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Abstract

Psoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN-γ is 

involved in many cellular processes, including activation of dendritic cells (DCs), antigen 

processing and presentation, cell adhesion and trafficking, and cytokine and chemokine 

production, IFN-γ-producing Th1 cells were proposed to be integral to the pathogenesis of 

psoriasis. Recently, IFN-γ was shown to enhance IL-23 and IL-1 production by DCs and 

subsequently induce Th17 cells, important contributors to the inflammatory cascade in psoriasis 

lesions. To determine if IFN-γ indeed induces the pathways expressed in psoriasis lesions, a single 

intradermal injection of IFN-γ was administered to an area of clinically normal, non-lesional skin 

of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible 

changes in the skin, IFN-γ induced many molecular and histological features characteristic of 

psoriasis lesions. IFN-γ increased a number of differentially expressed genes in the skin, including 

many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, 

inflammatory DC products TNF, iNOS, IL-23, and TRAIL were present in IFN-γ-treated skin. 

Thus, IFN-γ, which is significantly elevated in non-lesional skin compared to healthy skin, 

appears to be a key pathogenic cytokine that can induce many features of the inflammatory 

cascade of psoriasis.

Introduction

Psoriasis is an inflammatory skin disease affecting approximately 2% of the population of 

the United States, and is considered one of the most prevalent cell-mediated inflammatory 

diseases (Lebwohl, 2003). Psoriasis lesions are typically erythematous scaly plaques, and 

patients are classified based on the severity of their disease, with a gradient ranging from 
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mild to moderate-to-severe based on body surface area (BSA) involved. Psoriatic lesions are 

characterized by increased infiltration of both activated T cells and dendritic cells (DCs) 

compared to normal or uninvolved (non-lesional, NL) psoriatic skin (Lowes et al., 2007). 

Through the use of biological agents and therapeutic treatments, many immune pathways 

involved in psoriasis are being elucidated (Nograles et al., 2010).

Historically, psoriasis was considered to be a predominantly type-1, IFN-γ-mediated disease, 

based on the significant IFN-γ genomic signature in lesional skin (Lew et al., 2004; Suarez-

Farinas et al., 2010). Flow cytometric analysis revealed overexpression of IFN-γ in both 

circulating T cells and those isolated from lesional skin (Austin et al., 1999). In recent years, 

focus has shifted to the role of IL-17 and the contributions of Th17 cells to the pathogenesis 

of autoimmunity. Although IFN-γ inhibits the production of IL-17 by T cells in vitro 

(Harrington et al., 2005; Park et al., 2005), Th17 cells cultured with IL-12 are able to 

produce IFN-γ (Annunziato et al., 2007). The impact of the co-production of IL-17 and IFN-

γ has recently been underscored in a murine model of diabetes where Th17 cells become 

more pathogenic once they acquired the ability to produce IFN-γ (Bending et al., 2009; 

Martin-Orozco et al., 2009). In human autoimmune disease, Th1 and Th17 cells often 

coexist (Aggarwal et al., 2003; Annunziato et al., 2007; Langrish et al., 2005; Murphy et al., 

2003). Our group has identified a population of T cells that co-produce IFN-γ and IL-17 in 

psoriasis lesions (Lowes et al., 2008), induced by DCs isolated from the dermis of psoriasis 

lesions, but not by DCs from healthy skin (Zaba et al., 2009a). This difference in 

immunostimulatory potential has been attributed, in part to the presence of an additional 

population of CD11c+CD1c− inflammatory DCs that are found in psoriatic, but not healthy 

skin (Zaba et al., 2009a). In situ, inflammatory DCs express IL-23 and IL-12, which may 

potentially drive Th1/Th17 cell responses (Guttman-Yassky et al., 2008; Lowes et al., 

2005). However, the initial stimulus for this cascade in situ is currently unknown. Recent 

studies have implicated IFN-γ as a possible contributor, as it can program myeloid DCs to 

produce IL-23 and IL-1, promoting IL-17 production by memory T cells (Kryczek et al., 

2008). Thus, the contributions of IFN-γ to the pathogenesis of psoriasis are now being 

reevaluated.

Before the discovery that IFN-γ plays a role in autoimmunity, IFN-γ was used a therapy for 

several diseases including rheumatoid arthritis, psoriatic arthritis, psoriasis and lepromatous 

leprosy infections (Cannon et al., 1989; Fierlbeck and Rassner, 1990; Fierlbeck et al., 1990; 

Morhenn et al., 1987; Veys et al., 1997). Regular cutaneous injections of IFN-γ had some 

efficacy in the treatment of these diseases; however, a subset of patients developed focal 

skin reactions at the site of injection (Cannon et al., 1989; Fierlbeck and Rassner, 1990; 

Fierlbeck et al., 1990; Morhenn et al., 1987; Veys et al., 1997). Injection site reactions 

(often assessed several weeks after starting IFN-γ) were characterized by induration, 

erythema, epithelial thickening, increased expression of HLA-DR, and accumulation of T 

cells and monocytes in the dermis (Barker et al., 1989, 1990; Fierlbeck and Rassner, 1990; 

Fierlbeck et al., 1990; Morhenn et al., 1987; Nathan et al., 1990; Nathan et al., 1986). These 

studies suggested that prolonged exposure to IFN-γ might initiate changes in the skin that 

are consistent with a psoriatic phenotype, and thus IFN-γ may be involved in the initial 

development of psoriasis lesions.
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To address the role of IFN-γ in the induction of the inflammatory cascade in psoriasis and to 

identify the early underlying changes that occur before the development of a visible lesion, 

we analyzed responses to a single intradermal injection of IFN-γ at an early 24 hour time-

point in psoriasis patients with mild disease (<10% BSA) and healthy volunteers. In 

psoriasis patients, IFN-γ injections were administered to an area of NL skin, which allowed 

the early genomic and histological IFN-γ responses to be determined. Although there were 

no visible changes in the skin, IFN-γ induced a genomic signature and cellular infiltration 

pattern that was similar to lesional psoriatic skin. Many inflammatory cytokines and 

chemokines were upregulated concurrent with increases in multiple dermal cell populations, 

including CD3+ T cells and CD11c+ DCs. Notably, inflammatory DCs (CD11c+CD1c−) 

were increased in the skin after IFN-γ injection, in addition to enhanced expression of their 

inflammatory products, TNF, iNOS, IL-23p19, and TRAIL. Furthermore, Ingenuity 

Pathway Analysis (IPA) identified pathways involved in lymphoid tissue development that 

were enriched in the transcriptome of the skin after IFN-γ injection. IFN-γ induced the 

lymphoid organizing chemokine, CCL19, and associated organization of T cell and DC 

clusters, suggesting that IFN-γ may induce lymphoid tissue neogenesis before the 

development of visible lesions. Thus, this in vivo study suggests that IFN-γ can prime an 

inflammatory environment in the skin that has many features of psoriasis.

Results

A single intradermal injection of IFNγ was biologically active in the skin

In order to confirm that the injected IFN-γ was biologically active, we assessed human 

leukocyte antigen-DR (HLA-DR), a protein known to be upregulated by IFN-γ after 

intradermal injection (Nathan et al., 1990; Nathan et al., 1986). There were increased HLA-

DR+ cells in both normal and NL skin after injection of IFN-γ, but not the placebo control, 

indicating the IFN-γ was functional (Fig S1). Clinically, a single injection of IFN-γ did not 

induce the visible development of a psoriasis-like lesion at the site of injection, as had been 

seen after a month of repeated IFN-γ injections (Fierlbeck and Rassner, 1990; Fierlbeck et 

al., 1990). Histologically, epidermal thickness was not altered by IFN-γ injection in either 

group (Fig S2a), and expression of keratin 16 (K16), a measure of altered keratinocyte 

differentiation, was not induced (Fig S2b–c). However, there were dramatic genomic and 

cellular changes induced by IFN-γ in both groups.

IFN-γ induced genomic changes in the skin consistent with a psoriatic phenotype

Microarray analysis was performed to compare the IFN-γ response in healthy and psoriatic 

skin using fold change (FCH) >2 and false discovery rate (FDR) <0.01. The “IFN-γ 

response” was defined as the differentially expressed genes (DEGs) in IFN-γ-treated skin 

compared to placebo for psoriasis patients and healthy individuals. Using this definition, 706 

unique DEGs (964 probe-sets) were upregulated and 547 DEGs (708 probe-sets) were 

downregulated in healthy IFN-γ-treated skin. There were 775 upregulated DEGs (1055 

probe-sets) and 719 downregulated DEGs (900 probe-sets) in IFN-γ-treated psoriatic skin 

(Table S1). Although the IFN-γ response (FCH) of many genes was higher in psoriasis than 

healthy skin, these differences were not statistically significant after correcting for multiple 

hypotheses with the Benjamini-Hochberg procedure. Additionally, there was very strong 
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correlation in the response to IFN-γ in both groups (r=0.96; Fig. S3), further supporting that 

there was no difference in IFN-γinduced gene expression between healthy controls and 

psoriasis patients. Therefore, hereafter, we present data mostly from psoriatic NL skin.

IFN-γ induced the expression of numerous genes in the skin that are known to contribute to 

inflammation and that have been implicated in the pathogenesis of psoriasis. A selected list 

of inflammatory DEGs that are upregulated in psoriasis (Suarez-Farinas et al., 2010), as well 

as after IFN-γ injection, is presented in Table 1. This list included cytokines and 

chemokines, as well as other inflammatory products. Expression of select known IFNγ-

induced genes (CXCL9, CXCL10, CCL2, and CX3CL1) was verified by real-time PCR 

(Fig. 1). Additional DEGs were confirmed by RT-PCR, and the IFN-γ response measured by 

RT-PCR was strongly correlated with the microarray data (Fig. S4). Furthermore, using 

gene set enrichment analysis (GSEA), four published psoriasis gene sets (Suarez-Farinas et 

al., 2010) correlated with the IFN-γ response in psoriasis patients (Table S2), indicating that 

IFN-γ can induce many genes that are present in psoriasis. Ingenuity Pathway Analysis 

(IPA) was also used to identify the statistically significant biological functions represented 

by these IFN-γ-induced DEGs (Table S2). The top functions represented by the upregulated 

DEGs after IFN-γ injection were consistent with pathways involved in psoriasis, including 
inflammatory response, inflammatory disease, cellular movement and development, immune 

cell trafficking, cell-mediated immune responses. Thus, the IFN-γ response in skin reflects 

an inflammatory molecular phenotype.

IFN-γ induced T cells and inflammatory myeloid DCs infiltration into the skin

Given the upregulation of many chemokines by IFN-γ, we evaluated the cellular infiltrates 

induced by IFN-γ in the skin. Previous studies have found an increased number of T cells in 

the skin 3 days after repeated IFN-γ injections (Nathan et al., 1990; Nathan et al., 1986). 

Here, we showed that even after only 24 hours post-IFN-γ injection, there were significantly 

increased CD3+ T cells in skin (Fig. S5).

Dendritic cells and their inflammatory products have also been implicated in the 

pathogenesis of psoriasis. Thus, we sought to determine if IFN-γ induced infiltration of DCs 

into skin. We have previously classified CD11c+CD1c+ DCs in normal skin as “resident” 

DCs. In psoriatic lesional skin, an additional population of inflammatory DCs, which 

express CD11c, but not CD1c, are present (Zaba et al., 2009a). IFN-γ induced greater 

numbers of CD11c+ DCs in the skin, while CD1c+ DCs remained constant throughout all 

samples analyzed (Fig. 2a–b). As there is no exclusive marker of inflammatory DCs, an 

approximation of their numbers can be calculated by subtracting the number of CD1c+ DCs 

from the number CD11c+ cells (Johnson-Huang et al., 2010). Fig. 2c shows significantly 

increased numbers of CD11c+CD1c− inflammatory DCs in both normal and non-lesional 

skin only after IFN-γ-injection. To further analyze these cells, we performed two-color 

immunofluorescence with antibodies against CD11c and CD1c. While the majority of 

CD11c+ cells in the placebo treated skin co-expressed CD1c (yellow cells), a large 

proportion of CD11c+ cells in IFN-γ-treated skin were CD1c negative (Fig. 2d), confirming 

the presence of inflammatory DCs. We have previously generated a list of DEGs specific for 

psoriatic inflammatory CD1c− DCs (Zaba et al., 2010). Using GSEA, the inflammatory 
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CD1c− DC DEGs were highly enriched in the IFN-γ response genes (Table S2; ES=0.38, 

NES=1.8, p<0.0001, for both groups). Thus, IFN-γ can induce the accumulation of 

inflammatory DCs, both at the cellular and genomic levels, even in normal skin where they 

are typically absent.

IFN-γ induced products of inflammatory myeloid DCs in the skin

Inflammatory DCs in psoriasis have been previously shown to produce inflammatory 

mediators, including TNF, iNOS, IL-12/23p40 and IL-23p19 and express TNFSF10/TNF-

related apoptosis-inducing ligand (TRAIL), a putative, new marker of inflammatory DCs 

(Guttman-Yassky et al., 2008; Lowes et al., 2005; Zaba et al., 2007; Zaba et al., 2010). In 

order to determine if the DCs induced by IFN-γ could be functioning as inflammatory DCs, 

we assessed the presence of these inflammatory products. Gene expression of TNFSF10/

TRAIL is elevated by IFN-γ (Table 1) and similarly, immunofluorescent labeling identified 

many CD11c+ cells in the skin co-express TRAIL+ after IFN-γ injection (Fig. 3a). In 

comparison to baseline and placebo controls, which had minimal TNF and iNOS staining, 

co-expression of these mediators with CD11c+ DCs was increased in IFN-γ-treated skin 

(Fig. 3b–c). Additionally, using RT-PCR, we detected a significant increase in IL-23p19 

mRNA expression in the skin after IFN-γ injection, and a trend towards increased IL-12p35 

and IL-12/23p40 (Fig. 3d). These data are in line with a recent study that described a role of 

IFN-γ in priming DCs ex vivo to produce IL-23 (Kryczek et al., 2008). This in vitro priming 

stimulated IL-17 production by T cells, and thus we assessed expression of IL17A mRNA in 

the skin after IFN-γ injection by RT-PCR. Despite increased levels of IL-23 after IFN-γ 

injection, we did not find mRNA expression of IL17, or two IL-17-regulated genes CCL20 

and DEFB4, in skin (data not shown). As biopsies were taken only 24 hours after injection 

of IFN-γ, there may not have been sufficient time to induce a Th17 cell response in NL skin. 

Taken together, these findings further suggest that IFN-γ primes an inflammatory 

environment.

Molecules involved in ectopic lymphoid neogenesis were induced by IFN-γ

During chronic inflammation, ectopic lymphoid tissue develops in peripheral non-lymphoid 

organs (Aloisi and Pujol-Borrell, 2006). Previously, based on analysis of upregulated DEGs, 

the existence of these structures within psoriasis LS skin has been proposed (Lew et al., 

2004). Additionally, organized clusters of T cells and DCs are often seen in LS skin (Lowes 

et al., 2007). IPA biological function pathways of lymphoid tissue structure and 

development, hematological system development and function, tissue morphology, and 

hematopoiesis were significantly represented by the IFN-γ-induced genes (Table S2). Genes 

involved in ectopic lymphoid neogenesis were further investigated by RT-PCR and protein 

staining. Lymphotoxin-β (LTb), which is critical in development of lymphoid structures 

(Banks et al., 1995; De Togni et al., 1994; Futterer et al., 1998), was elevated by IFN-γ (Fig. 

4a). Lymphoid tissue organizing chemokines, CXCL12/SDF-1, CXCL13, and CCL21 were 

also assessed, but were unchanged by IFN-γ (Fig. S4). IFN-γ did, however, increase 

expression of CXCR4, the receptor for CXCL12/SDF-1, as well as regulator of G protein 

signaling 16 (RGS16), which is involved in retention of CXCR4+ cells in sites of 

inflammation (Hsu et al., 2008). CCL19, an important factor involved in organization of T 

cells and DCs (Fukuyama et al., 2006), was significantly increased by IFN-γ (Fig. 4a). 
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Consistent with CCL19 upregulation, CD11c+ DCs and CD3+ T cells in IFN-γ injected skin 

were organized in clusters reminiscent of T cell zones of lymph nodes (Fig. 4b). The 

development of lymphoid tissue is also associated with high endothelial venules (HEVs) 

marked by peripheral node addressin (PNAd), and IFN-γ enhanced expression of PNAd in 

the skin (Fig. 4c). Finally, at both the mRNA (Table 1) and protein (Fig. 4d) levels, IFN-γ 

induced expression of ICAM-1 and VCAM-1, adhesion molecules found in secondary and 

tertiary lymphoid organs. Taken together, these data suggest that IFN-γ may indeed induce 

some facets of ectopic lymphoid neogenesis in the skin.

IFN-γ as a biomarker of psoriasis disease potential and/or severity

The molecular and histological responses to IFN-γ injection were similar between healthy 

and psoriatic skin. This finding suggested that the difference between psoriatic patients and 

controls might be upstream of the “response” to IFN-γ, potentially in the induction of IFN-γ, 

with psoriasis patients having a lower threshold for IFN-γ production than healthy controls. 

To address this question, IFN-γ mRNA expression was compared across NL and LS skin of 

patients with varying severities of psoriasis, from mild psoriasis (this study) to moderate-to-

severe psoriasis, published previously (Johnson-Huang et al., 2010). The lowest level of 

IFN-γ expression was found in healthy skin, with an increasing gradient of IFN-γ mRNA 

expression as disease severity worsened. IFN-γ expression was significantly increased in NL 

skin from moderate-to-severe psoriasis patients compared to mild NL skin, and was highest 

in LS psoriatic skin (Fig. 5a). Moreover, an intradermal injection of IFN-γ into mild NL skin 

induced IFN-γ mRNA at a level between NL and LS skin of moderate-to-severe patients.

To evaluate if the level of IFN-γ mRNA in the skin correlated with a downstream genomic 

effect, we analyzed two lists of DEGs from comparison of NL versus healthy skin by IPA. 

The IFN signaling pathway was significantly represented (p=0.03) by DEGs in moderate-to-

severe NL skin (Zaba et al., 2009b), but not by DEGs in mild NL skin compared to healthy 

skin. For comparison, the IFN signaling pathway was also significantly represented by the 

DEGs in IFN-γ-treated NL skin (p<10−9). The range of IFN-γ expression and activation of 

downstream signaling molecules based on disease severity, suggests that IFN-γ may be a 

useful biomarker of psoriasis disease potential.

We also compared cell counts across the range of disease states, and showed that CD3+ T 

cells and CD11c+CD1c− inflammatory DC followed a similar pattern, with an increase in 

cells as disease severity worsened (Fig. 5b). The patterns of increasing cellularity and IFN-γ 

mRNA expression with psoriasis disease progression were associated with an enrichment of 

psoriasis genes in the IFN-γ response DEGs (by GSEA). Thus, we sought to determine how 

the IFN-γ response genes compared to moderate-to-severe NL and LS psoriasis. Using 

unsupervised hierarchical clustering, we found that there were two main clusters of samples: 

1) healthy skin samples clustered with NL skin and 2) IFN-γ-treated skin clustered with LS 

psoriasis skin (Fig. S6). Taken together, these data suggest that injection of IFN-γ may 

induce an inflammatory state with some features of LS psoriatic skin.
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Discussion

Factors that induce the progression of psoriatic NL skin into LS skin and why some patients 

have more severe disease than others are still unclear. Here, we have analyzed the molecular 

and cellular changes that occur in the skin in response to IFN-γ, and found that a single 

intradermal injection of IFN-γ induced an inflammatory environment in both healthy and 

psoriatic skin. We showed upregulation of many chemokines and inflammatory cytokines, 

as well as the influx of inflammatory cells, most notably T cells and inflammatory DCs. 

Additionally, IFN-γ induced features of lymphoid tissue, including organization of T cell 

and DC clusters. At the genomic level, psoriasis gene sets (DEGs in LS skin compared to 

NL) (Suarez-Farinas et al., 2010) were highly enriched in the IFN-γ response genes, 

indicating a significant degree of overlap of these genes. Thus, the inflammatory response 

induced by IFN-γ in the skin resembled some of the changes that occur in psoriasis lesions.

The observation that the response to IFN-γ was similar in both NL psoriatic skin and healthy 

skin indicates that the pathogenic etiology in psoriasis is not in the “response” to IFN-γ per 

se, but may be further upstream. Conceivably, the threshold to produce IFN-γ may be 

different between healthy controls and psoriasis patients. Consistently, elevated IFN-γ 

expression has been found in NL psoriatic skin compared to healthy skin (Guttman-Yassky 

et al., 2008; Kryczek et al., 2008; Uyemura et al., 1993). Here, we also show that IFN-γ 

mRNA expression increased, even in NL skin, as psoriasis became more severe, suggesting 

that psoriasis patients have a greater propensity to produce IFN-γ than healthy controls. The 

increase in IFN-γ in psoriasis patients has been linked to polymorphisms in the IL4 and IL13 

genes resulting in hypo-function of these IFN-γ-inhibitory cytokines (Elder, 2009).

Which cells contribute to the elevated expression of IFN-γ in NL compared to healthy skin 

is not known. Slightly increased numbers of activated CD4+ and CD8+ T cells have been 

found in NL skin (Baker et al., 1984; Placek et al., 1988), which may account for augmented 

IFN-γ. Here, we also show that as psoriasis progresses, the numbers of CD3+ T cells in NL 

skin increase, with the highest numbers being in LS skin (Fig. 5b), consistent with previous 

reports (Bos et al., 1983; Krueger, 2002). Additional cell types may also be contributing to 

the elevated IFN-γ. A significant proportion of mast cells in NL skin showed positive IFN-γ 

staining (Ackermann et al., 1999). Neutrophils have also been implicated as a source of 

IFN-γ (Ethuin et al., 2004), although they are rare in NL skin. Additionally, keratinocytes in 

NL skin express CD1d, which can stimulate CD161+ NK-T cells to produce large amounts 

of IFN-γ (Bonish et al., 2000). In another genomic study comparing NL skin to healthy skin, 

Gudjonsson, et al., showed that innate defense genes are elevated in NL skin, raising the 

possibility that psoriatic NL skin may be “pre-activated” (Gudjonsson et al., 2009). Despite 

these changes, not all NL skin evolves into LS skin, indicating that a secondary trigger, 

perhaps coupled with the presence of factors like IFN-γ, may induce lesion formation in 

psoriatic skin, but not healthy individuals which lack IFN-γ.

Previous studies using a skin organ culture system where NL psoriatic skin was cultured in 

vitro with IFN-γ showed that the epidermal changes induced by IFN-γ were partially 

mediated by IL-1β (Wei et al., 1999). In this study, although there was abundant DC 

infiltration and cytokine production (including IL-1β and IL-23), with concomitant T cell 
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infiltration after IFN-γ injection, these changes were insufficient to induce full plaque 

development, possibly because there was no Th17 cell cytokine production. The fact that the 

epidermis was not altered by this regime of IFN-γ is consistent with lack of IL-17. The dose 

of IFN-γ may be insufficient for the induction of T cell responses or the early 24 hour time-

point may not have allowed enough time to induce T cell activation and polarization and if 

biopsies were taken at later time-points, the T cell phenotype may have been altered. Along 

these lines, previous reports found that epidermal changes and visible lesions resulted after a 

month of continuous IFN-γ injections (Barker et al., 1989, 1990; Fierlbeck and Rassner, 

1990; Fierlbeck et al., 1990; Morhenn et al., 1987; Nathan et al., 1990; Nathan et al., 1986), 

although the induction of IL-17 and IL-22 was not assessed in these studies.

In conclusion, the present study strengthens the hypothesis that IFN-γ is a crucial mediator 

of skin inflammation. Although, this study examines the effect of IFN-γ only in healthy and 

psoriasis patients, it may provide a framework for evaluating other diseases where IFN-γ is 

considered to play a major pathogenic role (Dardalhon et al., 2008).

Materials and Methods

Study design and skin biopsies

We conducted a research study under a Rockefeller University Institutional Review Board-

approved protocol in which healthy volunteers and patients with mild psoriasis (n=10/group) 

received single intradermal injections of IFN-γ (Actimmune, 1×106 IU) and saline (placebo) 

in areas of skin that were clinically normal (NL skin). Saline was used as a control as the 

inactive components of the Actimmune solution were not available. After 24 hours, biopsies 

of both sites were taken; biopsies at baseline were also taken prior to injections. Each biopsy 

was cut in two: half was stored in OCT for cryosections, and half snap-frozen in liquid 

nitrogen for RNA extractions. Written informed consent was obtained and the study was 

performed in adherence with the Declaration of Helsinki Principles. NL and LS tissue 

biopsies (n=9 pairs) from moderate-to-severe psoriasis patients were obtained under a 

Rockefeller University Institutional Review Board-approved protocol (NCT ID: 00220025), 

which has been previously published (Johnson-Huang et al., 2010).

Immuno-staining

Skin sections were stained for immunohistochemistry and immunofluorescence as 

previously described (Fuentes-Duculan et al., 2010). All antibodies used for staining are 

listed in Table S3.

mRNA extraction and real-time PCR

RNA extraction and real-time PCR using Taqman gene expression assays (Table S4) were 

performed as previously described (Chamian et al., 2005). Custom primers for IFN-γ and 

IL-12/23p40 were generated as previously described (Chamian et al., 2005). Data 

normalized to hARP housekeeping gene were quantified by software provided with Applied 

Biosystems PRISM 7700 (Sequence Detection Systems, version 1.7). Normalized PCR data 

were log2 transformed before statistical analysis.
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Microarray hybridization

Human Genome U133 2.0 arrays (Affymetrix Inc, Santa Clara, CA) were used. See 

Supplemental Materials and Methods for details.

Statistical analysis

For comparison of RT-PCR data and cell counts from IFN-γ-injected skin versus respective 

placebo-treated skin, a Wilcoxon matched pairs test was used. A Mann-Whitney U test was 

used to compare unpaired moderate-to-severe NL and LS to IFN-γ or placebo-treated skin. 

A p-value less than 0.05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DC Dendritic cell

BSA body surface area

NL non-lesional skin

LS lesional skin

FCH fold change

FDR false discovery rate

RT-PCR real-time polymerase chain reaction

IPA Ingenuity Pathway Analysis

HLA-DR human leukocyte antigen-DR

ICAM-1 intracellular adhesion molecule-1

K16 keratin 16

DEGs differentially expressed genes

GSEA gene set enrichment analysis

HEVs high endothelial venules

PNAd peripheral node addressin

LTb lymphotoxin-β

RGS16 regulator of G protein signaling 16

TRAIL TNF-related apoptosis-inducing ligand
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Fig. 1. IFN-γ injection induces genomic expression of known IFN-γ-regulated chemokines
mRNA expression levels normalized to hARP for the T cell (CXCL9 and CXCL10) and DC 

(CCL2 and CX3CL1) chemokines in baseline, placebo and IFN-γ-injected healthy (black 

bars, n=10) and psoriatic skin (white bars, n=10). Error bars represent the mean ± SEM. 

IFN-γ-injected skin was compared to placebo. (**) P<0.01.
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Fig. 2. IFN-γ injection induces dermal inflammatory myeloid DCs
Representative immunohistochemistry of (a) CD11c+ and (b) CD1c+ cells in psoriasis skin. 

(c) Quantification of CD11c+, CD1c+, and inflammatory DCs (CD11c+ minus CD1c+ cells) 

in healthy (black circles) and psoriasis skin (white circles). Each circle represents a different 

patient. IFN-γ-injected skin is compared to placebo. (***) P<0.001. (d) Two-color 

immunofluorescence of CD1c+ DCs (red) and CD11c+ DCs (green). The white line 

delineates the dermal epidermal junction. Scale bar = 100μm.
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Fig. 3. IFN-γ injection induces expression of known products of inflammatory myeloid DCs
(a–c) Two-color immunofluorescence of CD11c+ DCs with inflammatory products: (a) 

TRAIL, (b) TNF, and (c) iNOS in baseline, placebo and IFN-γ-injected psoriasis skin. The 

white line delineates the dermal epidermal junction. Scale bar = 100μm. (d) mRNA 

expression levels normalized to hARP for additional DC cytokines in healthy (black bars, 

n=10) and psoriatic skin (white bars, n=10). Error bars represent the mean ± SEM. IFN-γ-

injected skin is compared to placebo. (*) P<0.05, (**) P<0.01.
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Fig. 4. IFN-γ injection induces lymphoid-like structures and expression of known lymphoid 
genes and proteins
(a) mRNA expression levels normalized to hARP for the lymphoid genes in healthy (black 

bars, n=10) and psoriatic skin (white bars, n=10). Error bars represent the mean ± SEM. 

IFN-γ-injected skin is compared to placebo. (**) P<0.01, (***) P<0.001. (b) Two-color 

immunofluorescence of CD11c+ DCs (red) and CD3+ T cells (green), in psoriasis skin. 

White arrows denote DC/T cell clusters. The white line delineates the dermal epidermal 

junction. (c–d) Representative immunohistochemistry of (c) peripheral node addressin 

(PNAd) and (d) ICAM-1 in psoriasis skin. Scale bar = 100μm.
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Fig. 5. The gradient of IFN-γ mRNA expression parallels T cell and DC infiltration as psoriasis 
becomes more severe
(a) IFN-γ mRNA expression in healthy (n=10), NL skin from mild (n=10, BSA<10%) 

versus moderate-to-severe (n=9, BSA>10%) psoriasis patients, IFN-γ-injected healthy 

(n=10) or mild NL psoriasis (n=10) skin and psoriasis LS (n=9) skin. Error bars represent 

the mean ± SEM. (**) P<0.01. (***) P<0.001. (b) Quantification of CD3+ T cells (blue bars) 

and CD11c+CD1c− inflammatory DCs (red bars) counts per mm of skin in patients in (a).
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Table 1

Microarray fold change values of select inflammatory genes upregulated in skin after IFN-γ injection 

compared to placebo.

Symbol Description
IFN-γ Response (Fold change)*

Psoriasis Healthy

CXCL11 chemokine (C-X-C motif) ligand 11 161.89 57.09

CXCL9 chemokine (C-X-C motif) ligand 9 128.78 29.87

CCL8 chemokine (C-C motif) ligand 8 126.85 41.36

CXCL10 chemokine (C-X-C motif) ligand 10 71.38 25.86

CCR1 chemokine (C-C motif) receptor 1 23.10 7.78

CX3CL1 chemokine (C-X3-C motif) ligand 1 19.81 12.18

CCL2 chemokine (C-C motif) ligand 2 12.00 7.09

CCR2 chemokine (C-C motif) receptor 2 9.54 4.23

CCL5 chemokine (C-C motif) ligand 5 8.16 5.47

CCL13 chemokine (C-C motif) ligand 13 5.58 3.66

CXCR4 chemokine (C-X-C motif) receptor 4 5.27 1.40

CCL7 chemokine (C-C motif) ligand 7 4.09 2.00

CCR5 chemokine (C-C motif) receptor 5 3.45 2.37

CCL4 chemokine (C-C motif) ligand 4 3.43 1.43

CCL19 chemokine (C-C motif) ligand 19 2.55 3.78

IL12RB2 interleukin 12 receptor, beta 2 37.54 14.41

STAT1 signal transducer and activator of transcription 1 9.02 4.07

TNF tumor necrosis factor 7.09 3.09

LTb lymphotoxin beta (TNF superfamily, member 3) 4.24 4.15

IL6 interleukin 6 4.13 1.66

IL7R interleukin 7 receptor 3.26 2.9

IL2RG interleukin 2 receptor, gamma 4.76 2.3

IL1B interleukin 1, beta 2.14 1.61

S100A9 S100 calcium binding protein A9 11.96 10.92

TLR2 toll-like receptor 2 9.89 5.49

TLR1 toll-like receptor 1 8.50 4.85

TNFSF10 TNF superfamily, member 10 (TRAIL) 5.73 4.35

S100A8 S100 calcium binding protein A8 4.80 5.02

S100A12 S100 calcium binding protein A12 4.08 2.27

S100A7 S100 calcium binding protein A7 3.47 5.23

ICAM1 intracellular adhesion molecule 1 18.61 8.68

VCAM1 vascular cell adhesion molecule 1 6.31 5.16

Color code: blue=chemokines, yellow = cytokines, orange = inflammatory molecules, green = adhesion molecules.

*
Although the IFN-γ response of many genes was higher in psoriasis than healthy skin, these differences were not statistically significant (FCH 

range= 0.25–3.63, FDR=0.999 for all genes).
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