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Paving the path toward the fifth generation (5G) of wireless networks with a huge increase

in the number of user equipment has strengthened public concerns on human exposure

to radio-frequency electromagnetic fields (RF EMFs). This requires an assessment and

monitoring of RF EMF exposure, in an almost continuous way. Particular interest goes to

the uplink (UL) exposure, assessed through the transmission power of the mobile phone,

due to its close proximity to the human body. However, the UL transmit (TX) power is not

provided by the off-the-shelf modem and RF devices. In this context, we first conduct

measurement campaigns in a multi-floor indoor environment using a drive test solution to

record both downlink (DL) and UL connection parameters for Long Term Evolution (LTE)

networks. Several usage services (includingWhatsApp voice calls, WhatsApp video calls,

and file uploading) are investigated in the measurement campaigns. Then, we propose

an artificial neural network (ANN) model to estimate the UL TX power, by exploiting easily

available parameters such as the DL connection indicators and the information related

to an indoor environment. With those easy-accessed input features, the proposed ANN

model is able to obtain an accurate estimation of UL TX power with a mean absolute

error (MAE) of 1.487 dB.

Keywords: EMF exposure, indoor, uplink, LTE, transmit power, artificial neural networks

1. INTRODUCTION

Human exposure to radiofrequency electromagnetic field (RF-EMF) has been addressed and
monitored over the years, especially with the succession of generations of cellular networks,
the massive deployment of base stations, and the exponential increase in the number of RF
devices (including connected objects of the Internet of Things IoT). Such monitoring aims to
verify RF-EMF compliance with international guidelines such as the ones recommended by the
International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1) in order to reply
to public concerns on the health impact of RF-EMF exposure. The characterization of human
exposure to RF-EMF could be performed by carrying out measurement campaigns (2) and
simulations (3). A survey on RF-EMF exposure in indoor environments is provided in (4).
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There are several ways to measure RF-EMF exposure.
Downlink (DL) exposure induced by outdoor base stations
(5) or indoor access points/femtocells (6) could be assessed
by measuring the electric field strength using a spectrum
analyzer. Moreover, uplink (UL) exposure induced by a user
equipment (UE), together with the DL exposure, could be
evaluated by using network-based tools that allow recording a
huge amount of data related to, e.g., number of connected UEs,
UE transmit (TX) power, UE received power, and throughput
(7–11). However, these data are just accessible to the network
operator. Nevertheless, the UL exposure could also be assessed
using mobile-phone based tools, such as a drive test solution
(12, 13), and android-based applications, such as XMobiSense
(14, 15). The former enables recording network information
of air interface and mobile application quality-of-service and
quality-of-experience, such as the Nemo Handy from KeySight
Technologies (16). While drive test solutions are very expensive
and not accessible for the public to perform daily personal
measurements, android-based applications (e.g., XMobiSense)
allow measuring several parameters but not the TX power nor
throughput. Nonetheless, a specific equipment (i.e., OPTis-P8E,
Innowireless Co., Ltd.) with a control software is also used for
the recording of both DL and UL EMF exposure, even in fifth
generation (5G) new radio environment (17, 18).

Recently, machine learning (ML) and artificial neural
networks (ANNs) are intensively applied in the 5G cellular
networks and beyond. The potential of ML and ANN are also
being investigated in the field of RF propagation and human
exposure to RF-EMF. From the DL point of view, the exposure
map of the 14th district of Paris was built using a hybrid
connected ANN, which is trained with both simulated drive
test and sensor network measurements (19). In (20), a simple
feed forward ANN was proposed for multi-source indoor WiFi
scenarios, where three access points and several WiFi clients
were distributed in the floor layout of the building. Both DL
and UL exposure were evaluated by feeding the ANN model
with position and type of WiFi sources, position and material
characteristics of walls. The collection of data about the electric
field strength (i.e., the ground truth) was performed through
simulations according to a deterministic method. In (21), the UL
exposure due to 4G connections is assessed by predicting the UE
TX power using three different ML algorithms and by changing
the set of input parameters. The ground truth was obtained
through conducting measurement campaigns while driving a car
in Germany. Different from an outdoor scenario, the indoor
environment is much more complicated due to the existence of
multi walls, multi floors, furniture and their different penetration
losses. The challenges are how to incorporate the uncertainty
caused by real-life indoor measurements and how to extract
key features that affect UE TX power from measured network
parameters as well as the indoor environments.

In this paper, we propose a feed-forward ANN model that
allows predicting the UE TX power, while training the model
with measurement data in an indoor environment. The Nemo
Handy is used to collect data on each floor of a residential
building, while it is connected to a 4G outdoor base station.
Several usage services were scheduled on the Nemo Handy:

WhatsApp voice calls, WhatsApp video calls, and file uploading
to Dropbox. The possible parameters from the DL connection
indicators and their correlation with TX power are analyzed.
Then, the proposed prediction model is fed with the most
influential and easily available input parameters that are recorded
by the Nemo Handy, but also could be available from android-
based mobile phone applications. Such input parameters reveal
information about DL network connection, in addition to other
parameters related to the environment. The difficulty remains
in using measurement data instead of simulated data since we
are not able to control the measurement results. Indeed, we do
not control and manage the Nemo Handy since we do not know
exactly how the recorded values are computed, as explained in
section 2. Consequently, we tested different averaging duration
of the measurement data to find a balance of removing noise of
measurement and keep enough amount of measurement data.
The performance of ANN models from the averaging duration
of measurement data over 1, 3, and 5 s are compared. The
results show averaging measurement data for 5 s can provide
the best prediction accuracy with a mean absolute error (MAE)
of 1.487 dB.

To the author’s knowledge and according to the literature, very
rare works investigate ML and ANN methods for the prediction
of the LTE UE TX power from real empirical data. Accordingly,
the main contributions of this work are the following:

1. The proposal of drive test measurement protocol
considering various usage services over LTE connections,
including WhatsApp voice calls, WhatsApp video calls,
and file uploading.

2. The proposal and performing of multi-floor indoor
measurement campaigns of both DL andUL LTE connections.

3. The proposal and validation of a simple feed-forward ANN
model with easy-accessed input feature to predict LTE UE TX
power from indoor empirical data.

The paper is organized as follows: section 2 presents the material
used and describes the measurement and the data collection.
Section 3 explains the proposed ANN model that is used to
predict the UE TX power over 4G connections. Section 4 presents
the results of the measurement analysis as well as the TX power
estimation of the ANN model. Section 5 discusses and compares
the results with related works. It also presents some future works.
Section 6 gives the conclusion.

2. MATERIALS AND MEASUREMENT
DESCRIPTION

2.1. UL Power Control Mechanism
The UE TX power PTX (in dBm) is set through a power control
algorithm according to the 3rd Generation Partnership Project
(3GPP) LTE specification 36.213, as follows (22):

PTX = min{Pmax, P0 + 10Log10(M)+ αPL+ 1MCS + δ}, (1)

where

• Pmax is the maximum allowed TX power, which is equal to 23
dBm for class 3 UE.
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FIGURE 1 | Measurement environment. From left to right: Front look, Base station, Floor 5, Floor 6.

• P0 is a cell specific parameter that represents the requested
signal to interference and noise ratio per physical resource
block for the reception at the base station side.

• M is the number of physical resource blocks allocated to the
UE. It depends on the UE usage service and the cell traffic load.

• α is a cell specific parameter representing the path loss
compensation factor.

• PL is the DL path loss estimated by the UE based on the
reference signal received power (RSRP) or the received signal
strength indicator (RSSI).

• 1MCS is a specific modulation and coding scheme factor.
• δ is a closed loop correction value that aims to compensate the

fast fading variation.

2.2. Measurement Description and
Protocol
We carried out measurement campaigns in a 6-floor residential
building in May and August 2021. At each floor level (from
ground floor to floor 6), one measurement location is considered,
which corresponds to almost the same relative position in
corridor of the stairs. The measurements were repeated 3 times
over the journey: in the morning (10–11 a.m.), at noon (12–
2 p.m.), and in the afternoon (4–5 p.m.), in order to take
into consideration the time-varying traffic of the connected
base station. We note that the measurements at night, which
have the lowest traffic load (23), were not performed due to
the requirement of human intervention. Figure 1 shows the
measurement environment. The residence from outside and the
closest base station are, respectively, shown in the left two figures.
The location of measurement inside the building on floors 5
and 6 are, respectively, shown in the right two figures. The floor
plans from floor 1 to 5 are identical. It is noteworthy that the
residence is very close to a base station. We aim to conduct the
measurements at different floors to take into account the impact
of the elevation plane and the elevation angle of the base station
antenna. In other words, how does the UL exposure vary with
respect to the floor level?

FIGURE 2 | Artificial neural network structure.

We focus in this work on predicting the UE UL TX power
while connected to 4G networks. To this end, we need to
gather data about the UE UL power as well as other parameters
influencing it (as explained in section 3.1). The UE UL power
is recorded using dedicated drive test mobile phone solutions.
Accordingly, the Nemo Handy from KeySight Technologies (16)
is used in our measurement campaigns in order to log data about
the UE TX power and other network parameters. The Nemo
Handy is equipped on a Samsung Galaxy S20+ 5G. It supports
frequency bands from 2G to 5G NR networks (up to 40 GHz).

Moreover, Nemo Handy allows scheduling certain usage
services by creating scripts. Indeed, it records network
parameters and saves log files while running these scripts.
This is crucial because the UE UL power depends on the usage
service. In our measurement campaigns, we lock the Nemo
Handy to 4G networks, without locking to a given frequency
band. The Nemo Handy is scheduled to run automatically the
following usage services:
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1. WhatsApp voice call: It is a voice over IP (VoIP) service. It
is performed by emitting a voice using a speaker. The voice
is reading a well-formatted text with almost 50% silence. The
duration of the voice call is 2 min.

2. WhatsApp video call: The same settings are considered for the
WhatsApp voice call.

3. Data upload: A 200-MB file is uploaded to Dropbox. The
duration of uploading such a file depends on the network
quality. In our case, it varies between almost 3 and 12 min.

We note that we mimic a realistic usage scenario during the
measurements. The mobile phone was held by the experimenter
at a height of about 1 m.

After carrying out the measurements, we use the Nemo
outdoor software (installed on a laptop) in order to extract from

TABLE 1 | Input parameters of ANN.

Input parameter Value Influence and

significance

RSRP (dBm) [−140,−44] Signal quality, path loss

distance to base

station

RSSI (dBm) [−113, −51] Signal quality, path

loss, interference

distance to base

station

Usage service WhatsApp voice call

WhatsApp Video call

Data upload

Amount and rate of

data

Floor level 0, 1, 2, 3, 4, 5, 6 Antenna elevation

angle, environment

Time of the day Morning, noon, and

afternoon

Base station traffic

load, environment

Frequency band (MHz) 1,800, 2,100, 2,600 Environment

Month May, August Base station traffic

load, environment

the log files several parameters, mainly the following data: the UE
TX power, the RSRP, and RSSI. All these powers were recorded in
dBm. Moreover, we extract the physical cell identity (PCI) of the
connected base station in order to check if the active base station
remains the same in all the measurements. We are not able to
locate the connected base station since its PCI is not accessible to
public. It is just known by the network operator. Furthermore,
we note that Nemo sampling method of the recorded data is
unknown. The number of samples per second is not constant,
it changes between 0 and 5 samples per second. Indeed, it is not
possible to know how the Nemo computes the recorded values: if
they are instantaneous values, averaged values over how the long
sample period, etc. Therefore, we decided to compute average
values over different time periods (i.e., 1, 3, and 5 s) and compare
the corresponding performance. The processing and analysis of
extracted parameters, as well as building ANN using them, are
provided in section 4.

3. ANN MODEL FOR TX POWER
ESTIMATION

A classic feed-forward neural network is built to predict UL
TX power in this work. The detailed network structure can be
found in Figure 2. The input layer takes six features related to
DL network connections and information from themeasurement
environment. Then three fully connected layers with decreasing
number of neurons (10, 5, and 2) are followed after the input
layer. The hyper-parameters of ANN used in the current paper,
including the number of layers and neurons, are determined
according to grid search methods. An exponential learning rate
decay scheduler is adopted to help the optimization. A large
initial learning rate can speed up the training and prevent the
model from being trapped in local minima. However, it may
cause high oscillation in minimizing the loss function. On the
other hand, a small learning rate makes the ANNmodel converge
slower and may end up with local minima. Therefore, a reducing

FIGURE 3 | Statistical distribution of reference signal received power (RSRP) and transmit (TX) power at different floors.
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FIGURE 4 | Statistical correlation between Tx power and RSRP.

TABLE 2 | Pearson correlation coefficient between inputs and target TX power for

different averaging durations.

Average over 1 s Average over 3 s Average over 5 s

RSRP [dBm] −0.811 −0.865 −0.876

RSSI [dBm] −0.793 −0.854 −0.865

Usage service 0.138 0.209 0.224

Floor level −0.149 −0.227 −0.241

Time of the day 0.015 0.012 0.009

Frequency band −0.184 −0.192 −0.184

Month 0.145 0.202 0.224

learning rate scheduler is applied, in order to help the ANN
model converge fast and smoothly.

3.1. Inputs of ANN
The inputs of the ANN with their typical values and significance
are shown in Table 1. According to section 2.1, the UE TX power
depends on the DL path loss, which is estimated by the UE
based on RSRP and/or RSSI. Consequently, RSRP and RSSI are
preferred to be used as input for the prediction of the TX power.
While RSRP is a parameter that could be available from off-the-
shelf commercial devices (e.g., android-based applications such
as XMobiSense), RSSI is not always available and it depends
on the version of the android operating system (24). Therefore,
in order to address the impact of the RSSI on the UL TX
power estimation, we decided to build two ANN models with
different combinations of inputs, either RSRP or both RSRP
and RSSI as inputs while keeping all the other parameters
from Table 1 unchanged.

According to Equation (1), the UE TX power also depends
on the number of resource blocks M, which is not accessible via

TABLE 3 | Hyper-parameters of ANN.

Hyper-parameters Value

learning rate lr = lr0 exp (−kt) , lr0 = 0.03, k = 0.01

Optimizer Adam

Activation “elu” (hidden layers), “linear” (output layer)

Weight initializer he_uniform

epoch 150

Batch size 48

Loss function MSE

Train : Validation : Test 0.8 : 0.2 : 0.2

TABLE 4 | Performance comparison with different inputs.

RSSI RSRP RSSI+RSRP

MAE [dB] 1.663 1.487 1.558

RMSE [dB] 2.501 2.365 2.394

R2 0.902 0.912 0.910

TABLE 5 | Performance comparison between different averaging duration.

Average over 1 s

(8,238)

Average over 3 s

(4,044)

Average over 5 s

(2,510)

MAE [dB] 2.334 1.791 1.487

RMSE [dB] 3.577 2.650 2.365

R2 0.831 0.897 0.912

android-based applications. However, the dependence of M on
the UE usage service implies the selection of the latter parameter
as an alternative input to the ANN. The other parameters from
Table 1 are the features that can represent an unique property
of measurement. The input “floor level” also reflects information
about the path loss and the antenna elevation angle. The string
values are transformed according to their type to numerical
values that can be processed by the ANN. For example, the
input parameter “time of the day” includes morning, noon, and
afternoon that are transformed into 0, 1, and 2, respectively.

3.2. Assessment of Prediction Accuracy
The performance of ANN is evaluated by three metrics, MAE,
root mean squared error (RMSE), and R-Squared (R2). Both
MAE and RMSE are computed in dB. Here, smaller values of
MAE and RMSE indicate more accurate predictions. R2 measures
how close the ground truth and predictions are in terms of
statistical distribution. While the perfect prediction would result
in an R2 value of 1, the most poor fitting results in an R2 value
approaching 0. R2 is defined as follows:

R2 = 1−
RSS

TSS
(2)

where RSS and TSS represent, respectively, the residual sum of
squares and the total sum of squares.
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FIGURE 5 | Scattering plots between predictions and true values.

4. RESULTS

4.1. Measurement Analysis
Figure 3 shows the cumulative distribution function (CDF) of the
RSRP and TX power variations at each floor, after aggregating
all the usage services data at any time. The highest RSRP values
are shown for floor 5, which means the lowest path loss and
the best propagation condition. This may be due to the fact
that the main gain of the active antenna base station is directed
toward floor 5. The antenna gain will decrease with the antenna
elevation angle and floors 1–5 have almost the same layout.
This is supported by the observations in the Figure 3 that start
from floor 5, except the ground floor (i.e., floor 0), decreasing
or increasing the floor level will obviously yield a decrease in
the RSRP values. The RSRP values on floor 6 are higher than
the others due to a glass window on the roof, which permits to
pass more of electromagnetic waves. Furthermore, the ground
floor provides very high RSRP values, which are very close to
those of floor 5. The difference in the median is less than 4
dB. This is explained by the different layout of the ground
floor, where we have the entrance of the building with two
glass doors. Consistent results are shown with the statistical
distribution of TX powers. We note, after checking with Nemo
Handy, that all the measurements occur with the same connected
base station.

The statistical correlation between the UE TX power
and RSRP for all the measurement data is presented in
Figure 4. Similar behavior is observed for the correlation
between TX power and RSSI. Obviously, as RSRP/RSSI
increases, the DL path loss decreases, and consequently TX
power decreases. For each RSRP value, the variation in
the TX power is due to other parameters involved in the
UL power control algorithm (Equation 1), which are not
accessible. However, those parameters are directly or indirectly
influenced by the selected input parameters, whose correlations
with TX power are shown in Table 2. We note that the
Pearson correlation reflects the linear relationship between the
parameters and does not reveal deeper correlations. All these
reasons strengthen the requirement of the ANN model for the

prediction of UE TX power, which is crucial for UL RF-EMF
exposure assessment.

4.2. Implementation and Performance of
ANN
As mentioned in section 3, the hyper-parameters of ANN
are determined according to grid search methods. The neural
network is trained with different potential combinations of
hyper-parameters. Indeed, the optimal set of hyper-parameters
with the best three-fold cross validation performance is selected.
Accordingly, the hyper-parameters used in the current work are
given in Table 3. In the pre-processing of measurement data, we
remove the duplicates where we have the same inputs and outputs
data set. Then, “RobustScaler” is used to scale the input features
with outliers since it removes the median and scales the data
according to the quantile range.

After implementing ANN, we first compare the performance
from models trained with different combinations of RSSI and
RSRP. Here, measurement data are averaged over 5 s and split
into training and testing with the ratio of 80 and 20%. Results
in Table 4 show that all three models have almost the same
prediction performance, which is consistent with the strong
correlation between RSSI/RSRP and TX power as shown in
Table 2. Moreover, RSSI and RSRP carry redundant information.
Therefore, as explained in section 3.1, only RSRP is kept as an
input feature in the following model due to its easy accessibility
and strong correlation.

Since the measurement data exported from Nemo Handy
gives approximately 0–5 samples per second, we pre-process the
data by computing average values over 1, 3, and 5 s. FromTable 2,
the correlation between inputs and target TX power is stronger
with the increase of averaging duration. This implies that the
corresponding prediction results in terms ofMAE, RMSE, and R2

reveal the same improvement, as shown in Table 5. Consistently,
the scattering plots in Figure 5 show that a tighter prediction is
obtained with the increase of averaging duration. More clearly,
the problem of vertical lines with dots from the left figure, which
is caused by noise in the input data, is solved. However, we
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only did the averaging up to 5 s due to the limited number
of measurement data (number of datasets after removal of
duplicates are shown in Table 5).

5. DISCUSSION

To the authors’ knowledge, very rare works investigate building
ML or ANN models based on real measurement data for
the estimation of the LTE UE TX power. Similar work is
done in (21) but with drive testing measurement data in
outdoor environments. For the estimation of the UL TX power,
they use and compare three ML methods and test different
input sets. They consider uploading a file of three different
sizes (i.e., 1, 3, and 5 MB) to a web server via Hypertext
Transfer Protocol (HTTP), while we consider in our work
more different usage services. We note that the lowest MAE
in (21) is 3.166 dB with a full featured model. It raises to
4.33 dB when limiting the input features to RSRP, upload
size, and velocity.

The main novelty of the current work is the exploitation
of the ANN model for the LTE TX power prediction
from measurement data in multi-floor indoor environments.
Measurement campaigns have been carried out on a single
location at each floor of a 6-floor residential building. While
using several usage services (i.e., WhatsApp voice and video
calls, file uploading via DropBox), data on UE TX power and
input features, such as RSRP, are collected. The results are very
promising with a MAE of 2.334 dB. Indeed, we believe that
the proposed model has high potential in applying to more
general scenarios. As shown in Table 2, UE TX power is closely
dependent on the DL received power, which is RSSI or RSRP
in our study. This strong correlation guarantees an acceptable
prediction. So, the difficulty is to further improve the prediction
performance by taking into account the varying environments.
Even though measurement campaigns are very time-consuming
and complicated to perform in indoor environments, more
measurements are required to cover several location points
on the same floor. More input features related to the floor
layout, such as the number of walls, the number of windows
and their penetration losses, should be considered in future
work. Moreover, data should be collected over several months in
order to account for the seasonality of the traffic. Last and not
least, the model can include more usage services, such as voice
over LTE (VoLTE).

6. CONCLUSION

The evaluation of UE TX power is very crucial for the assessment
of the UL RF-EMF exposure. However, recording UE TX power
requires specific equipment and carrying out measurement
campaigns is complicated and time-consuming. Therefore, we
aim in the present work to predict the LTE UE TX power
by investigating the ANN model with easily available input
features, for multi-floor indoor measurement data. First, the LTE
network parameters in the indoor environment with an outdoor
connected base station are collected using a specific handheld
measurement device, i.e., Nemo Handy. The correlation between
the DL network parameters and the target TX power are
analyzed. Both DL received power indicators, RSSI and RSRP,
have a strong correlation with TX power. Accordingly and since
RSRP is easily available, we build a feed-forwardANNmodel with
RSRP as input together with other parameters influencing the TX
power and related to the measurement environment. Afterward,
the influence of averaging duration in the data pre-processing,
e.g., 1, 3, and 5 s, on the prediction accuracy is compared. The
results show that averaging over 5 s for measurement data keeps
a good trade-off between noise removal and a sufficient number
of training data, which also has best prediction accuracy in terms
of MAE, RMSE, and R2.
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