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Advanced image analysis with machine and deep learning has improved cell
segmentation and classification for novel insights into biological mechanisms. These
approaches have been used for the analysis of cells in situ, within tissue, and
confirmed existing and uncovered new models of cellular microenvironments in human
disease. This has been achieved by the development of both imaging modality specific
and multimodal solutions for cellular segmentation, thus addressing the fundamental
requirement for high quality and reproducible cell segmentation in images from
immunofluorescence, immunohistochemistry and histological stains. The expansive
landscape of cell types-from a variety of species, organs and cellular states-has
required a concerted effort to build libraries of annotated cells for training data and
novel solutions for leveraging annotations across imaging modalities and in some
cases led to questioning the requirement for single cell demarcation all together.
Unfortunately, bleeding-edge approaches are often confined to a few experts with the
necessary domain knowledge. However, freely available, and open-source tools and
libraries of trained machine learning models have been made accessible to researchers
in the biomedical sciences as software pipelines, plugins for open-source and free
desktop and web-based software solutions. The future holds exciting possibilities with
expanding machine learning models for segmentation via the brute-force addition of
new training data or the implementation of novel network architectures, the use of
machine and deep learning in cell and neighborhood classification for uncovering cellular
microenvironments, and the development of new strategies for the use of machine and
deep learning in biomedical research.

Keywords: machine learning, deep learning—artificial neural network, segmentation, classification,
neighborhoods, microenviroment, bio-imaging tools

INTRODUCTION

Image use in the biomedical sciences varies from demonstrative and representative to data for
quantitative interrogation. Quantitative analyses of tissue and cells, the basic building blocks in
biology, requires the accurate segmentation of cells or surrogates of cells and methods for classifying
cells and quantitative analysis of cell type, cell states and function. Cellular segmentation has been
an intense focus in biomedical image analysis for decades and has evolved from largely ad hoc
approaches to generalizable solutions (Meijering, 2012). The classification strategies for cell type
(e.g., immune cell, epithelium, stromal, etc.) and state (e.g., injured, repairing, dividing) have

Abbreviations: ML, machine learning; DL, deep learning; GUI, graphical user interface; API, application programming
interface.
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developed rapidly (Meijering, 2012, 2020; Meijering et al., 2016).
How different cell types organize into microenvironments or
neighborhoods is import for our understanding of pathogenesis
and biology. The identification and classification of these
neighborhood or microenvironments is of significant interest
to the bioimaging community (Allam et al., 2020; Stoltzfus
et al., 2020; Solorzano et al., 2021). This mini review will cover
the current state of quantitative analysis of tissues and cells in
imaging data, with a discussion of segmentation, classification,
and neighborhood analysis, specifically highlighting the
application of machine learning, including recent advancements,
challenges, and the tools available to the biomedical researchers.

SEGMENTATION

A cornucopia of segmentation approaches has been developed for
specific experimental situations, tissue types or cell populations
including clusters of cells, specific cell types, etc. (Meijering,
2012; Meijering et al., 2016). Often these approaches are built
as pipelines in image processing software, enabling the sharing
of segmentation methods (Berthold et al., 2007; de Chaumont
et al., 2012; Schindelin et al., 2012; Bankhead et al., 2017; McQuin
et al., 2018; Berg et al., 2019). A common approach is to first
differentiate foreground, the cell, from background in a semantic
segmentation step. Secondly, objects of interest in the image
are isolated, or instance segmentation, by identifying and then
splitting touching cells. Meijering outlined five fundamental
methods for segmentation: intensity thresholding (Otsu, 1979),
feature detection, morphologically based, deformable model
fitting and region accumulation or splitting (Meijering, 2012).
These methods are often combined sequentially. For instance,
cell segmentation might include semantic segmentation of a
foreground of all nuclei with pixel intensity, followed by a second
instance segmentation for identifying an individual nucleus using
a region accumulation approach like watershed (Beucher and
Lantuejoul, 1979). A common limitation is the ad hoc nature
of segmentation approaches: the applicability of a segmentation
method may be limited by constraints in the datasets including
differences in staining or imaging modality (fluorescence vs.
histology staining), artifacts in image capture (out-of-focus
light or uneven field illumination) or morphological differences
(spherical epithelial vs. more cylindrical muscle nuclei). These
constraints, and others, have limited the development of
generalizable segmentation algorithms.

Cell segmentation with machine learning is well established-
a popular approach is to perform semantic pixel segmentation
with a Random Forest Classifier (Hall et al., 2009; McQuin et al.,
2018; Berg et al., 2019). Segmentation with a Random Forest
Classifier, as with all machine learning approaches, requires
training data. In cell segmentation this is data that has been
annotated to indicate which pixels in images are foreground,
nuclei, vs. background. ilastik provides an intuitive and iterative
solution for generating training data with a GUI that allows a user
to: (1) highlight pixels to indicate nuclei vs. background-training
data, (2) test classification and segmentation, (3) repeat and
add or subtract highlighted pixels, to improve the classification
and segmentation. This process is powerful but can become

labor-intensive in different tissues where there may be a variety
of nuclei (e.g., shape, texture, size, clustering, etc.) in smooth
muscle, epithelium, endothelium, and immune cells in varying
densities and distributions. Unfortunately, while high quality cell
culture nuclei training datasets and tissue image datasets exist,
2D training data of nuclei in tissue is limited or fractured across
multiple repositories (Ljosa et al., 2012; Williams et al., 2017;
Ellenberg et al., 2018; Kume and Nishida, 2021). Furthermore,
while 3D electron microscopy data is readily available, 3D
fluorescence image or training datasets of nuclei is limited (Ljosa
et al., 2012; Iudin et al., 2016; El-Achkar et al., 2021; Lake
et al., 2021). The availability of training data is one of the most
significant barriers to the application of machine learning to
cell image segmentation (Ching et al., 2018). Fortunately, the
number of venues to share imaging datasets should not limit the
dissemination of training datasets as they are generated (Table 1,
Datasets and Repositories).

Recently, three novel approaches were developed to address
the dearth of segmentation training data for the variety of cell-
types and imaging modalities. The first, and most direct approach
has been the concerted effort of a number of groups including
the Van Valen and Lundberg laboratories to establish “human-in-
the-loop” pipelines and infrastructure of software and personnel,
including collaborative crowd sourcing, to generate ground
truth from imaging datasets (Sullivan et al., 2018; Moen et al.,
2019; Bannon et al., 2021). A limitation of this approach is
the requirement for on-going support for personnel; on-going
support is critical to long term success. To ease the generation of
high-quality training data with a “human-in-the-loop” approach,
methods have also been established around segmentation
refinement (Sullivan et al., 2018; Lutnick et al., 2019; Moen
et al., 2019; Govind et al., 2021; Lee et al., 2021). An alternative
to these brute-force approach has been to generate synthetic
training data by combining “blob” models of cells with real
images using generative adversarial networks (Dunn et al., 2019;
Wu et al., 2021). Further, to leverage training data across imaging
modalities NucleAIzer1 relies on style transfer with a generative-
adversarial-network to generate synthetic data using prior
training data from other modalities (fluorescence, histological
stains, or immunohistochemistry). Thus, this approach can
expand training data by mapping to a common modality, giving
a nearly general solution to segmentation across 2D imaging
modalities (Hollandi et al., 2020).

The on-going search for generalizable segmentation is an area
of active research in deep learning and is critical to establishing
rigorous and reproducible segmentation approaches. To this end,
a pipeline that requires little to no tuning on multiple datasets
and modalities was demonstrated recently (Waibel et al., 2021).
In the interim, the field will continue to make progress with
generalizable segmentation, existing approaches, networks, etc.
can provide the foundation for novel segmentation solutions. For
instance, deep learning approaches to address 2D and 3D cell
segmentation are often based on existing networks (Haberl et al.,
2018; Schmidt et al., 2018; Falk et al., 2019; Weigert et al., 2020;
Minaee et al., 2021; Stringer et al., 2021), using training data
augmentation (Moshkov et al., 2020), or transfer learning

1https://www.nucleaizer.org/
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TABLE 1 | End user accessibility of tools supporting machine and/or deep learning for bioimage analysis.

User Application Name Support or demonstrated Description Software
type

URL References

Classical learning Deep learning (DL)

Image data
resource (IDR)

Not determined Yes, ex. Idr0042 Tissue and cell images
with cell based training
datasets

Repository https://idr.openmicroscopy.org Williams et al., 2017

Broad bioimage
benchmark
collection

Yes Yes Cell images training
datasets

Repository https://bbbc.broadinstitute.org Ljosa et al., 2012

Cell image library Not determined CDeep3M Mulitmodal cell
images, linked to
CDeep3M for testing

Repository http://cellimagelibrary.org/
pages/datasets

NA

BioImageDbs Yes Yes R package and
repository for images

Bioconductor
package

https://kumes.github.io/
BioImageDbs/

Kume and Nishida,
2021

EMPIAR Yes, ex.
EMPIAR-10069

Yes, ex.
EMPIAR-10592

Electron microscopy
images

Repository https://www.ebi.ac.uk/
empiar/

Iudin et al., 2016

SciLifeLab Not determined Yes Scientific data, images
and figure

Repository https://www.scilifelab.se/
data/repository/

NA

BioImage Archive Yes Yes Archive of IDR and
EMPIAR

Repository https://www.ebi.ac.uk/
bioimage-archive/

Ellenberg et al.,
2018

DeepCell Kiosk Establishing a
cellwise dataset

Tool for segmentation
in the cloud

Web
interface

deepcell.org Moen et al., 2019

Cellpose Segmentation Tool for segmentation
in the cloud and
python GUI

Web
interface,
application

https://github.com/
MouseLand/cellpose

Stringer et al., 2021

NucleAIzer Transfer learning Tool for segmentation
in the cloud

Web
interface

www.nucleaizer.org Hollandi et al., 2020

CDeep3M Electron microscopy
segmentation

Multiple trained
networks for distinct
structures in EM
images

Web
interface,
model zoo

https://cdeep3m.crbs.
ucsd.edu/

Haberl et al., 2018

QuPath Feature design for
segmentation

Inference with
StarDist

ML segmentation with
GUI

Application,
plugin

qupath.github.io Bankhead et al.,
2017

DeepImageJ Inference in ImageJ
with BioImage.IO

Tool for inference on
the desktop

Plugin deepimagej.github.io/
deepimagej/

Gómez-de-Mariscal
et al., 2021

Ilastik Feature design for
segmentation

Interfaces with
BioImage.IO

Segmentation with GUI Application,
plugin

www.ilastik.org Berg et al., 2019

CellProfiler and
CellAnalyst

Feature design for
classification

Unet Segmentation Pipeline Based image
processing tool with
ML and DL support

Application cellprofiler.org Dao et al., 2016;
McQuin et al., 2018

StarDist Segmentation Python and Java
(ImageJ/FIJI) tool for
segmentation

Plugin https:
//github.com/stardist/stardist

Weigert et al., 2020

HistomicsML2 Model for training
and tools for
inference

Framework for training
and inference
on imaging data

Web
interface

https://histomicsml2.
readthedocs.io/

Lee et al., 2021

CSBDeep Image restoration,
segmentation

FIJI plugins and python
for image restoration
and segmentation

Python,
plugin

https://csbdeep.
bioimagecomputing.com/

Schmidt et al., 2018;
Weigert et al., 2020

CytoMAP Feature design for
neighborhoods

Cell classification and
neighborhood analysis
with GUI

Application gitlab.com/gernerlab/
cytomap/-/wikis/home

Stoltzfus et al., 2020

Volumetric tissue
exploration and
analysis

Feature design for
classification and
segmentation

Cell segmentation,
classification and
neighborhood analysis
with GUI

Plugin https://vtea.wiki Winfree et al., 2017

modelzoo.co Models for many
datatypes

Open source and
pretrained networks

Web
repository

modelzoo.co NA

InstantDL Segmentation and
classification

Broadly applicable
segmentation and
classification
framework

Python,
CoLab

https://github.com/marrlab/
InstantDL/

Waibel et al., 2021

BioImage.IO Models for
specifically for
bioimaging

DL networks for the
bioimaging community

Web
repository

bioimage.io NA

ZeroCostDL4Mic Training and
inference with
BioImage.IO

Tool for training and
inference in the cloud

Cloud based,
CoLab

github.com/HenriquesLab/
ZeroCostDL4Mic

von Chamier et al.,
2021

OpSeF DL network training
and inference

Python framework in
Jupyter notebooks

Python github.com/trasse/
OpSeF-IV

Rasse et al., 2020

Weka Extensive library of
classifiers and tools

ML frame work for
Java, Plugin for ImageJ

API,
application,
plugin

www.cs.waikato.ac.nz/
ml/weka/

Hall et al., 2009
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(Zhuang et al., 2021). Thus, until there is a generalizable solution,
new deep learning segmentation approaches can be developed
quickly by building on existing work with focused training
datasets specific to tissue, cell-type and imaging modality.

CLASSIFICATION

Using specific protein or structural markers is a common way to
determine cell-types in cytometry approaches like flow and image
cytometry. Image cytometry is complicated by defining which
pixels are associated with which cells. While a nuclear stain can be
used to identify the nucleus, membrane, and cytoplasmic markers
may be inconsistent across cell-types, cell-states, and tissues.
A common solution is to measure markers in pixels proximal
to segmented nuclei. These pixels can be defined by using a
limited cell-associated region-of-interest that wraps around an
existing nuclear segmentation or by performing a tessellation
with a Voronoi segmentation (Winfree et al., 2017; Goltsev et al.,
2018; McQuin et al., 2018).

The mean-fluorescence intensity (or other intensity measure,
mode, upper-quartile mean, etc.) of markers in cell-associated
segmented regions is frequently used for classification.
A common supervised approach is to perform a series of
sequential selections or gates based on marker intensities
like flow cytometry. This “gating strategy” can easily identify
specific cell-types with a predefined cell-type hierarchy. Cell
classification can be semi-automated with unsupervised or
semi-supervised machine learning using classifiers and clustering
approaches. Popular approaches include Bayesian and Random
Forest classifiers and clustering with k-means or graph based
community clustering like the Louvain algorithm (Hall et al.,
2009; Dao et al., 2016; McQuin et al., 2018; Phillip et al., 2021;
Solorzano et al., 2021). Importantly, analyzing highly multiplexed
image datasets, more than twenty markers, with a supervised
“gating” approach may prove intractable necessitating machine
learning approaches (Levine et al., 2015; Goltsev et al., 2018;
Neumann et al., 2021).

Deep learning has been broadly applied to classification of
images (Gupta et al., 2019). One of the strengths of a deep
learning classification approach, as with segmentation, is that it is
possible to start with a pretrained network-potentially reducing
training set sizes. For instance, in 2D image classification, a
convolutional neural network (CNN) like ResNet-50 initially
trained on natural images (e.g., animals, vehicles, plants, etc.) can
be retrained with a new label structure and training data that
might include, for instance, cell nuclei (Woloshuk et al., 2021).
Some deep learning models can further simplify workflows, like
regional-CNNs, performing both segmentation and classification
(Caicedo et al., 2019).

One image dataset that presents an interesting challenge
and unique opportunity in both segmentation and classification
is multiplexed fluorescence in situ hybridization (FISH).
These approaches can, through combinatorial labeling of
fluorophores, generate images of nearly all putative transcripts
(Coskun and Cai, 2016). Although a semantic and instance
segmentation approach can be used to identify and classify
cells using associated FISH probes (Littman et al., 2021), a

recent pixelwise-segmentation free approach has been proposed.
This approach organizes the detected FISH-probes into spatial
clusters using graphs from which signatures of cells and cell-
types are determined (Shah et al., 2016; Andersson et al., 2020;
Partel and Wählby, 2021).

MICROENVIRONMENTS AS
NEIGHBORHOODS

The classification of microenvironments in tissues informs our
understanding of the role of specific cells and structures in
an underlying biology. This has led to the development of
neighborhood analysis strategies that involve the segmentation
of groups of cells or structures which are then classified with
machine learning using neighborhood features such as cell-
type census and location (Stoltzfus et al., 2020; Solorzano
et al., 2021; Winfree et al., 2021). This process mirrors the
segmentation and classification of single cells by protein and
RNA markers where the types of cells or the distributions of
cell types in neighborhoods are the markers used to classify
the neighborhoods. The segmentation strategies for defining
neighborhoods usually rely on either regular sampling of a
tissue or cell centric approaches (e.g., distance from a cell or
the k-nearest neighborhoods) (Jackson et al., 2020; Stoltzfus
et al., 2020; Lake et al., 2021; Winfree et al., 2021). The
impact of neighborhood size and defining it variably and locally
(e.g., microenvironments may be different near arterioles vs.
microvasculature) are under explored avenues in the analysis of
cellular microenvironments in bioimaging datasets. Importantly,
further development of neighborhoods analyses is critical as it
has demonstrated mechanistic insight in human disease when
used with highly multiplexed chemical and fluorescence imaging
(Jackson et al., 2020; Schürch et al., 2020; Stoltzfus et al., 2021).

TECHNOLOGY AND TOOL
ACCESSIBILITY

Minimizing the exclusivity of segmentation and classification
advancements with the development of user accessible tools,
is critical to the democratization of image analysis. In the
above discussions of both segmentation and classification, most
researchers and developers paid careful attention to providing
tools for use by biomedical scientists. Example tools include web
interfaces, stand-alone applications, or plugins for open-source
image processing software (Table 1). These tools provide access to
users that are novices in image analysis, day-to-day practitioners
and super-users or developers across the three fundamental
tasks of cell segmentation, cell classification and neighborhood
analysis (Table 1). Furthermore, deep learning networks are
available through online repositories such as github.com and
modelzoo.co. An exciting development is the recent set of
publications that have defined one-stop-shops for deep learning
models and accessible tools for using and training existing deep
learning networks (Iudin et al., 2016; Berg et al., 2019; Rasse
et al., 2020; Gómez-de-Mariscal et al., 2021; von Chamier et al.,
2021, p. 4). This includes the integration of segmentation tools
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with online repositories of trained deep learning networks that
can be easily downloaded and tested on cells and modalities of
interest. With this added accessibility, there is a risk of misuse
and possible abuse. However, the ease of reproducibility may
outweigh this risk.

CONCLUSION

The bioimaging community has recognized for decades
that image data is more than a picture. Mining imaging
data collected in the biomedical sciences has blossomed in
the past 20 years, pushed by advancements in multiplexed
tissue labeling, image capture technologies, computational
capacity, and machine learning. It will be exciting to see the
next developments in image analysis with machine learning
approaches. Perhaps we will witness: (1) a fully generalizable

multidimensional cell segmentation approach; (2) novel
approaches to cell-segmentation independent of pixelwise
classification (as with some FISH data), or (3) new models
of neighborhoods to characterize cellular microenvironments
and niches. Furthermore, with web-based repositories to share
datasets and tools that are suitable for all levels of expertise,
these and other developments will be accessible to both experts,
practitioners, and researchers new to imaging and image analysis.
The broad accessibility of image data and tools could facilitate
the adoption of common and rigorous processes for meaningful
biological insight from image datasets across fields of study for so
much more than a picture.
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