
materials

Article

Rigid Polyurethane Foams Based on Bio-Polyol and
Additionally Reinforced with Silanized and
Acetylated Walnut Shells for the Synthesis of
Environmentally Friendly Insulating Materials

Sylwia Członka * and Anna Strąkowska
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Abstract: Rigid polyurethane (PUR) foams produced from walnut shells-derived polyol (20 wt.%)
were successfully reinforced with 2 wt.% of non-treated, acetylated, and silanized walnut shells (WS).
The impact of non-treated and chemically-treated WS on the morphology, mechanical, and thermal
characteristics of PUR composites was determined. The morphological analysis confirmed that the
addition of WS fillers promoted a reduction in cell size, compared to pure PUR foams. Among all
the modified PUR foams, the greatest improvement of mechanical characteristics was observed for
PUR foams with the addition of silanized WS—the compressive, flexural, and impact strength were
enhanced by 21, 16, and 13%, respectively. The addition of non-treated and chemically-treated WS
improved the thermomechanical stability of PUR foams. The results of the dynamic mechanical
analysis confirmed an increase in glass transition temperature and storage modulus of PUR foams
after the incorporation of chemically-treated WS. The addition of non-treated and chemically-treated
WS did not affect the insulating properties of PUR foams, and the thermal conductivity value did not
show any significant improvement and deterioration due to the addition of WS fillers.

Keywords: rigid polyurethane foams; lignocellulosic materials; filler; chemical treatment;
mechanical characteristics

1. Introduction

Nowadays, polyurethanes (PUR) are used in many areas, such as thermal insulation materials,
automotive elements, construction parts, medical devices as well as in the production of elastomers,
adhesives, and foams [1]. PUR are synthesized by a reaction between hydroxyl groups (–OH) and
isocyanate groups (–NCO). Due to the non-biodegradability and high toxicity, both petrochemical-based
compounds have a negative impact on the environment [2,3]. Due to this, bio-based polyols from
sustainable raw materials, such as plant oils, have attracted great interest in the synthesis of
environmentally-friendly PUR foams [4–7]. Bio-polyols derived from certain types of cellulosic
sources, such as spent coffee [8], cassava residue [9] or jute fibers [10] have been examined for the
synthesis of PUR materials. In our previous work, PUR foams were prepared using the bio-polyol
derived from lignocellulosic walnut shells (WS) [11]. It has been shown that due to the rich organic
nature (~50% of lignin, ~24% of cellulose and ~24% of hemicellulose) [12,13], WS can be successfully
applied for the production of bio-polyols for the synthesis of PUR foams. Therefore, liquefaction of WS
has been conducted using a mixture of glycerine and polyethylene glycol (PEG-400) in the presence
of acid catalyst (sulphuric acid). The impact of WS-based polyol on the mechanical and thermal
characteristics of PUR foams have been examined. The results showed that it is possible to convert
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these lignocellulosic residues into polyol and produce PUR foams with the properties somewhat similar
to those of commercial foams, although with higher thermal conductivity.

Unfortunately, a common phenomenon observed after the synthesis of PUR foams from bio-polyols
is the deterioration of mechanical parameters of these materials [11]. Many previous studies have
shown that the incorporation of a selected amount of fillers with both, organic or inorganic nature,
helps to improve the mechanical characteristic of polymeric composites [14,15]. Therefore, to improve
the mechanical characteristic of PUR foams, an additional fillers in the form of nanoparticles or
fibers are incorporated. For example, PUR foams modified with a ground waste of bulk moulding
composites were successfully synthesized by Barczewski et. al. [16]. When compared with unmodified
PUR foams, the addition of inorganic filler resulted in the formation of composites with improved
thermo-mechanical performances and better fire retardancy. Zhou et al. [17] have synthesized PUR
composites from palm oil-based polyol. The bio-composites were additionally modified with the
addition of selected amounts of cellulose nanocrystals. The resulting composites exhibited improved
mechanical performance and better dimensional stability under the selected temperatures. Rigid PUR
composites synthesized from bio-polyol and additionally enhanced with paper waste sludge (PWS)
particles were synthesized by Kairyte et. al. [18]. The addition of 5 wt.% of PWS resulted in the
production of PUR foams with better water vapor resistance, higher density, and improved mechanical
characteristics, such as compressive strength and elastic modulus. Paciorek-Sadowska et al. [19]
synthesized PUR foams with rapeseed cake as a natural filler. The addition of 30-60 wt.% of rapeseed
cake filler resulted in the production of PUR composites with higher density, greater mechanical
performances, and improved fire resistance.

Besides, many lignocellulosic fillers can be successfully used as reinforcing materials in polymer
matrices [20–27], it was reported, that their hydrophilic nature may limit their further application.
Due to this, the surface modification of the fillers seems to be a sufficient step before the application
of natural fillers as reinforcing materials for polymeric composites [28–31]. Previous studies have
proved that chemical modifications of the filler surface, such as acetylation [32], alkalization [33],
benzoylation [34], and silanization [35] may successfully improve the adhesion between the filler
and the polymeric matrix. Although many published studies are devoted to the examination of PUR
composites, just a few research has been done on the surface treatment of WS and the impact of
acetylated and silanized WS on selected properties of PUR foams. Therefore, in this study, the effect of
acetylated and silanized WS on the morphological, mechanical, insulating, and thermal characteristics
of the PUR composites was investigated.

2. Experimental Section

2.1. Chemicals and Materials

Commercial polyester polyol with a brand name STEPANPOL PS-2352 and aromatic diisocyanate
with a brand name PUROCYN B were purchased from Purinova Sp. z o.o (Bydgoszcz, Poland). Silicone
surfactant with a brand name TEGOSTAB B8513 and PUR metal catalysts-Kosmos 33 (potassium
acetate) and Kosmos 75 (octoate catalyst) were provided by Evonik Industries AG (Essen, Germany).
Cyclopentane (blowing agent) and pentane (blowing agent) were purchased from Merck KGaA
(Darmstadt, Germany). Sodium hydroxide (anhydrous), acetic acid (≥99.9%), ethanol (≥99.9%),
sulfuric acid (purity 95–98%) were provided by Sigma-Aldrich Corporation (Saint Louis, MO, USA).
Triphenylsilanol was provided by abcr GmbH Company (Karlsruhe, Germany). Walnut shells were
kindly provided by a Polish local company (Lodz, Poland).
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2.2. Methods

2.2.1. Pre-Treatment of WS with an Alkali Solution

WS filler was pretreated with 10% NaOH solution. A calculated amount of WS filler was soaked in
the NaOH solution for 1 h. After that, the solution was neutralized with 1% acetic acid. Such obtained
alkali-treated filler was washed with ultrapure water to pH of 7 and dried in an oven (24 h, 80 ◦C).

2.2.2. Silanization of WS

Alkali-treated WS filler was treated with a 5% triphenylsilanol solution. The calculated amount
of WS filler was soaked in a solution of triphenylsilanol in ethanol, maintaining the ratio of WS filler
to a solution at the level of 1:20 (by weight). After 3 h, the triphenylsilanol solution was evaporated,
and the silane-treated WS filler was separated from the solvent. The silane-treated WS was washed
with ultrapure water and dried in an oven (24 h, 80 ◦C).

2.2.3. Acetylation of WS

Alkali-treated WS was soaked in a mixture of acetic acid and acetic anhydride (1:1 v/v). To promote
the reaction, a few drops of sulfuric acid were dropped into the mixture and the solution was intensively
stirred for 30 min. Lastly, the WS was removed from the mixture, thoroughly washed with ultrapure
water to pH of 7. The acetylated WS filler was placed in an oven (120 ◦C) and dried, until a constant
weight of the WS filler was obtained.

2.2.4. PUR Foams Preparation

The selected amounts of polyester polyol, WS-based polyol, surfactant, catalysts, flame retardant,
and blowing agent were placed in a cylindrical form and mixed with mechanical stirring (1000 rpm,
30 s). The obtained mixture was modified with the addition of 2 wt.% of non-treated, silanized,
or acetylated-WS, and thoroughly mixed at 1000 rpm for 60 s. After the complete dispersion of WS
filler, an isocyanate component was poured into the mixture and stirred for another 30 s. The resulting
PUR foams were expanded freely in open forms. Before further characterization, PUR foams were
conditioned at a standardized temperature of 25 ◦C and humidity of 50% for 24 h. The detailed
formulations presenting the weight ratio of components are shown in Table 1. The schematic procedure
of PUR foams synthesis is given in Figure 1.

Table 1. The weight ratio of components used for polyurethanes (PUR) foam synthesis.

Component PUR_0 PUR_WS_NT PUR_WS_A PUR_WS_S

Amount, parts by STEPANPOL PS-2352 weight [pbw]
STEPANPOL PS-2352 80 80 80 80

WS-based polyol 20 20 20 20
PUROCYN B 160 160 160 160

Kosmos 75 6 6 6 6
Kosmos 33 0.8 0.8 0.8 0.8

Tegostab B8513 2.5 2.5 2.5 2.5
Water 0.5 0.5 0.5 0.5

Pentane/cyclopentane 11 11 11 11
Non-treated WS 0 2 0 0
Acetylated WS 0 0 2 0
Silanized WS 0 0 0 2
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Figure 1. Schematic procedure of PUR foam synthesis.

2.3. Test Methods

The dynamiclLight scattering (DLS) method was used to evaluate the average size of filler particles
using a Zetasizer NanoS90 instrument (Malvern Instruments Ltd, Malvern, UK). WS particles were
dispersed in a polyol (0.04 g·L−1) and the average of 5 individual measurements was evaluated.

The viscosity of PUR systems was determined according to ISO 2555 [36]. The measurement was
performed using a rotatory viscometer (Viscometer DVII+, Brookfield, Berlin, Germany). The viscosity
of PUR systems was determined at different share rates—0.5, 5, 10, and 100 rpm (round per minute).
The average of 5 individual measurements was evaluated. The standard deviation was calculated.

The chemical structure of fillers was determined by Fourier-transform infrared spectroscopy (FTIR,
Nicolet iS50 spectrometer, Thermo Fisher Scientific, Waltham, MA, USA). An average of 64 individual
scans was evaluated.

Scanning electron spectroscopy (JEOL JSM-5500 LV, JEOL Ltd., Peabody, MA, USA) was selected
to analyze the structure of the fillers and PUR foams. The morphology features of PUR foams were
evaluated using ImageJ software (Java 1.8.0, Media Cybernetics Inc., Rockville, MD, USA).

The PUR foam density was calculated as the ratio of PUR mass to volume, following ISO 845 [37].
The average of 5 individual measurements was evaluated. The standard deviation was calculated.

Compressive strength (σ10%), flexural strength (εf), and impact test were processed using Zwick
Z100 Testing Machine (Zwick/Roell Group, Ulm, Germany), following ISO 844 [38], ISO 178 [39],
and ISO 180 [40], respectively.

Thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) were applied to
determine the thermal properties of PUR samples. A thermal analysis test was conducted in an argon
atmosphere using STA 449 F1 Jupiter Analyzer (Netzsch Group, Selb, Germany). The samples with an
initial weight of 10 mg were examined in the selected range of temperatures (from 0 to 600 ◦C).

The dynamic-mechanical characteristic (DMA) was performed using a modular compact rheometer
(ARES, TA Instruments, New Castle, DE, USA) under the selected parameters (constant deformation
of 0.1%, frequency of 1 Hz). The PUR samples were examined in the selected range of temperatures
(from 0 to 250 ◦C). The average of 5 individual measurements was evaluated. The standard deviation
was calculated.

The thermal conductivity of the PUR foams was examined using the LaserComp 50 heat flow
meter (HFMA, Westchester, IL, USA). The average of 5 individual measurements was evaluated.
The standard deviation was calculated.

3. Results and Discussion

3.1. Characterization of WS-Based Polyol

The properties of WS-based polyol have been widely discussed in our previous study [11].
The selected properties of bio-polyol and polyester polyol (STEPANPOL PS-2352) are shown in Table 2.
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Table 2. Selected properties of polyester polyol and walnut shell (WS)-based polyol [11].

Component Viscosity
[mPa s]

Molecular Weight
(Mw) [Da]

Hydroxyl Number
[mg KOH/g]

WS-based polyol 2550 420 340
STEPANPOL PS-2352 2000-4500 468 230–250

3.2. Characterization of WS Filler

The chemical structure of non-treated, acetylated, and silanized WS was examined using FTIR
analysis. The obtained spectra are presented in Figure 2. Bands located at 840, 1035, 1455, and 2900 cm−1

are characteristic for the C–H vibration of cellulose, hemicellulose, and lignin of WS, respectively [41].
The new band at ~740 refers to Si–CH3 vibration and confirms the formation of chemical linkage
between the silane coupling agent and WS filler [42]. Other bands characteristic for silanized WS
occur at 1340, 1080, 3350 cm−1, and refer to Si–O–Si, Si–O, and O–H vibration of silanized WS,
respectively [42,43]. The acetylation of WS is confirmed by a reduced intensity of band attributed to
OH vibration that occurs at 3300 cm−1 [20,44]. Moreover, the presence of new peaks at 1230 cm−1 and
1730 cm-1, which are characteristic for C=O stretching of the ester carbonyl group and confirms the
successful acetylation of WS filler [45–47].
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Figure 2. Fourier-transform infrared spectroscopy (FTIR) spectra of (a) non-treated WS, (b) silanized
WS, and (c) acetylated WS.

Silanization and acetylation treatments affect the morphology of the WS (Figure 3). The surface
of non-treated WS is rough and some cracks are visible on the filler surface. After the silanization
and acetylation, the topography of the WS filler becomes rougher, because the chemical treatments,
such as alkalization, may remove the waxy substances that smooth the filler surface [48–51]. However,
the previous studies have reported that such a rough topography of the filler particles may have
a beneficial effect on the further mechanical properties of composites [52,53]. The rough surface
of the filler may improve the mechanical interlocking and interphase bonding between the filler
surface and polymeric phase, which, in turn, results in better mechanical characteristics of such
reinforced composites.

The size of WS’s particles was examined in polyol dispersion. The particle size distribution of the
non-treated, acetylated, and silanized WS are given in Figure 4. The presented results indicate that the
size of non-treated and chemically-treated WS ranges from 300 to 1000 µm in all cases. The highest
percentage of particles for non-treated WS, acetylated WS, and silanized WS is observed at ~600, ~650,
and ~700 µm, respectively.
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As presented in Table 3, comparing to PUR_0, the addition of WS filler results in a greater viscosity.
This may be connected with the Van der Waal’s forces and hydrogen bonding that occur between
the active groups of WS particle and polyester polyol [54]. With the addition of non-treated WS,
acetylated WS, and silanized WS, the viscosity increases from 840 mPa·s to 1700, 1900, and 2050 mPa·s,
respectively. All PUR mixtures behave as non-Newtonian fluids, and reveal an analog tendency to the
PUR mixtures containing various kinds of organic and/or inorganic fillers, which were reported in
previous works [36,37].

Table 3. Dynamic viscosity of PUR systems.

Sample Dynamic Viscosity η [mPa·s]
0.5 rpm 5 rpm 10 rpm 100 rpm

PUR_0 840 ± 10 520 ± 8 470 ± 9 230 ± 7
PUR_WS_NT 1700 ± 12 1200 ± 10 750 ± 9 450 ± 8
PUR_WS_A 1900 ± 11 1300 ± 10 1050 ± 10 580 ± 8
PUR_WS_S 2050 ± 10 1450 ± 12 1200 ± 11 650 ± 7



Materials 2020, 13, 3245 7 of 16

3.3. Foaming Kinetic

The impact of WS filler on the foaming process of PUR foams was monitored by measuring the
duration of the cream time, expansion time, and tack-free time. The cream time refers to the rise
start of the PUR system, the expansion time refers to the transition of the liquid-state to solid-state,
and tack-free time is measured until the foam solidifies completely. The results of characteristic times
are presented in Table 4.

Table 4. Processing times of PUR foams.

Sample Cream Time [s] Expansion Time [s] Tack-Free Time [s]

PUR_0 56 ± 3 419 ± 8 340 ± 7
PUR_WS_NT 60 ± 1 495 ± 9 375 ± 8
PUR_WS_A 59 ± 2 510 ± 6 365 ± 9
PUR_WS_S 59 ± 3 515 ± 8 370 ± 8

Due to the incorporation of non-treated, acetylated, and silanized WS, the cream and rise times
have increased [55–57]. In the case of PUR foams containing WS filler, the extended expansion time
may be connected with a limited expansion of cells. Due to the increased viscosity of the PUR system,
the mobility of the molecular chains is reduced, which, in turn, affects the polymerization kinetic of
PUR synthesis. As the viscosity of the PUR mixtures increases, the mass transfer of the blowing agent
from the solid to the gas phase decreases, and the expansion of PUR foam is slowed down [55–57].
Similar results have been shown by Kurańska et al. [58]. The authors confirmed that the incorporation
of the vegetable fillers, such as wood fibers, results in the elongation of processing times due to the
reduced reactivity of the modified systems.

3.4. Cellular Structure and Thermal Conductivity

The impact of non-treated WS and chemically-treated WS on the cellular structure of PUR foams
was examined using SEM (Figure 5). Mean cell size and closed-cell content are listed in Table 5.
When compared with neat PUR_0, the incorporation of each filler leads to a decrease of average cell
size, i.e., 380, 360, and 355 µm for PUR_WS_NT, PUR_WS_A, PUR_WS_S against 410 µm for neat
PUR_0. Based on this result, it can be concluded that WS particles can promote the nucleation of the
air bubbles, and prevent their coalescence during the expansion process. Paciorek-Sadowska et al. [19]
have reported a similar tendency—at a higher loading of rapeseed cake, the cellular structure of
PUR composites was more heterogeneous, and a reduced cell diameter was observed—for example,
the incorporation of 60 wt.% of rapeseed cake has reduced an average diameter from 316 to 250 µm.

Table 5. Structural parameters and thermal conductivity results of PUR foams.

Sample Cell Size
[µm]

Apparent Density
[kg m−3]

Closed-Cell Content
[%]

Thermal Conductivity
[W m−1 K−1]

PUR_0 410 ± 9 38 ± 1 86.4 ± 0.6 0.0251 ± 0.0008
PUR_WS_NT 380 ± 9 42 ± 2 83.1 ± 1.1 0.0302 ± 0.0007
PUR_WS_A 360 ± 8 40 ± 3 85.9 ± 1.1 0.0293 ± 0.0009
PUR_WS_S 355 ± 8 39 ± 2 86.0 ± 0.8 0.0284 ± 0.0009

Comparing the PUR foams containing non-treated and chemically-treated PUR foams. it can
be seen that the incorporation of silanized and acetylated WS filler leads to the production of PUR
foams with regular structure and more uniform cells. Moreover, the incorporation of non-treated
and chemically-treated WS affects the closed-cell content of the foams. When compared with PUR_0,
the closed-cell content decreases slightly after the incorporation of WS filler, and this trend is more
visible in the case of PUR composites containing non-treated WS filler. Thus, the chemical treatment of
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WS can improve the interphase adhesion between filler particles and polymeric matrix, which leads to
the production of PUR composites with a more stable cellular morphology. A cross-linked structure
of PUR containing filler particles can prevent the collapse of the cells during their expansion and
form additional edges that are able to capture the emitted CO2 [59]. Sung et al. [60] stated that an
increase in pore size is connected with the hydrophobic character of the filler surface-hydrophobic
fillers exhibit greater adhesion to the polymer matrix, while the higher the hydrophilicity, the lower
the adhesion and greater the cell size of the foam structure. Such a tendency may be also found in our
study. Among the examined PUR foams, PUR_WS_NT is characterized by larger cell diameters, due to
the highly hydrophilic nature of WS. Acetylation and silanization treatments increase the hydrophobic
character of WS, thus the obtained PUR composites are characterized by more uniform cells with
reduced diameters.
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The impact of WS on the density of PUR foams is presented in Figure 6 (for each measurement,
the entire experiment was repeated, and the presented value concerns the individual samples).
Comparing to PUR_0, the addition of WS fillers increases the density of PUR composites. The average
density of the neat PUR_0 is 38 kg m−3, while the density of modified PUR foams oscillates between 39
and 42 kg m−3 upon incorporating WS filler. It is clear that non-treated and chemically-treated WS affect
the value of apparent density differently, due to their different dispersion in the PUR matrix. The higher
level of dispersion, associated with the chemical modification of WS leads to lower nucleation energy
and greater adhesion between WS filler and PUR matrix, which determines a finer cell morphology
and lower apparent density [61]. As a result of this, PUR_WS_A and PUR_WS_S exhibit lower density
than PUR_WS_NT.

Thermal conductivity (λ) is an important parameter that determines the insulation properties of
PUR foams [16,62,63]. Generally, the λ value of PUR foams is calculated as a sum of λ of the gas in the
cells (λgas), the λ through the solid polymer (λsolid), the radiation heat transfer across the walls of the
solid struts (λradiation), and the convection of the gas within the cells (λconvection) [64]. As presented
in Table 5, thermal conductivity for PUR_0 is 0.0251 W m−1K−1. The incorporation of non-treated WS
increases the value of λ to 0.0302 W m−1K−1, however, it remains almost unchanged for PUR_WS_A
and PUR_WS_S—the value of λ increases slightly to 0.0293 and 0.0284 W m−1K−1, and it is still in line
with the conditions of insulation materials [1,65].
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Figure 6. The apparent density of PUR_0, PUR_WS_NT, PUR_WS_S, and PUR_WS_A.

3.5. Mechanical Characteristics

Compressive strength (σ10%), flexural strength (σf), and impact strength were examined to
determine the impact of surface WS fillers on the mechanical characteristics of PUR composites.
The results of σ10% are presented in Figure 7. When compared with PUR_0, σ10% increases by ~6%
for PUR_WS_NT. The mechanical strength increases after the chemical modifications of WS filler-the
value of σ10% increases by ~19% and ~21% for PUR_WS_A and WS_WS_S, respectively. Such a result
can be connected with the cellular structure of the resulting composites, which has a great impact
on their further mechanical properties. As discussed previously, PUR foams containing acetylated
and silanized WS have a more uniform structure, with a greater number of closed-cells (see Figure 5).
Moreover, after the silanization and acetylation treatment, the possible chemical reaction may occur
between the hydroxyl groups of WS and acetic acid or silane coupling agent, creating chemical covalent
linkages that improve the interfacial adhesion between the filler and the polymeric matrix [66,67].
Ciobanu et al. [68] reported that the incorporation of rigid, three-dimensional lignin improved the
mechanical characteristics of the resulting products. This was attributed to the fact that incorporated
lignin may act as a compatibilizer for PUR segments, successfully enhancing the mechanical properties
of the resulting composites.Materials 2020, 13, x FOR PEER REVIEW 10 of 16 
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Figure 7. (a) Compressive, (b) flexural and impact strength of PUR foams.

The results of σf are shown in Figure 7. After the incorporation of non-treated, acetylated,
and silanized WS the value of σf is increased. When WS filler is incorporated without treatment, the σf
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increases by ~5% when compared with PUR_0. A further improvement is observed for PUR_WS_A
and PUR_WS_S—the value of σf increases by ~12% and ~16%, respectively. As followed by flexural
properties, the impact strength was measured as well (Figure 7). When comparing with PUR_0,
the impact strength of PUR foams containing non-treated and chemically-treated WS is increased.
The greatest improvement is observed for PUR_WS_S—the impact strength increases by ~13%. Previous
studies have shown that the finer cellular structures can improve the mechanical characteristics of
porous materials, thus, the PUR foams containing acetylated and silanized WS have a greater flexural
strength [69,70]. Moreover, the chemical modification of the filler may result in the rough morphology
of that promotes the mechanical interlocking between the filler surface and polymeric matrix, enhancing
the mechanical characteristics of the resulting composites. The rigid cellular structure of PUR foams
containing solid particles of the filler is able to absorb more energy during impact, resulting in the
better mechanical behavior of PUR foams [19].

3.6. DMA Results

DMA results are given in Figure 8. The storage modulus (E’) of the PUR foams containing
non-treated, acetylated, and silanized WS is higher than the PUR_0. This indicates a reinforcing effect
of the WS filler, which results in effective stress transfer from the filler to the PUR matrix. As observed
in Figure 8a, PUR_WS_A, and PUR_WS_S have a higher value of E’ than that containing non-treated
PUR_WS_NT. As reported in previous works, the chemical modification removes waxes and surface
impurities from cellulose fillers, thus, increasing its interaction with the polymer matrix [48–51].
Additionally, the chemical treatment helps in the fibrillation of the filler surface. Therefore, it can
be concluded that the rough morphology of the WS filler may improve the mechanical interlocking
between the filler and polymeric matrix, which, in turn, results in more efficient stress transfer from
the matrix to the filler particles and increased storage modulus.Materials 2020, 13, x FOR PEER REVIEW 11 of 16 
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The glass transition temperature (Tg) of PUR foams refers to the maximum of tanδ in the function
of the temperature (Figure 8b). All series of PUR foams show one peak of maximum on the graph,
indicating that the resulting composites can be classified as homogeneous blends. Moreover, PUR foams
containing WS filler exhibit higher value of Tg, which may be connected with higher viscosity of
PUR systems and reduced molecular mobility of polymer chains. As the Tg values of the treated
PUR_WS_A and PUR_WS_S are higher than non-treated PUR_WS_NT, it can be concluded that
chemical treatment affects the WS surface and improves the interphase contact between the filler and
PUR matrix. A lower tanδ peak value for PUR_WS_NT may be connected with weaker linkages
between the filler surface and the polymeric matrix, which results in a greater dissipation of energy.
Since the tanδ peak value illustrates the filler matrix adhesion, it can be concluded that the higher tanδ
peak value observed for PUR_WS_A and PUR_WS_S confirm the better compatibility between filler
surface and the polymeric matrix.
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3.7. Thermal Stability

TGA results are given in Figure 9 and Table 6. Results showed improved thermal characteristics
of PUR composites containing chemically-treated WS, however, there is almost no change in the case
of non-treated PUR_WS_NT.

Table 6. Thermogravimetric analysis (TGA) results.

Sample Tmax [◦C] Residue at
450 ◦C

Residue at
600 ◦C

DTG
[%/min]1st Stage 2nd Stage 3rd Stage

PUR_0 218 315 581 48.1 21.9 0.0057
PUR_WS_NT 219 317 587 49.8 23.1 0.0055
PUR_WS_A 224 323 585 50.2 25.5 0.0056
PUR_WS_S 225 325 591 51.5 24.7 0.0056

The first degradation step refers to the temperatures of 5% weight loss (T5%). It was noticed that
the value of T5% increases slightly from 220 ◦C (for PUR_0) to 224 and 225 ◦C by the incorporation of
acetylated and silanized WS, respectively, while there is almost no change for PUR_WS_NT.

The second stage of degradation refers to the thermal decomposition of soft segments of PUR and
occurs in the range of 300–350 ◦C [71]. For PUR_0, the second stage is observed at 315 ◦C. A slight
improvement in thermal stability exhibits in PUR_WS_A and PUR_WS_S; when compared with PUR_0,
the temperature is increased by 8 and 10 ◦C, respectively. Such an improvement can be connected with
a greater crosslink density, due to the addition of acetylated and silanized WS. A more rigid structure
of PUR composites may successfully limit the mobility of the polymeric chains, which, in turn, reduces
heat transport and improves the thermal stability of PUR composites [72].

The third degradation step of PUR foams in observed in the range of 500–600 ◦C. The third
degradation step is mostly connected with the degradation of organic compounds incorporated into the
PUR matrix, such as cellulose, hemicellulose, and lignin [73]. The thermal characteristic of PUR foams
containing WS filler is similar to those of the unmodified PUR foam (PUR_0). With the incorporation
of acetylated and silanized WS, the mass loss increases due to the presence of cellulose [72]. The char
residue mass is another factor that determines the thermal stability of PUR foams. It can be seen that,
after the incorporation of each kind of WS filler, the amount of char residue is increased. For PUR_0,
the char residue is 48.1% at 450 ◦C, while, for PUR foams containing non-treated and chemically-treated
WS, the amount of char residue increases to 49.8% (for PUR_WS_NT), 50.2% (for PUR_WS_A), and 51.5%
(for PUR_WS_S). The rigid structure of lignin can limit the heat transport through the PUR foam
structure, which results in better thermal stability of PUR composites [73]. Analog results have been
shown in previous studies as well [74,75].
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4. Conclusion

In the present work, the impact of non-treated, acetylated, and silanized WS on morphological,
mechanical, thermal, and physical properties of PUR foams has been investigated and discussed.
It has been shown that the cellular structure was affected, due to the addition of non-treated and
chemically-treated WS. PUR composites with the addition of acetylated and silanized WS exhibited
a more uniform structure than PUR foams with the addition of non-treated WS. The mechanical
characteristics of PUR foams, such as compressive, flexural, and impact strength, were improved after
the incorporation of non-treated and chemically-treated WS. Among all the specimens, the greatest
improvement was observed for PUR foams containing silanized WS—the compressive, flexural,
and impact strength were improved by 21, 16, and 13%, respectively. From this investigation, it can be
concluded that the acetylation and silanization of WS can improve the interfacial bonding between WS
and PUR matrix, enhancing the mechanical properties of the PUR foams. Moreover, the addition of
non-treated and chemically-treated WS improved the thermal properties of PUR foams—e.g., at 600 ◦C,
the char residue increased from 21.9 to 25.5% for PUR foams, with the addition of acetylated WS.
The addition of WS fillers did not affect the thermal conductivity of PUR foams.

Author Contributions: Methodology, Investigation, Data Curation, Writing—Original Draft, Writing—Review &
Editing, Visualization, S.C.; Methodology, Investigation, A.S. All authors have read and agreed to the published
version of the manuscript.
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11. Członka, S.; Strąkowska, A.; KAIRYTĖ, A. Application of Walnut Shells-Derived Biopolyol in the Synthesis
of Rigid Polyurethane Foams. Materials 2020, 13, 2687. [CrossRef] [PubMed]

12. Sarsari, N.A.; Pourmousa, S.; Tajdini, A. Physical and Mechanical Properties of Walnut Shell Flour-Filled
Thermoplastic Starch Composites. Bioresour. 2016, 11, 6968–6983. [CrossRef]

13. Ayrilmis, N.; Kaymakci, A.; Özdemir, F. Physical, mechanical, and thermal properties of polypropylene
composites filled with walnut shell flour. J. Ind. Eng. Chem. 2013, 19, 908–914. [CrossRef]
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