

Scheme S1. Proposed catalytic cycle (Int. = intermediate). Based on our knowledge of aldolase^[4,5] and iminium-catalyzed epoxidation,^[3,11] and the structural studies reported herein, we propose the catalytic active site lysine 167 (ε -amino group) initially reacts with the α , β -unsaturated carbonyl to generate an iminium ion intermediate. Then the nucleophile H_2O_2 exclusively approaches from the re face and attacks the electrophilic β -carbon to form the new C3-O bond. Upon ring closure and subsequent hydrolysis of the epoxy iminium ion, the chiral epoxide is formed. The *anti* product presumably is formed by rotation of the C2-C3 bond after the formation of C3-O bond, but before ring closure.

11. X-ray crystallography

Screening for initial crystallization conditions was carried out using the sitting-drop vapour-diffusion method at 20 °C in MRC 96-well 2-drop crystallization plates (Molecular Dimensions) with crystallization solutions from the JCSG-plus, TOP96 and PACT screens (all purchased from Molecular

Dimensions). Drops of 200 nL were prepared by mixing purified DERA-EP (8 mg/mL in 20 mM potassium phosphate, pH 7) with reservoir solutions at two volume ratio's (75:125 and 125:75) with the help of a Mosquito pipetting system (SPT Labtech). The best crystals were obtained with 10 % (v/v) 2propanol, 20 % (w/v) PEG 4000 in 0.1 M HEPES and 25 % (w/v) PEG 3350 in 0.1 M HEPES, pH 7.5 (conditions a6 and c7, respectively, from the TOP96 screen). Subsequent optimization was performed by screening against gradients of isopropanol and PEG 3350 in 0.1 M HEPES, pH 7.5. Crystals suitable for crystallography grew in a few days from solutions containing 0-4% 2-propanol, 22-24% PEG 3350 in 0.1 M HEPES, pH 7.5. Crystals were cryoprotected in reservoir solution containing 25% (v/v) glycerol and flash-cooled in liquid nitrogen. To trap a Schiff base reaction intermediate, several crystals were briefly soaked (about 30 seconds up to 1 minute) in cryoprotection solutions containing saturating amounts of 2-chloro-cinnamaldehyde, 3-chloro-cinnamaldehyde, 4-chloro-cinnamaldehyde or 4-nitrocinnamaldehyde. X-ray diffraction data were collected at the ID30A-1 (MASSIF-1) beamline of the European Synchroton Radition Facility (ESRF), Grenoble and processed with the program XDS^[12] and with the AIMLESS routines^[13] from the CCP4 software suite^[14] Crystals diffracted to a maximum resolution ranging between 1.4 and 1.8 Å, belonged to space group P2₁ and contained two polypeptide chains in the asymmetric unit with a solvent content of ~39%. Initial phases for apo DERA-EP (maximum resolution 1.4 Å) were obtained by molecular replacement with the program Phaser^[15] using the crystal structure of DERA-MA (PDB entry 7P75) as a search model. The apo DERA-EP model was improved by several rounds of model building and refinement, using the programs Coot[16] and REFMAC5, [17] respectively. The final rounds included the placement and validation of waters and glycerol molecules and the refinement of anisotropic atomic B-factors. Of the substrate-soaked crystals, only the ones treated with 4-chloro-cinnamaldehyde and 4-nitro-cinnamaldehyde allowed observation of additional electron density extending from the side chain of Lys167, indicative of the formation of a substrate-derived enzyme-Schiff-base intermediate. Refinement of the DERA-EP complexes with bound 4-chloro-cinnamaldehyde and 4-nitro-cinnamaldehyde was carried out at 1.52 Å and 1.58 Å resolution, respectively, with REFMAC5, using similar protocols as for apo DERA-EP. Geometry dictionary files for the lysine-linked substrates were calculated with the CCP4 AceDRG program.^[18] Validation of the final structures was performed with Molprobity^[19] and the wwPDB Validation Server at https://validate.wwpdb.org. PyMOL (Schrödinger) was used for structure analysis and figure preparation. Coordinates and structure factors were deposited at the PDB with entry codes 9FD7 (apo DERA-EP), 9FD8 (DERA-EP/4-chloro-CIN) and 9FD9 (DERA-EP/4-nitro-CIN). A summary of the data collection and refinement statistics are available in Table S5.

Table S5. Crystallographic statistics data collection and refinement DERA-EP.

	аро	4-chloro-CIN	4-nitro-CIN
Data collection			
Beamline	ESRF ID30A-1	ESRF ID30A-1	ESRF ID30A-1
Wavelength (Å)	0.9655	0.9655	0.9655
Space group	P2 ₁	P2 ₁	P2 ₁
Unit cell dimensions a,b,c, (Å) β (°)	48.2, 72.8, 70.9 96.2	48.1, 72.5, 70.9 96.2	48.1, 72.5, 70.7 96.3
Resolution range (Å)	73-1.40 (1.42-1.40)*	48-1.58 (1.61-1.58)	48-1.52 (1.55-1.52)
Total observations	604885 (20006)	208588 (6512)	164586 (8355)
Unique reflections	91423 (3626)	65329 (2935)	70796 (3451)
Completeness (%)	95.7 (76.5)	98.7 (89.6)	95.5 (93.6)
Multiplicity	6.6 (5.5)	3.2 (2.2)	2.3 (2.4)
<i σ=""></i>	16.9 (2.2)	7.2 (1.0)	7.0 (0.8)
CC _(1/2)	0.999 (0.746)	0.996 (0.455)	0.988 (0.312)
R _{meas}	0.064 (0.875)	0.101 (0.862)	0.115 (1.471)
R _{pim}	0.025 (0.354)	0.055 (0.542)	0.072 (0.900)
Refinement			
R-factor/R _{free} #	0.134/0.157	0.164/0.185	0.186/0.217
Number of non-H atoms protein ligands, water	3699 30, 208	3684 26, 240	3713 30, 247
Average B-factors (Ų) protein ligands, water	17.1 35.5, 33.3	18.6 20.9, 31.8	20.2 30.5, 31.3
RMSD bond lengths (Å) bond angles (°)	0.0109 1.7	0.0096 1.6	0.0109 1.8
Ramachandran plot %favoured, outliers	98.3, 0.0	98.3, 0.0	98.3, 0.0
Rotamers, %outliers	1.0	0.8	1.2
Clashscore	1.19	1.87	2.77
PDB entry	9FD7	9FD8	9FD9

^{*} Values in parentheses correspond to highest resolution shell.

Rfree is calculated as R-factor using 5% of all reflections randomly chosen, which were excluded from structure refinement.

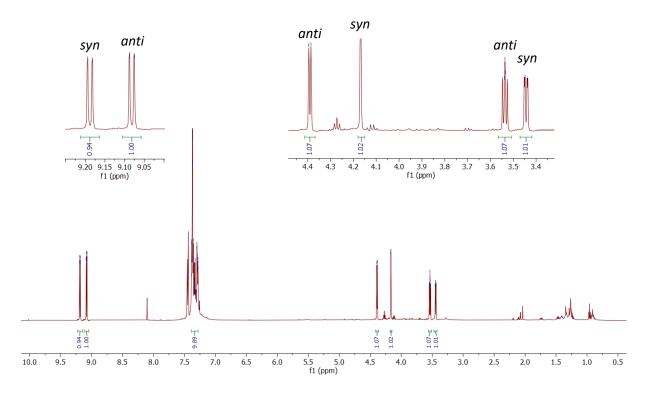
12. DNA and Protein Sequences

> DNA sequence of DERA $5'\rightarrow 3'$

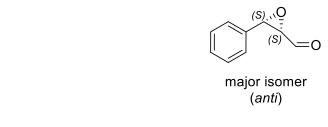
> protein sequence of DERA wild-type

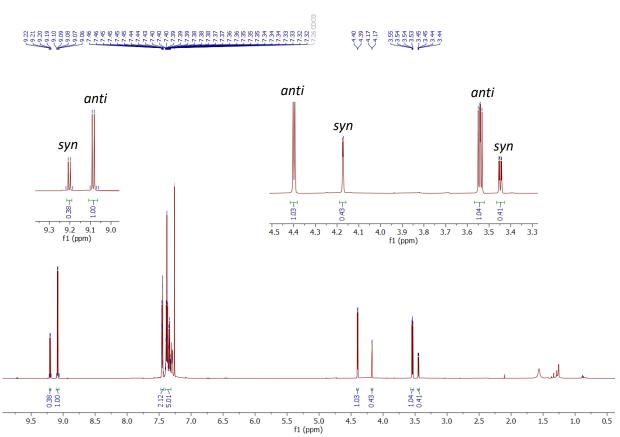
MTDLKASSLRALKLMDLTTLNDDDTDEKVIALCHQAKTPVGNTAAICIYPRFIPIARKTLKEQ GTPEIRIATVTNFPHGNDDIEIALAETRAAIAYGADEVDVVFPYRALMAGNEQVGFDLVKACK EACAAANVLLKVIIETGELKDEALIRKASEISIKAGADFIKTSTGKVAVNATPESARIMMEVIR DMGVEKTVGFKPAGGVRTAEDAQKYLAIADELFGADWADARHYRFGASSLLASLLKALGH GDGKSASSYLEHHHHHH

> DNA sequence of DERA-EP $5' \rightarrow 3'$


> protein sequence of DERA-EP

MTDLKASSLRALKLMDLSTSNGDYTDEKVIALCHQAKTPVGNTAAISVYPRSIPIARKTLKEQ GTPEIRIATVTNFPHGNDDIEIALAETRAAIAYGADEVDVVFPYRALMAGNEQVGFDLVKACK EACAAANVLLKVIIETGELKDEALIRKASEISIKAGADFIKTSTGRVAVNATPESARIMMEVIRD MGVEKSVGFKVTGGVSTAEDAQKYLAIADELFGADWADARHYRFSASGLLASLLKALGHG DGKSASSYLEHHHHHH


Figure S3. DNA and protein sequence of DERA wild-type and DERA-EP, the mutated amino acids are shown in red.


13. NMR Spectra

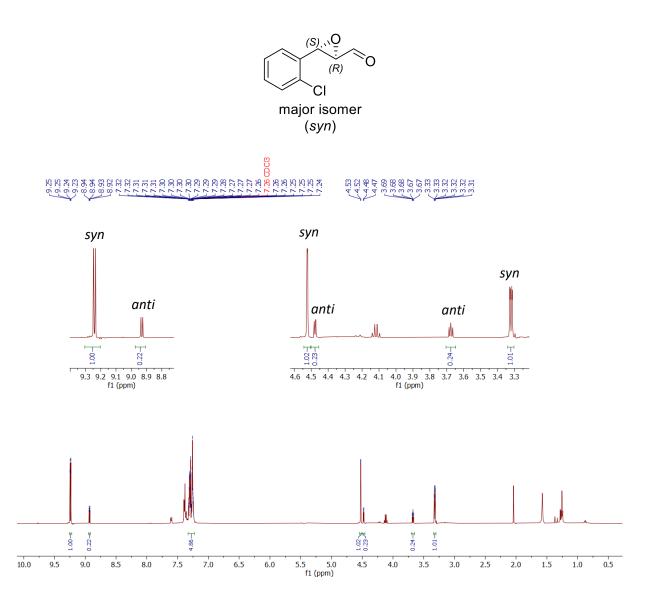
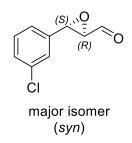


Figure S4. ¹H-NMR of 3-phenyloxirane-2-carbaldehyde (**3a**) obtained by semi-preparative-scale synthesis using DERA-EP. Colorless oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.08 (dd, J = 6.0, 0.8 Hz, 1H), 7.39 – 7.28 (m, 5H), 4.39 (d, J = 4.5 Hz, 1H), 3.54 (ddd, J = 5.8, 4.6, 0.8 Hz, 1H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.19 (dd, J = 6.0, 0.8 Hz, 1H), 7.39 – 7.28 (m, 5H), 4.17 (d, J = 1.8 Hz, 1H), 3.44 (dd, J = 6.2, 1.8 Hz, 1H). ¹H NMR data is in agreement with literature. ^[9,11,20,21]



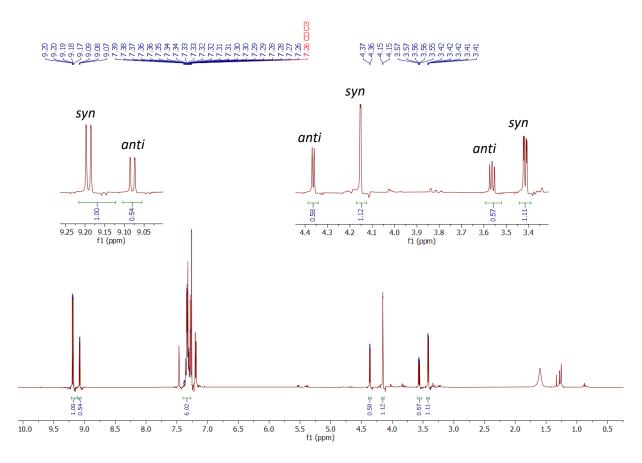


Figure S5. ¹H-NMR of 3-phenyloxirane-2-carbaldehyde (**3a**) obtained by semi-preparative-scale synthesis using DERA-2A1. Colorless oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (600 MHz, CDCl₃, *anti* diastereomer) δ 9.09 (dd, J = 6.0, 1H), 7.41 – 7.31 (m, 5H), 4.40 (d, J = 4.6 Hz, 1H), 3.54 (dd, J = 6.1, 4.6 Hz, 1H). ¹H NMR (600 MHz, CDCl₃, *syn* diastereomer) δ 9.20 (dd, J = 6.0 Hz, 1H), 7.48 – 7.43 (m, 5H), 4.17 (d, J = 1.8 Hz, 1H), 3.45 (dd, J = 6.0, 1.8 Hz, 1H). ¹H NMR data is in agreement with literature. ^[9,11,20,21]

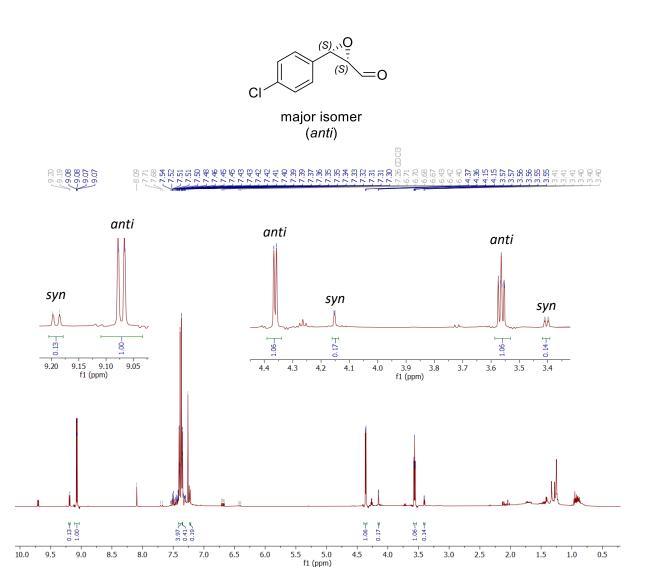
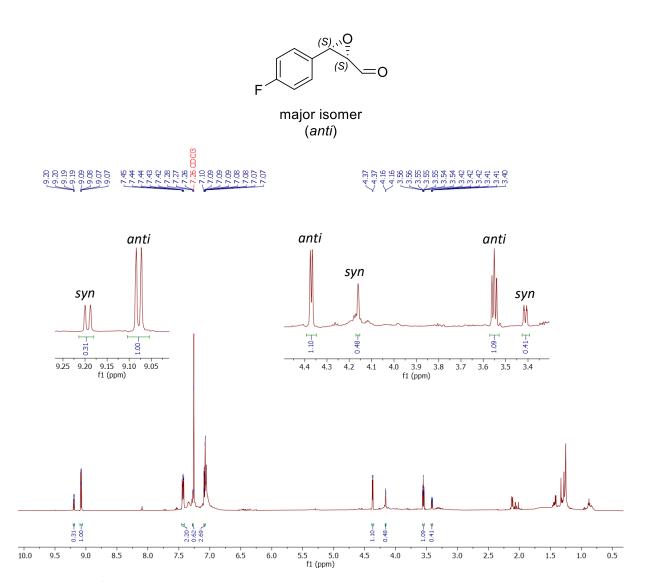


Figure S6. ¹H-NMR of 3-(2-chlorophenyl)oxirane-2-carbaldehyde (**3b**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: syn-(2R, 3S). ¹H NMR (500 MHz, CDCl₃, anti diastereomer) δ 8.93 (d, J = 6.0 Hz, 1H), 7.32 – 7.24 (m, 4H), 4.48 (d, J = 4.6 Hz, 1H), 3.70 – 3.65 (m, 1H). ¹H NMR (500 MHz, CDCl₃, syn diastereomer) δ 9.24 (dd, J = 6.0, 0.9 Hz, 1H), 7.32 – 7.24 (m, 4H), 4.52 (d, J = 1.8 Hz, 1H), 3.32 (dt, J = 6.4, 1.3 Hz, 1H). ¹H NMR data is in agreement with literature. ^[9]



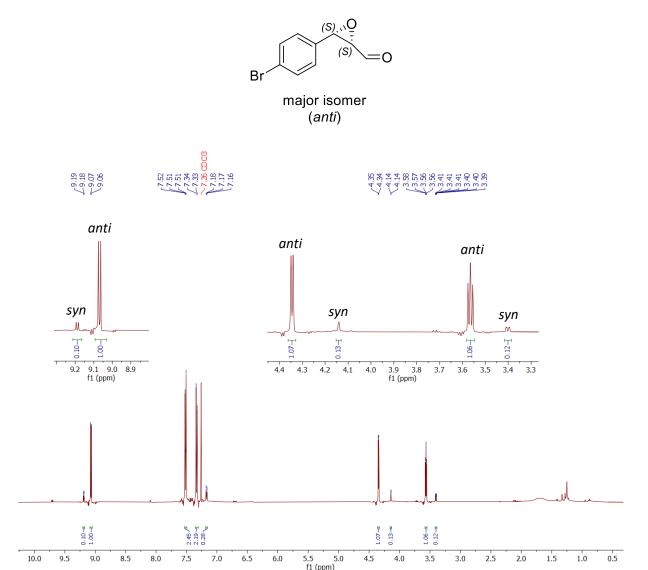
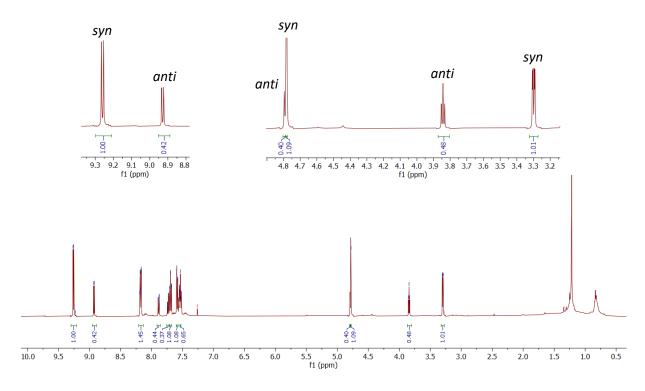

Figure S7. ¹H-NMR of 3-(3-chlorophenyl)oxirane-2-carbaldehyde (**3c**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: syn-(2R, 3S). ¹H NMR (500 MHz, CDCl₃, anti diastereomer) δ 9.10 – 9.06 (m, 1H), 7.40 – 7.27 (m, 4H), 4.36 (d, J = 4.6 Hz, 1H), 3.59 – 3.52 (m, 1H). ¹H NMR (500 MHz, CDCl₃, syn diastereomer) δ 9.19 (dd, J = 6.0, 0.7 Hz, 1H), 7.40 – 7.27 (m, 4H), 4.15 (d, J = 1.8 Hz, 1H), 3.44 – 3.40 (m, 1H). ¹H NMR data is in agreement with literature. ^[9]

Figure S8. ¹H-NMR of 3-(4-chlorophenyl)oxirane-2-carbaldehyde (**3d**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.11 – 9.04 (m, 1H), 7.41 – 7.36 (m, 4H), 4.36 (d, J = 4.6 Hz, 1H), 3.57 – 3.55 (m, 1H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.19 (d, J = 6.3 Hz, 1H), 7.35 (s, 2H), 7.22 (s, 2H), 4.15 (d, J = 1.8 Hz, 1H), 3.40 (d, J = 5.9 Hz, 1H). ¹H NMR data is in agreement with literature. ^[11]

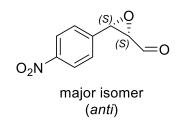
Figure S9. ¹H-NMR of 3-(3-fluorophenyl)oxirane-2-carbaldehyde (**3e**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.08 (dd, J = 5.8, 1.1 Hz, 1H), 7.43 (dd, J = 8.4, 5.2 Hz, 2H), 7.08 (dd, J = 8.6, 1.3 Hz, 2H), 4.37 (d, J = 4.5 Hz, 1H), 3.55 (dd, J = 5.9, 4.6 Hz, 1H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.19 (dd, J = 6.0, 1.1 Hz, 1H), 7.27 (d, J = 3.2 Hz, 2H), 7.08 (dd, J = 8.6, 1.3 Hz, 2H), 4.16 (d, J = 1.8 Hz, 1H), 3.41 (dt, J = 5.9, 1.5 Hz, 1H). ¹H NMR data is in agreement with literature. ^[9,20]

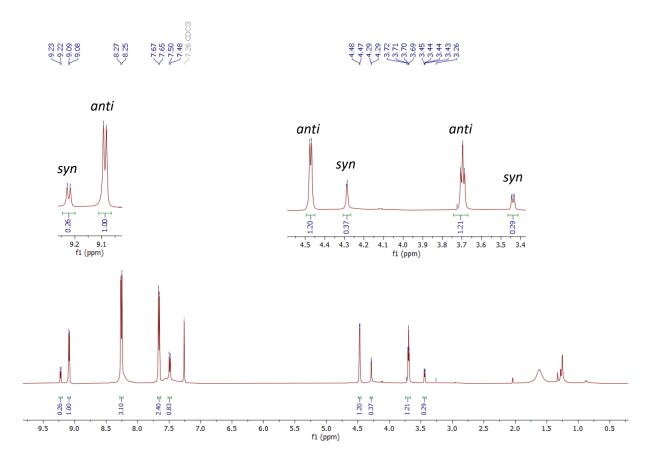
Figure S10. ¹H-NMR of 3-(4-bromophenyl)oxirane-2-carbaldehyde (**3f**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.07 (d, J = 5.8 Hz, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.34 (d, J = 4.5 Hz, 1H), 3.58 – 3.55 (m, 1H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.19 (d, J = 6.0 Hz, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 4.14 (d, J = 1.8 Hz, 1H), 3.40 (dd, J = 5.9 Hz, 1H). ¹H NMR data is in agreement with literature. ^[9,20]

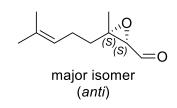
$$(S), (Q)$$

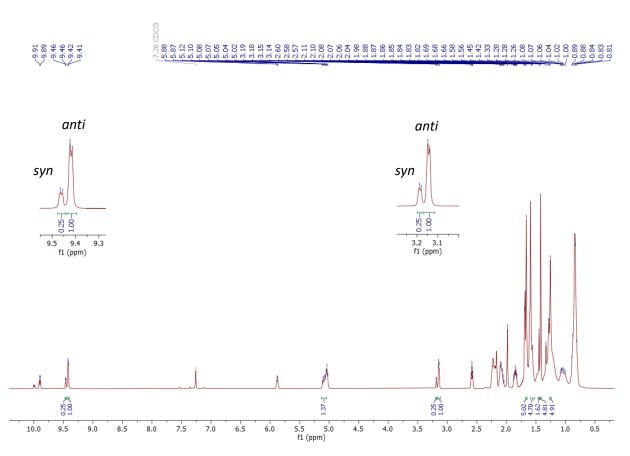

$$(R)$$

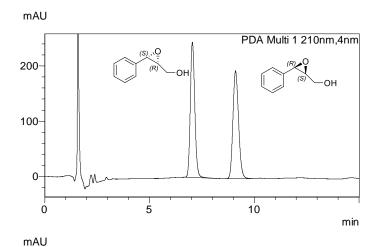
$$NO_2$$


$$major isomer$$


$$(syn)$$




Figure S11. ¹H-NMR of 3-(2-nitrophenyl)oxirane-2-carbaldehyde (**3g**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: syn-(2R, 3S). ¹H NMR (500 MHz, CDCl₃, anti diastereomer) δ 8.93 (d, J = 5.3 Hz, 1H), 8.18 (dt, J = 8.2, 2.0 Hz, 1H), 7.88 (dd, J = 7.8, 1.4 Hz, 1H), 7.73 (dd, J = 7.6, 1.2 Hz, 1H), 7.53 (d, J = 3.0 Hz, 1H), 4.80 (s, 1H), 3.84 (t, J = 5.1 Hz, 1H). ¹H NMR (500 MHz, CDCl₃, syn diastereomer) δ 9.26 (d, J = 5.8 Hz, 1H), 8.18 (dt, J = 8.2, 2.0 Hz, 1H), 7.88 (dd, J = 7.8, 1.4 Hz, 1H), 7.69 (dd, J = 7.6, 1.2 Hz, 1H), 7.59 (dd, J = 7.9, 1.5 Hz, 1H), 4.78 (d, J = 2.2 Hz, 1H), 3.30 (dd, J = 5.8, 2.0 Hz, 1H). ¹H NMR data is in agreement with literature. ^[11]


Figure S12. ¹H-NMR of 3-(4-nitrophenyl)oxirane-2-carbaldehyde (**3h**) obtained by semi-preparative-scale synthesis using DERA-EP. Yellow oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.09 (d, J = 5.5 Hz, 1H), 8.26 (dd, J = 8.4 Hz, 2.0 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 4.47 (d, J = 4.6 Hz, 1H), 3.70 (t, J = 5.1 Hz, 1H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.22 (d, J = 5.9 Hz, 1H), 8.26 (dd, J = 8.4, 2.0 Hz, 2H), 7.66 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 4.31-4.27 (m, 1H), 3.44 (dd, J = 6.0, 1.7 Hz, 1H). ¹H NMR data is in agreement with literature. ^[20]

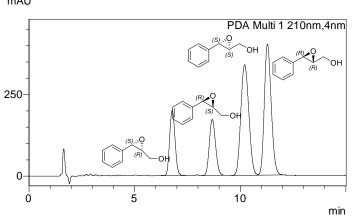
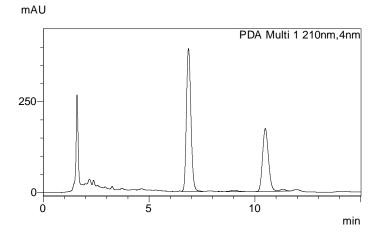


Figure S13. ¹H-NMR of 3-methyl-3-(4-methylpent-3-en-1-yl)oxirane-2-carbaldehyde (**3j**) obtained by semi-preparative-scale synthesis using DERA-EP. Transparent oil. Major diastereomer: *anti*-(2*S*, 3*S*). ¹H NMR (500 MHz, CDCl₃, *anti* diastereomer) δ 9.42 (d, J = 5.0 Hz, 1H), 5.15 - 5.05 (m, 1H), 3.16 (dd, J = 20.7, 4.9 Hz, 1H), 1.66 (s, 3H), 1.57 (d, J = 9.2 Hz, 3H), 1.45 (s, 1H), 1.42 (s, 3H), 1.26 (s, 3H). ¹H NMR (500 MHz, CDCl₃, *syn* diastereomer) δ 9.46 (d, J = 4.8 Hz, 1H), 5.15 - 5.05 (m, 1H), 3.16 (dd, J = 20.7, 4.9 Hz, 1H), 1.66 (s, 3H), 1.57 (d, J = 9.2 Hz, 3H), 1.45 (s, 1H), 1.42 (s, 3H), 1.26 (s, 3H). ¹H NMR data is in agreement with literature. ^[11,20]


14. Normal-phase Chiral HPLC Analysis

PDA Ch1 210nm					
Peak#	Ret. Time	Area	Area%		
1	7,050	3649115	49,916		
2	9,110	3661338	50,084		
Total		7310453	100,000		

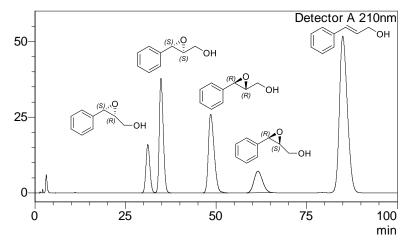
PDA Ch1 210nm						
Peak#	Ret. Time	Area	Area%			
1	6,784	3550133	14,121			
2	8,680	3529906	14,041			
3	10,207	8961392	35,646			
4	11,292	9098808	36,192			
Total		25140240	100,000			

PDA Ch1 210nm						
Peak#	Ret. Time	Area	Area%			
1	6,866	5799621	62,192			
2	9,018	79645	0,854			
3	10,494	3354026	35,967			
4	11,323	92033	0,987			
Total		9325325	100,000			

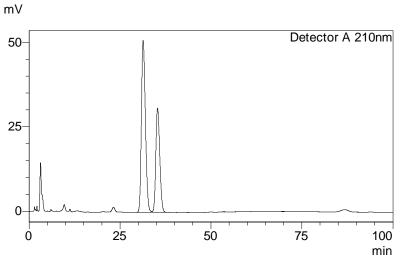
Figure S14. Chiral normal-phase HPLC chromatogram of product **4a**. From top to bottom are as follows: racemic *anti* product (purified from a chemically synthesized mixture of racemic *syn*- and *anti*-**3a** by using a silica gel column using EtOAc/pentane); chemically synthesized racemic product (*syn* and *anti* mixture); and enzymatic product synthesized with DERA-EP. Epoxy-aldehyde was reduced by NaBH₄ to the corresponding alcohol for analysis. HPLC method: CHIRALCEL[®] OD-H column (150 mm × 4.6 mm, column temperature = 25°C), Heptane/Isopropanol = 95:5, flow rate = 1.2 mL/min, λ = 210 nm. Retention time: *anti*-(2*R*, 3*S*) = 6.8 min, *anti*-(2*S*, 3*R*) = 8.7 min, *syn*-(2*S*, 3*S*) = 10.2 min, *syn*-(2*R*, 3*R*) = 11.3 min. The

assignment of the absolute configuration of enzymatic product was based on previously reported chiral normal-phase HPLC data. $^{[22]}$

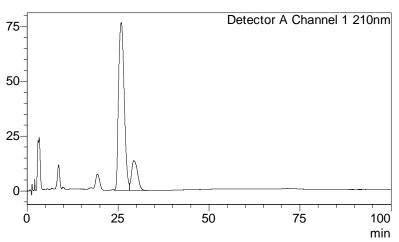
15. Reverse-phase Chiral HPLC Analysis

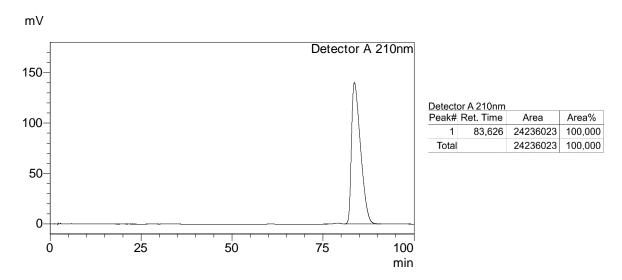

Table S6. Reverse-phase Chiral HPLC method^[3] and results summary.

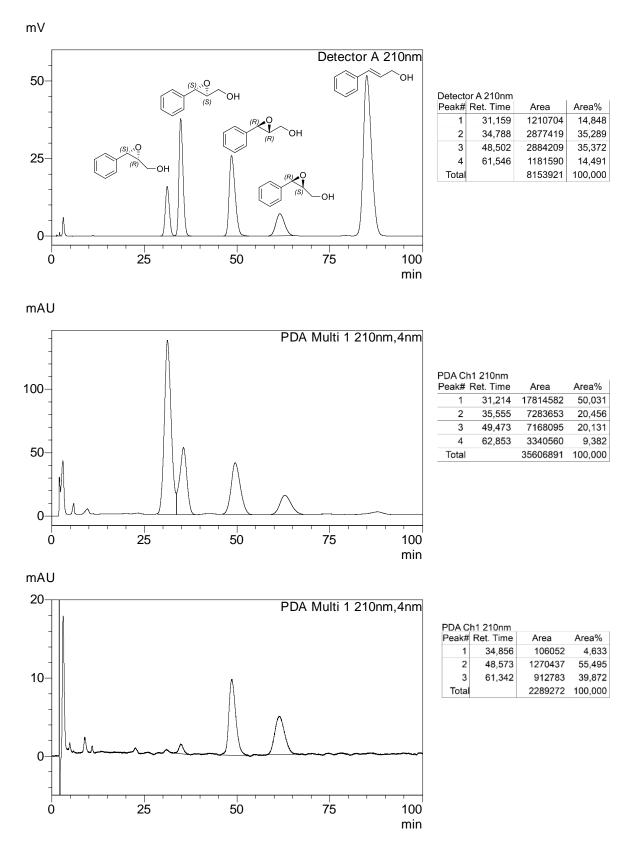
Entry	Compound Col	Column ^[b]	Column ^[b] Mobile phase ^[c]	Retention time ^[d] (min)				
Entry	Compound	Column	Moone phase	anti-1	syn-(2S, 3S)	syn-(2R, 3R)	anti-2	Substrate 1
1	4a	AD-RH	90% H ₂ O, 10% ACN	31.2 (2R, 3S)	34.8	48.5	61.5 (2S, 3R)	83.6
2	4b	AD-RH	80% H ₂ O, 20% ACN	26.4	22.9	28.9	63.1	40.3
3	4c	AD-RH	80% H ₂ O, 20% ACN	22.1	27.1	50.3	73.1	61.1
4	4d	ID	82% H ₂ O, 18% ACN	18.6	20.2	29.4	18.6	33.2
5	4e	AD-RH	90% H ₂ O, 10% ACN	57.5	49.8	63.0	57.5	117.6
6	4f	ID	82% H ₂ O, 18% ACN	26.2	29.7	49.6	27.6	48.8
7	4 g	AD-RH	60% H ₂ O, 40% ACN	4.6	6.2	8.9	15.9	4.2
8	4h	AD-RH	80% H ₂ O, 20% ACN	30.5	23.7	43.5	30.6	46.7
9	4i	ID	80% H ₂ O, 20% ACN	8.5	9.6	13.1	12.1	14.6
10	4j	AD-RH	80% H ₂ O, 20% ACN	19.1	20.4	28.0	51.6	69.3 & 95.2
11	4k	AD-RH	70% H ₂ O, 30% ACN	4.8	5.3	13.0	16.2	8.7

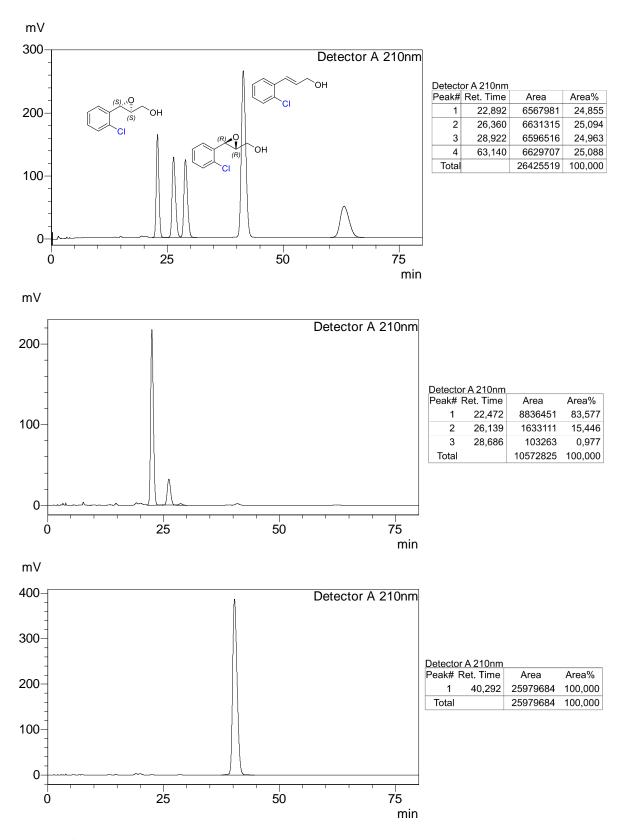

[a] UV detection at 210 nm. [b] Column information: Daicel CHIRALPAK® AD-RH (150 \times 4.6 mm, 5 μ m) and CHIRALPAK® ID (150 \times 4.6 mm, 5 μ m); column temperature = 25°C. [c] Isocratic; flow = 1 mL/min. [d] Numbers in the tables are from racemic product and authentic or substrate samples.

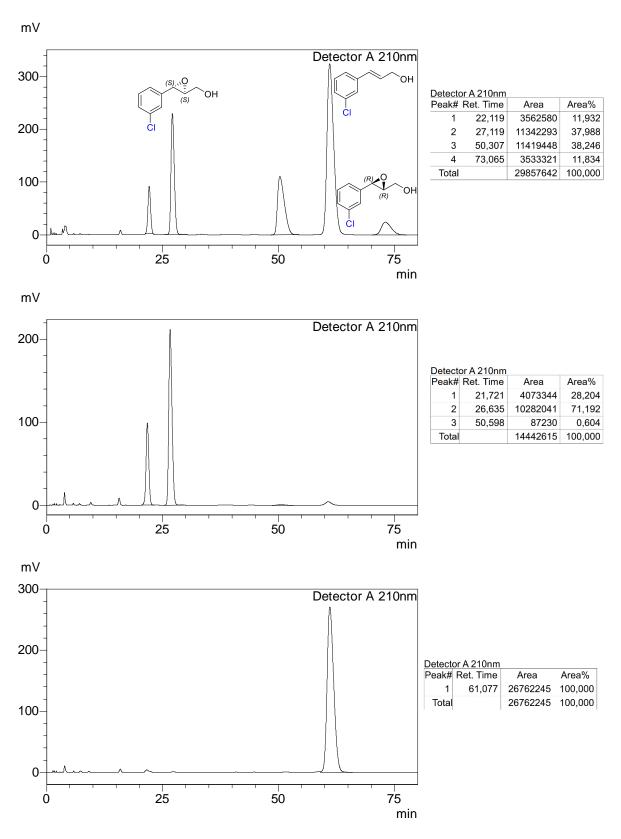
 mV

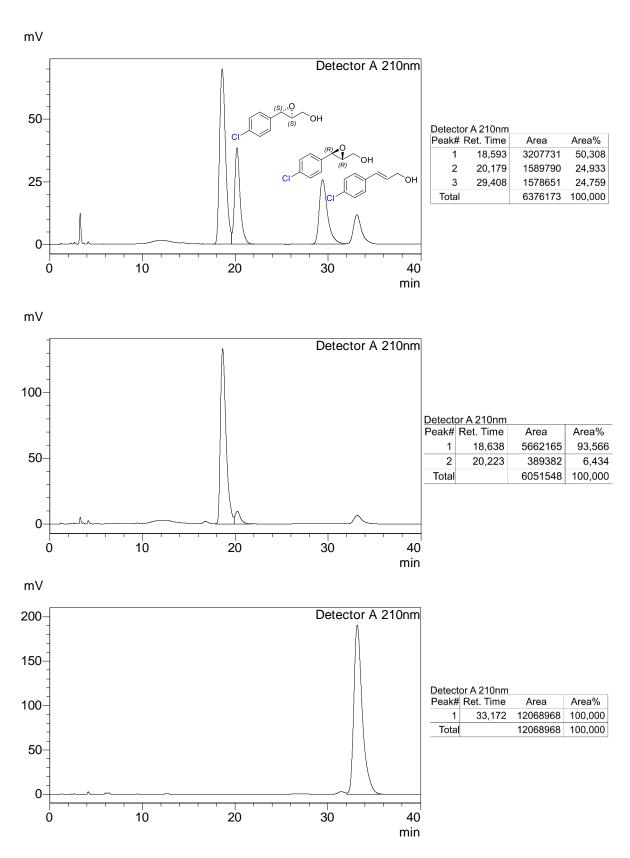

mV

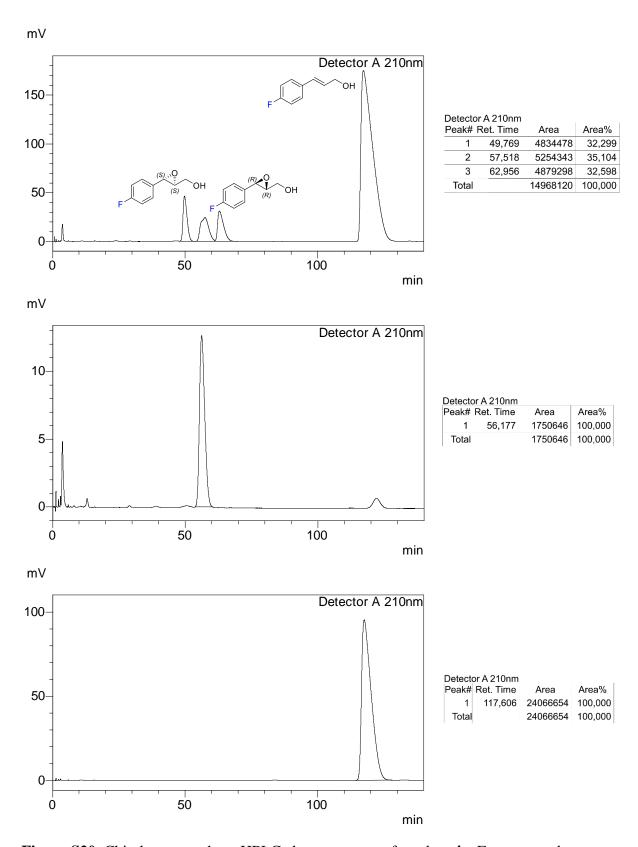

Detector A 210nm				
Peak#	Ret. Time	Area	Area%	
1	31,159	1210704	14,848	
2	34,788	2877419	35,289	
3	48,502	2884209	35,372	
4	61,546	1181590	14,491	
Total		8153921	100,000	

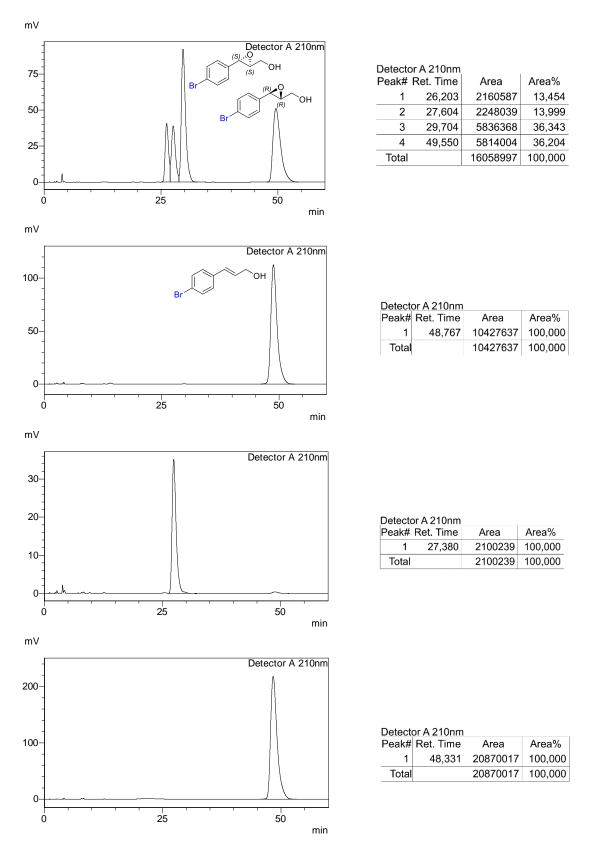

Detector A 210nm				
Peak#	Ret. Time	Area	Area%	
1	31,361	3891381	62,533	
2	35,324	2331553	37,467	
Total		6222933	100,000	
			,	

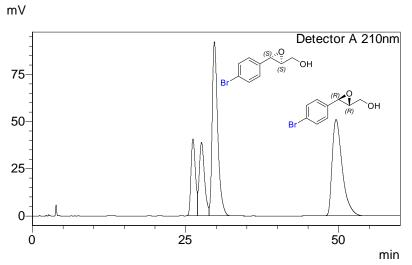

Detector A Channel 1 210nm				
Peak#	Ret. Time	Area	Area%	
1	25,874	8316476	84,016	
2	29,367	1582237	15,984	
Total		9898714	100,000	


Figure S15. Chiral reverse-phase HPLC chromatogram of product **4a**. From top to bottom are as follows: chemically synthesized racemic product and authentic cinnamyl alcohol; enzymatic product generated with DERA-EP using H_2O_2 as oxidant; enzymatic product generated with DERA-EP using *t*-BuOOH as oxidant; and control reaction (without enzyme). The assignment of the absolute configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data.^[3]


Figure S16. Chiral reverse-phase HPLC chromatogram of product **4a**. From top to bottom are as follows: chemically synthesized racemic product and authentic cinnamyl alcohol; racemic product spiked with enzymatic product generated with DERA-EP; and enzymatic product synthesized by 4-OT YIA. The assignment of the absolute configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]


Figure S17. Chiral reverse-phase HPLC chromatogram of product **4b**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(2-chlorophenyl)prop-2-en-1-ol; enzymatic product synthesized with DERA-EP; and control reaction (without enzyme). The assignment of the absolute configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]


Figure S18. Chiral reverse-phase HPLC chromatogram of product **4c**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(3-chlorophenyl)prop-2-en-1-ol; enzymatic product synthesized with DERA-EP; control reaction (without enzyme). The assignment of the absolute configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]


Figure S19. Chiral reverse-phase HPLC chromatogram of product **4d**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(4-chlorophenyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP; control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]

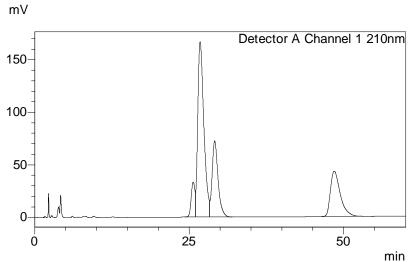
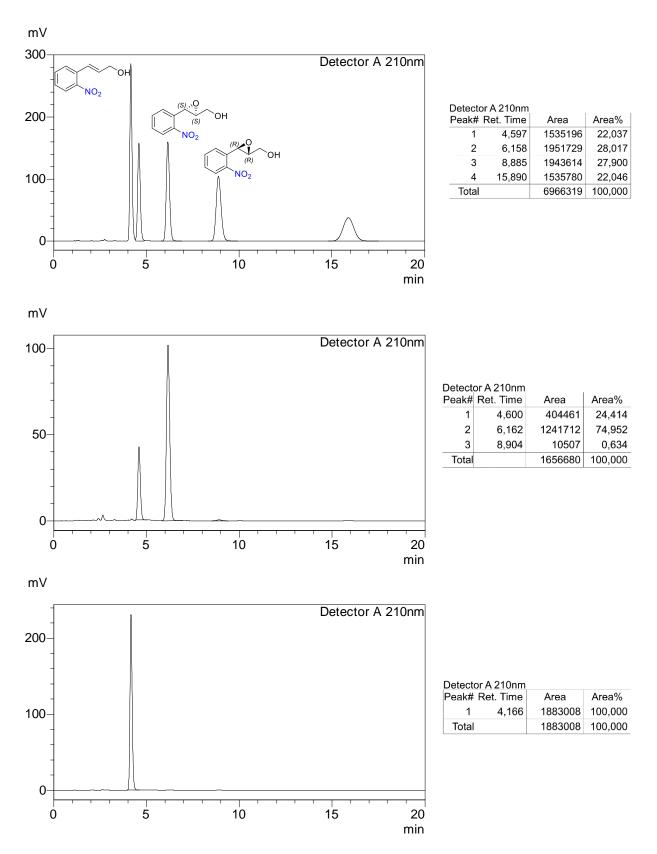
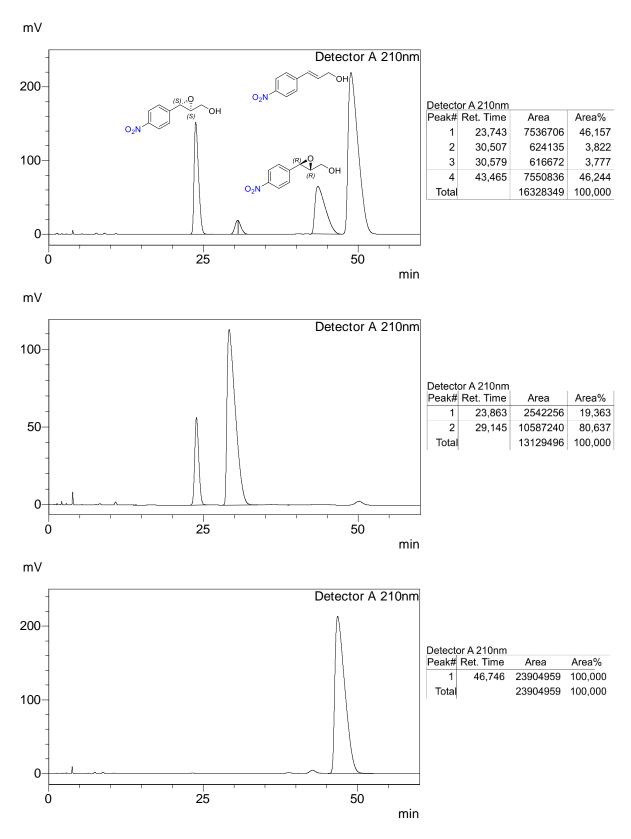

Figure S20. Chiral reverse-phase HPLC chromatogram of product **4e**. From top to bottom are as follows: Chemically synthesized racemic product and authentic (E)-3-(4-fluorophenyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP; control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]

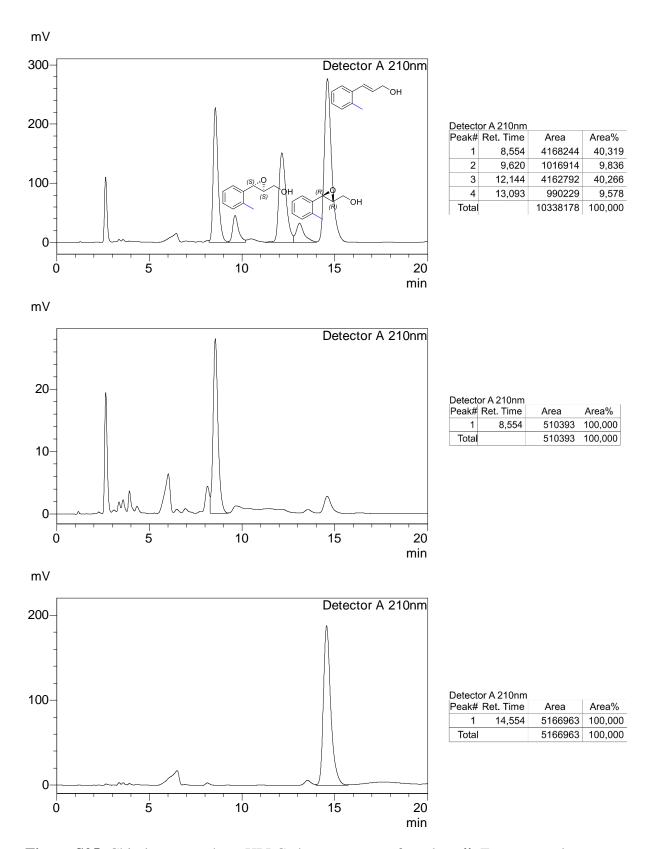
Figure S21. Chiral reverse-phase HPLC chromatogram of product **4f**. From top to bottom are as follows: chemically synthesized racemic product; authentic reference compound (*E*)-3-(4-bromophenyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP; control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data.^[3]



	A 210nm Ret. Time	Area	Area%
1	26,203	2160587	13,454
2	27,604	2248039	13,999
3	29,704	5836368	36,343
4	49,550	5814004	36,204
Total		16058997	100,000



Detector A Channel 1 210nm				
Peak#	Ret. Time	Area	Area%	
1	25,651	1384872	6,167	
2	26,769	11460240	51,032	
3	29,118	4835700	21,533	
4	48,463	4776011	21,268	
Total		22456823	100,000	


Figure S22. Chiral reverse-phase HPLC chromatogram of product **4f**. From top to bottom are as follows: chemically synthesized racemic product; racemic product spiked with enzymatic product prepared with DERA-EP. The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data.^[3]

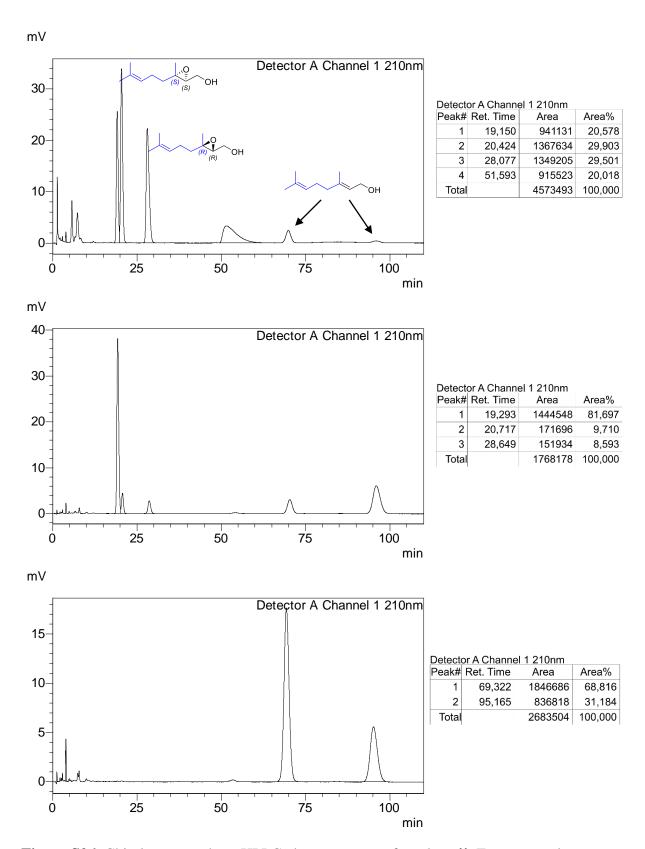

Figure S23. Chiral reverse-phase HPLC chromatogram of product **4g**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(2-nitrophenyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP, control reaction (without enzyme). The assignment of the absolute configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]

Figure S24. Chiral reverse-phase HPLC chromatogram of product **4h**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(4-nitrophenyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP, control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]

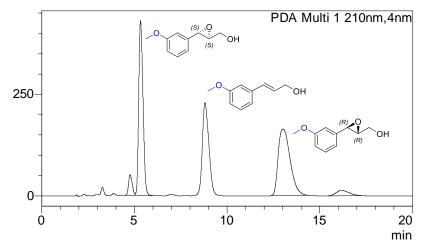


Figure S25. Chiral reverse-phase HPLC chromatogram of product **4i**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E)-3-(o-tolyl)prop-2-en-1-ol; enzymatic product prepared with DERA-EP; control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]

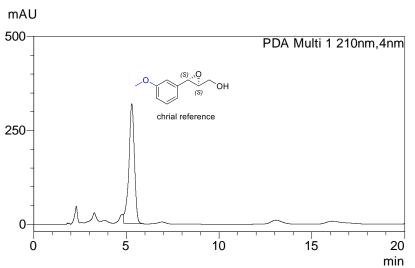
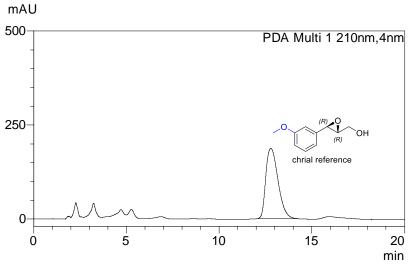
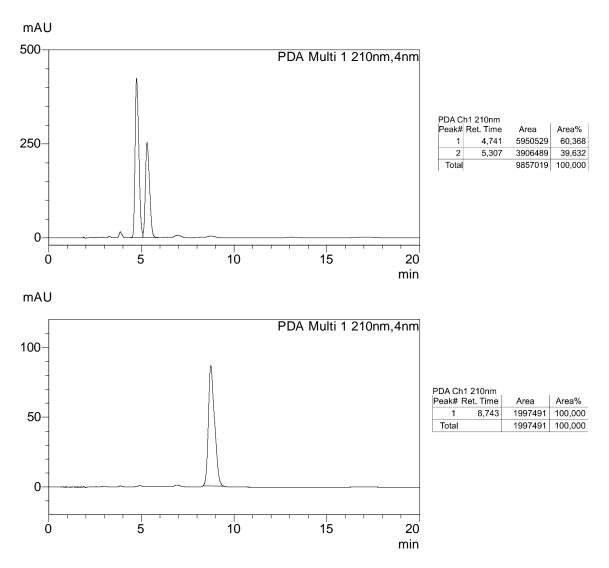


Figure S26. Chiral reverse-phase HPLC chromatogram of product **4j**. From top to bottom are as follows: chemically synthesized racemic product and authentic (E/Z)-3,7-dimethylocta-2,6-dien-1-ol; enzymatic product prepared with DERA-EP; control reaction (without enzyme). The assignment of the relative configuration of enzymatic product was based on previously reported chiral reverse-phase HPLC data. [3]


 mAU



PDA Ch1 210nm			
Peak#	Ret. Time	Area	Area%
1	4,769	706314	4,559
2	5,330	6891114	44,478
3	13,008	7278285	46,977
4	16,189	617495	3,986
Total		15493208	100,000

PDA Ch1 210nm			
Peak#	Ret. Time	Area	Area%
1	5,292	6636936	100,000
Total		6636936	100,000

Figure S27. Chiral reverse-phase HPLC chromatogram of product $4\mathbf{k}$. From top to bottom are as follows: chemically synthesized racemic product and authentic (*E*)-3-(3-methoxyphenyl)prop-2-en-1-ol; authentic chiral reference compound (2*S*, 3*S*)- $4\mathbf{k}$; authentic chiral reference compound (2*R*, 3*R*)- $4\mathbf{k}$; enzymatic product synthesized with DERA-EP; and control reaction (without enzyme).

16. Supplementary References

- [1] H. Chen, H. Jiang, C. Cai, J. Dong, W. Fu, Org. Lett. 2011, 13, 992–994.
- [2] A. Kunzendorf, G. Xu, M. Saifuddin, T. Saravanan, G. J. Poelarends, *Angew. Chemie Int. Ed.* **2021**, *60*, 24059–24063.
- [3] G. Xu, M. Crotti, T. Saravanan, K. M. Kataja, G. J. Poelarends, *Angew. Chemie Int. Ed.* **2020**, *59*, 10374–10378.
- [4] A. Kunzendorf, G. Xu, J. J. H. van der Velde, H. J. Rozeboom, A. W. H. Thunnissen, G. J. Poelarends, *ACS Catal.* **2021**, *11*, 13236–13243.
- [5] S. Voutilainen, M. Heinonen, M. Andberg, E. Jokinen, H. Maaheimo, J. Pääkkönen, N. Hakulinen, J. Rouvinen, H. Lähdesmäki, S. Kaski, J. Rousu, M. Penttilä, A. Koivula, *Appl. Microbiol. Biotechnol.* **2020**, *104*, 10515–10529.
- [6] R. M. P. Siloto, R. J. Weselake, *Biocatal. Agric. Biotechnol.* **2012**, *1*, 181–189.
- [7] T. A. Kunkel, *Proc. Natl. Acad. Sci.* **1985**, 82, 488–492.
- [8] L. Biewenga, M. Crotti, M. Saifuddin, G. J. Poelarends, *ACS Omega* **2020**, *5*, 2397–2405.
- [9] M. Sigmund, G. Xu, E. Grandi, G. J. Poelarends, *Chem. A Eur. J.* **2022**, 28, e202201651.
- [10] B. O. Burek, S. Bormann, F. Hollmann, J. Z. Bloh, D. Holtmann, *Green Chem.* **2019**, 21, 3232–3249.
- [11] M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964–6965.
- [12] W. Kabsch, Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132.
- [13] P. R. Evans, G. N. Murshudov, *Acta Crystallogr. Sect. D Biol. Crystallogr.* **2013**, 69, 1204–1214.
- [14] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2011, 67, 235–242.
- [15] A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, *J. Appl. Crystallogr.* **2007**, *40*, 658–674.
- [16] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, *Acta Crystallogr. Sect. D Biol. Crystallogr.* **2010**, *66*, 486–501.
- [17] G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, A. A. Vagin, *Acta Crystallogr. Sect. D Biol. Crystallogr.* **2011**, *67*, 355–367.
- [18] F. Long, R. A. Nicholls, P. Emsley, S. Gražulis, A. Merkys, A. Vaitkus, G. N. Murshudov, *Acta Crystallogr. Sect. D Struct. Biol.* **2017**, *73*, 112–122.
- [19] C. J. Williams, J. J. Headd, N. W. Moriarty, M. G. Prisant, L. L. Videau, L. N. Deis, V. Verma, D. A. Keedy, B. J. Hintze, V. B. Chen, S. Jain, S. M. Lewis, W. B. Arendall, J.

- Snoeyink, P. D. Adams, S. C. Lovell, J. S. Richardson, D. C. Richardson, *Protein Sci.* **2018**, *27*, 293–315.
- [20] C. Sparr, W. B. Schweizer, H. M. Senn, R. Gilmour, *Angew. Chemie Int. Ed.* **2009**, *48*, 3065–3068.
- [21] T. Nemoto, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 9474–9475.
- [22] B. Wang, X. Wu, O. A. Wong, B. Nettles, M. Zhao, D. Chen, Y. Shi, *J. Org. Chem.* **2009**, *74*, 3986–3989.