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Abstract
The current pharmacological treatment for Parkinson’s disease (PD) is focused on symptom alleviation rather than disease 
prevention. In this study, we look at a new strategy to neuroprotection that focuses on nutrition, by a supplementation 
with Açai berry in an experimental models of PD. Daily orally supplementation with Açai berry dissolved in saline at the 
dose of 500 mg/kg considerably reduced motor and non-motor symptom and neuronal cell death of the dopaminergic tract 
induced by 4 injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, Açai berry administration 
reduced α-synuclein aggregation in neurons, enhanced tyrosine hydroxylase and dopamine transporter activities, and avoided 
dopamine depletion. Moreover, Açai berry administration was able to reduce astrogliosis and microgliosis as well as neuronal 
death. Its beneficial effects could be due to its bioactive phytochemical components that are able to stimulate nuclear factor 
erythroid 2–related factor 2 (Nrf2) by counteracting the oxidative stress and neuroinflammation that are the basis of this 
neurodegenerative disease.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rological illness among those over the age of 65 [1]. The 
selective loss of dopamine (DA) neurons in the substantia 
nigra pars compacta (SNpc) and DA levels in the corpus 
striatum of the nigrostriatal DA pathway in the brain are 
linked to PD. Because of the loss of DA, the basal ganglia 
circuitries become dysregulated, resulting in motor symp-
toms including bradykinesia, resting tremor, stiffness, and 
postural instability, as well as non-motor symptoms like 
sleep difficulties, depression, and cognitive deficiencies 
[2]. The role of oxidative stress in the etiopathology of this 
illness is widely acknowledged. Increased quantities of oxi-
dized lipids, proteins, and DNA are seen in the SN of PD 
patients. Furthermore, in PD brains, levels of reduced glu-
tathione (GSH), the most common thiol-reducing agent, are 
much lower, indicating oxidative stress and nigral degenera-
tion [3]. Chronic neuroinflammation is another key source 
of ROS in PD patients. Proinflammatory cytokines build 
up in PD patients’ cerebrospinal fluid and are elevated in 
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postmortem brain samples and experimental models of the 
illness [4].

Despite advances in our understanding of the pathophysi-
ology of PD, recent research have shown that the Nrf2 (NF-
E2-related factor 2)/antioxidant responsive element (ARE) 
signaling cascade is the most potential target for therapeutic 
treatment [5].

It is a Cap’n’Collar transcription factor expressed in most 
brain cell types, including DAergic neurons, astroglia, and 
microglia, where it contributes to redox homeostasis by reg-
ulating the expression of antioxidant genes [6–8]. Several 
experimental evidence clearly imply that Nrf2 has a role in 
the neuroprotection of DAergic neurons. In fact, in parkinso-
nian SN DAergic neurons, Nrf2 translocates to the nucleus, 
but in normal age-matched controls, it stays cytosolic. This 
is seen as an attempt to keep ROS production under check 
[9, 10].

Because oxidative stress play a key role in the majority of 
instances of Parkinson’s disease, it is critical to comprehend 
the significance of diet in neuroprotection. Some foods have 
shown promise in lowering the incidence of Parkinson’s 
disease in recent epidemiological research [11]. The health 
advantages linked with the consumption of phytochemicals 
found in fruits and vegetables result in less functional loss as 
people age, which may help to halt the onset of Parkinson’s 
disease [12]. High consumption of fruits, vegetables, and 
fish was found to be inversely related to the risk of Parkin-
son’s disease in epidemiological research [13, 14].

Açai seeds have recently piqued the interest of scientists. 
Açai berry is a berry that has a wide range of nutritional 
characteristics as well as some medicinal potential. This sour 
and pleasant-tasting fruit comes from the Euterpe Oleracea 
palm, which is only found in the Amazon. The Açai fruit, 
which is considered a high-energy meal, has been used by 
Amazonian Indians for millennia as a food source and natu-
ral cure for a variety of ailments [15–23].

Because of the Açai berry’s high bioactivate nutritional 
and phytochemical content, its pulp has been widely studied. 
The composition of Açai berry pulp revealed that it includes 
a variety of physiologically active phytochemicals as well 
as large levels of mono- and polyunsaturated fatty acids do 
not present in most fruits and other berries. Açai pulp con-
tains phytochemicals such as anthocyanins, proanthocya-
nidins, and other flavonoids. Furthermore, phytochemical 
tests found that the Açai berry contains various forms of 
anthocyanins, including cyanidin, delphinidin, malvidin, 
pelargonidin, and peonidin, as well as a high concentration 
of luteolin, quercetin, dihydrokaempferol, and chrysoerial, 
among other polyphenolics. Carotenoids were found in Açai 
berry pulp in five different forms: carotene, lycopene, astax-
anthin, lutein, and zeaxanthin [24].

Açai berry extract and its bioactive content have 
a wide range of pharmacological effects, including 

anti-inflammatory, antioxidant, anticarcinogenic, and neu-
roprotective characteristics, according to a large body of 
research [25]. However, there is currently a scarcity of sci-
entific data to support the favorable neuroprotective effects. 
For this reason, we used a consolidated murine model of 
PD, to investigate the potential beneficial effects of Açai 
supplementation and the molecular way by which its acts.

Material and Methods

Animals

C57/BL6 mice (male 25–30 g, 8 weeks age old; Envigo, 
Italy) were accommodated in a controlled environment and 
equipped with standard rodent chow and water. The Uni-
versity of Messina Review Board for animal care (OPBA) 
approved the study. All animal experiments agree with the 
new Italian regulations (D.Lgs 2014/26), EU regulations 
(EU Directive 2010/63), and the ARRIVE guidelines.

Parkinson Disease Induction

Mice received four intraperitoneal injections of 20 mg/kg of 
MPTP (Sigma, St. Louis, MO) in saline at 2-h intervals in 
1 day, the entire dose per mouse being 80 mg/kg [26].

Experimental Groups

Mice were indiscriminately distributed to the following 
groups:

• Sham = vehicle solution (saline) was administered intra-
peritoneally during the 1st day, as for MPTP.

• Sham + Açai = same as the Sham group, but Açai berry 
(500 mg/kg) (dissolved in saline) was orally administered 
starting 24 h after the first vehicle solution injection and 
continuing through 7 additional days after the last injec-
tion of saline (data not shown).

• MPTP = MPTP was administered as described above plus 
administration of saline.

• MPTP + Açai = but Açai berry (500 mg/kg) (dissolved 
in saline) was orally administered starting 24 h after the 
first vehicle solution injection and continuing through 7 
additional days after the last injection of saline.

At the conclusion of the experiment, mice were sacrificed 
under anesthesia and the brain removed and fixed in 10% 
neutral-buffered formalin or stored at − 70 °C for biochemi-
cal and molecular analyses.
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Behavioral Testing

Behavioral assessments on each mouse were made 7 days 
after MPTP injection. Behavioral data analysis was per-
formed by observers who were unaware of the experimen-
tal groups.

• Pole test (PT): The PT was performed as previously 
described [27]. Briefly, mice are placed with their head 
upwards right below the top. Two parameters were 
assessed: time until the animal turned by 180°, and 
total time until the animal descended to the floor [27].

• Rotarod test (RT): Motor activity was assessed with 
rotary rod apparatus using a protocol previously 
described [28, 29]. In brief, after the training sessions, 
animal was placed back on the drum immediately after 
falling up to five times in one session.

• Balance beam walking (BBW): The mice were placed to 
a batten and enticed to cross a timber balancing beam 
with food [30]. If the mouse slid off, the test was halted 
and restarted. The time it took a mouse to cross the 
balancing beam successfully was recorded.

• Grid walking (GW): The grid walking test was used 
to assess the sensorimotor coordination of mice’s 
hindlimbs. When a paw totally failed to hold a rung, 
an independent experimenter tallied the number of 
hindlimb slides. The average of the foot slips was used 
for analysis after each experiment was done three times 
[30].

• Cylinder test (CiT): When mice are maintained in a new 
transparent cylinder, they investigate by moving around 
and elevating their bodies to contact the cylinder walls 
with their forelimbs; this is known as rearing. Before 
another rearing, we only counted when the mouse ele-
vated both forelimbs above shoulder level and removed 
both forelimbs from the cylinder [31].

• Catalepsy test (CaT): Catalepsy, demarcated as a reduced 
capability to start movement and a failure to correct pos-
ture, was measured as previously described [32, 33]. In 
particular, after the training the length of time the mice 
maintained this position was recorded.

• Elevated plus-maze test (EPM): EPM was performed as 
previously described [34, 35]. The EPM test was per-
formed to evaluated the anxiety state as described pre-
viously [35, 36]. Briefly, after the training session, the 
number of entries into each arm and the number of cross-
ings were recorded.

• Open field test (OFT): Locomotor activity and anxiety-
like behavior were monitored by the OFT. After a train-
ing session, each mouse was gently placed in the center 
of the box, and activity was scored as a line crossing 
when a mouse removed all four paws from one square 
and entered another [37, 38].

• Tail suspension test (TST): The tail suspension test is a 
desperation-based test that measures how long animals 
remain immobile after being subjected to inexorable con-
ditions. Mice were only considered immobile when they 
were fully still [39].

• Forced swimming test (FST): The duration of floating 
(i.e., the time during which the mice made just the mod-
est movements required to keep their heads above water) 
was scored after each mouse was gently placed in the 
cylinder for 6 min as previously described [40, 41].

• Von Frey test (VFT): When the paw was inadvert-
ently contacted with von Frey filament, each mouse 
was watched for paw withdrawal reflex as previously 
described [42].

• Tail-flick test (TFT): When each mouse’s tail was dipped 
in a water bath kept at a constant temperature (53 °C), 
a tail flick response was observed. The experiment was 
videotaped, and the animal’s reaction time (tail flick) was 
recorded [42].

Histology

Brain sections were stained with hematoxylin/eosin (H/E) 
and studied under light microscopy connected to an imaging 
system Leica DM6 microscope (Leica Microsystems SpA, 
Milan, Italy) with Leica LAS X Navigator software (Leica 
Microsystems SpA). [43]. Histological assessment was made 
by a blinded observer, and slides were scored for severity of 
pathological profiles after H/E staining using a semiquantita-
tive 5-point rating scale, as previously described by [43–47].

Western Blot Analysis of IκBα, GFAP, Iba‑1, Nrf2, 
HO‑1, NF‑κB p65, Bax, Bcl‑2, β‑Actin, and Lamin A/C

Western blot analysis was performed as previously described 
[48–53]. The following primary antibodies were used: IκBα 
(1–500 Santa Cruz Biotechnology, Heidelberg, Germany 
#sc1643), glial fibrillary acidic protein (GFAP) (1–500 
Santa Cruz Biotechnology, Heidelberg, Germany #sc33673), 
Iba-1 (1–500 Santa Cruz Biotechnology, Heidelberg, Ger-
many #sc32725), Nrf2 (1–500, Santa Cruz Biotechnology, 
Heidelberg, Germany, #sc-365949), anti-heme oxygenase 
1 (HO-1) (1–500, Santa Cruz Biotechnology, Heidelberg, 
Germany, #sc-136960), nuclear factor-kappaB (NF-κB) 
p65 (1–500, Santa Cruz Biotechnology, #sc8414), Bax 
(1–500 Santa Cruz Biotechnology, Heidelberg, Germany 
#sc20067), and Bcl-2 anti-Bcl-2 (1–500, Santa Cruz Bio-
technology, Heidelberg, Germany, #sc7382) at 4 °C over-
night in 1 × PBS, 5% (w/v), non-fat dried milk, and 0.1% 
Tween-20. For the cytosolic fraction, Western blots were 
also explored with antibody against β-actin protein (1:500, 
Santa Cruz Biotechnology, Dallas, TX, USA). The same 
methods were used for nuclear fraction with lamin A/C 
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(1:500, Sigma-Aldrich Corp., Milan, Italy) [45, 54]. Signals 
were examined with an enhanced chemiluminescence (ECL) 
detection system reagent, according to the manufacturer’s 
instructions (Thermo, Monza, Italy). The relative expression 
of the protein bands was quantified by densitometry with 
BIORAD ChemiDocTM  XRS+ software [55–59].

Immunohistochemical Localization of TH, Dopamine 
Transporter (DAT), α‑Synuclein, GFAP, and Iba‑1

The immunohistochemical techniques used have been previ-
ously described [52, 58, 60]. Slices were incubated overnight 
with one of the following primary antibodies (specific for 
each whether polyclonal or monoclonal): anti-TH (Millipore, 
1:500 in PBS, v/v), anti-DAT (Santa Cruz Biotechnology, 
1:300 in PBS, v/v), anti-α-syn (Santa Cruz Biotechnology, 
1:50 in PBS, v/v), anti-Iba-1 (Santa Cruz Biotechnology, 
1:300 in PBS, v/v), and anti-GFAP (Santa Cruz Biotechnol-
ogy; 1:200 in PBS, v/v). Immunohistochemical images were 
collected using Leica DM6 (Milan, Italy) associated with an 
Imaging system (LasX Navigator, Milan, Italy). The digital 
images were opened in ImageJ, followed by IHC profiler 
plug-in. All immunohistochemical analyses were carried out 
by two observers blinded to the treatment [29, 54, 61–63].

Immunofluorescence Co‑localization of TH/α‑syn

Sections were incubated with the following primary anti-
bodies: polyclonal anti-TH (1:250; Merck-Millipore) and 
monoclonal anti-α-syn (1:50; Santa Cruz Biotechnology) as 
previously described [51]. Sections were washed with PBS 
and were incubated with secondary antibody TEXAS RED-
conjugated anti-rabbit Alexa Fluor-594 antibody (1:1000 in 
PBS, v/v Molecular Probes, UK) and with FITC-conjugated 
anti-mouse Alexa Fluor-488 antibody (1:2000 v/v Molecu-
lar Probes, UK) for 1 h at 37 °C. Sections were rinsed and 
stained for nuclear signal with 4′,6′-diamidino-2-phenylin-
dole (DAPI; Hoechst, Frankfurt; Germany) 2 μg/ml in PBS. 
Sections were observed and photographed at × 100 magni-
fication using a Leica DM2000 microscope.

Tunel Staining

TUNEL staining protocol was according to a Roche pro-
tocol as previously described [45, 64–66]. Tunel staining 
was also incubated with anti-TH (1:250; Merck-Millipore) 
and FITC-conjugated anti-mouse Alexa Fluor-488 antibody 
(1:2000 v/v Molecular Probes, UK) for 1 h at 37 °C and then 
observed with Leica DM6 (Milan, Italy) associated with an 
Imaging system (LasX Navigator, Milan, Italy).

Cytokine Measurement

TNF-α, IL-1β, and IL-6 levels were measured as previously 
described using a commercially available enzyme-linked 
immunosorbent assay (ELISA) (R&D Systems, Minneapo-
lis, MN, USA) kits according to the manufacturer’s instruc-
tions [67].

Myeloperoxidase and Malondialdehyde 
Measurement

MPO activity, an index of neutrophilic granulocyte infiltra-
tion, was evaluated as previously described and expressed 
as U/mg of tissue [52]. Lipid peroxidation were assessed 
with malonaldehyde as previously described and expressed 
as nmol/mg of proteins [68].

Oxidative Stress and Antioxidant Defense

SOD, CAT, GPX, and GPx in the brain tissues were inves-
tigated as previously described [69, 70]. ROS content was 
measured using commercial kits according to manufacturer 
guidelines [71].

Materials

Unless otherwise stated, all compounds were obtained from 
Sigma-Aldrich.

Statistical Evaluation

In this study, the data are expressed as the average ± SEM 
and represent at least 3 experiments carried out in different 
days. For in vivo studies, N represents the number of ani-
mals used. The number of animals used for in vivo studies 
was carried out by G*Power 3.1 software (Die Heinrich-
Heine-Universität Düsseldorf, Düsseldorf, Germany). Data 
were analyzed by an experienced histopathologist, and all 
the studies were performed without knowledge of the treat-
ments. The results were analyzed by one-way ANOVA fol-
lowed by a Bonferroni post hoc test for multiple compari-
sons. A p value less than 0.05 was considered significant.

Results

Açai Supplementation Reduces Both Motor 
and Non‑motor Deficits

The most known symptoms that unfortunately afflict people 
with Parkinson’s are represented by motor alterations [72]. 
For this reason, we investigated by different behavioral test 
such as pole test (Fig. 1A and B), rotarod test (Fig. 1C and 
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D), balance beam walking (Fig. 1E), grid walking (Fig. 1F), 
cylinder test (Fig. 1G), and catalepsy test (Fig. 1H) motor 
alteration MPTP-induced. Animals subjected to MPTP 
induction showed significantly motor alteration such as an 
increasing in the time spent on pole to as well as an increase 
in time spent on the rotarod apparatus and an increase in the 
time spent to reach the goal or to explore the space. After 
the daily oral administration with Açai we registered a sig-
nificantly decrease in this alteration and an almost return 
to the physiological conditions of the animal. PD can also 
be considered a neuropsychiatric disorder [73]. Several 
neuropsychiatric symptoms are in fact related to emotional 
and cognitive problems [74]. Also, in this case, we inves-
tigated behavioral alteration with a series of tests useful to 
investigated anxiety, depression and pain. In particular, we 
used elevated plus maze test (Fig. 2A and B), open field 
test (Fig. 2C and D), tail suspension test (Fig. 2E), forced-
swimming test (Fig. 2F), Von Frey test (Fig. 2G), and tail-
flick test (Fig. 2H). As supposed, we found a significantly 
mood alterations after MPTP induction with an increase in 
anxiety and depression state and a reduction in nociceptive 
stimuli. Açai administration was able to reduce behavioral 
alterations restoring also nociceptive sensitivity.

Açai Berry Limits Histological Alteration 
MPTP‑Induced

At the end of the experiment, brain samples were collected 
and stained for hematoxylin/eosin. Section of brain from 

the control group showing normal parenchymal and neurons 
(Fig. 3A and see relative histological score in Fig. 3D). Brain 
slices from MPTP group significantly showing alteration in 
brain tissue and a reduction in neuronal number (Fig. 3B and 
see relative histological score in Fig. 3D). Açai daily admin-
istration showing a marked reduction of degeneration and an 
increased number of SNpc neurons (Fig. 3C and see relative 
histological injury score in Fig. 3D). Additionally, we evalu-
ated the decrease in body weight MPTP-induced. As shown 
in Fig. 3E, we observed a significantly reduction in body 
weight loss after 7 days of Açai administration.

Açai Supplementation Restores TH and DAT Loss 
MPTP‑Induced

We assessed the degree of midbrain neuronal cell degen-
eration in terms of loss of  TH+ in the substantia nigra and 
modification of DAT levels in the striatum because its well 
know that TH activity and DA levels are lowered in PD 
brain [51]. When MPTP-injected mice (Fig. 4B and F, see 
respectively densitometric analysis in Fig. 4D and H) were 
compared to sham mice (Fig. 4A and E, see respectively 
densitometric analysis in Fig. 4D and H), immunohisto-
chemical examination revealed a clear decrease in terms of 
TH and DAT expression. Açai administration at the dose of 
500 mg/kg for 7 days considerably restored TH and DAT 
levels (Fig. 4C and G, see respectively densitometric analy-
sis in Fig. 4D and H).

Fig. 1  Açai supplementation reduces motor deficits. Total time (A) 
and time to turn (B) on pole test; time (C) and number of falls (D) 
on rotarod test; balance beam walking (E); number of foot on grid 

walking (F); cylinder test (G) and catalepsy test (H). See manuscript 
for further details. Values are means ± SEM of 6 mice for all group. 
***p < 0.001 vs. sham; ###p < 0.001 vs. MPTP
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Açai Berry Reduce α‑Syn Aggregation

The Lewy body contains a lot of misfolded α-syn [75]. In 
comparison to sham animals (Fig. 5A and densitometric 

analysis in Fig. 5D), MPTP injection resulted in a large 
increase in α-syn accumulation (Fig. 5B and densitometric 
analysis in Fig. 5D). On the other hand, Açai administra-
tion was able to reduce the accumulation of misfolded α-syn 

Fig. 2  Açai supplementation reduces non motor deficits. Time in 
open arm (A) and number of crossing (B) during elevated plus maze 
test; number of line crossing (C) and number of rearing (D); tail 
suspension test (E); forced swimming test (F); latency during von 

Frey test (G) and latency during tail flick test (H). See manuscript 
for further details. Values are means ± SEM of 6 mice for all group. 
***p < 0.001 vs. sham; ###p < 0.001 vs. MPTP

Fig. 3  Açai berry limits histological alteration MPTP-induced. Brain 
section stained with H/E of Sham (A), MPTP (B), and MPTP + Açai 
(C); histological score (D); percentual in body weight changes (E). 

Scale bar 100  μm represents 20 × magnification. See manuscript 
for further details. Values are means ± SEM of 6 mice for all group. 
***p < 0.001 vs. sham; ###p < 0.001 vs. MPTP

6524 Molecular Neurobiology (2022) 59:6519–6533
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(Fig. 5C and densitometric analysis in Fig. 5D). To better 
appreciate misfolded α-syn aggregation in dopaminergic 
neurons, we made immunofluorescence co-localization. We 
did not find any positive co-localization in sham animals 
(Fig. 5E and densitometric analysis in Fig. 5H), whereas 
MPTP injection resulted in a significantly α-syn accumu-
lation in dopaminergic neurons (Fig. 5F and densitomet-
ric analysis in Fig. 5H). Açai administration significantly 

reduced the accumulation α-syn in dopaminergic neurons 
(Fig. 5G and densitometric analysis in Fig. 5H).

Açai Supplementation Counteracts Astrogliosis 
and Microgliosis

While glia and astrocytes are required for maintain-
ing homeostasis in the healthy brain, their malfunction 

Fig. 4  Açai supplementation restores TH and DAT loss MPTP-
induced. Immunohistochemical localization of TH and DAT in brain 
section of Sham (A and E), MPTP (B and F) and MPTP + Açai (C 
and G); quantification of positive pixel of  TH+ (D) and  DAT+ (H). 

See manuscript for further details. Scale bar 100  μm represents 
20 × magnification. Scale bar 250  μm represents 10 × magnification. 
Values are means ± SEM of 6 mice for all group. ***p < 0.001 vs. 
sham; ###p < 0.001 vs. MPTP

Fig. 5  Açai berry reduce α-syn aggregation. Immunohistochemical 
localization of α-syn in brain section of Sham (A), MPTP (B), and 
MPTP + Açai (C); quantification of positive pixel of α-syn+ (D). 
Immunofluorescence co-localization on TH/α-syn in brain section 
of Sham (E), MPTP (F), and MPTP + Açai (G); number of positive 

cells/field (H). Yellow arrow indicates the expression of both mark-
ers. See manuscript for further details. Scale bar 75  μm represents 
40 × magnification. Scale bar 25  μm represents 100 × magnification. 
Values are means ± SEM of 6 mice for all group. ***p < 0.001 vs. 
sham; ###p < 0.001 vs. MPTP
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contributes to neurodegeneration in a variety of illnesses, 
including PD. By western blots and immunohistochemi-
cal staining we investigates the expression of GFAP and 
Iba-1, well know markers of astrocytosyis and microglio-
sys. We notice that after MPTP induction, there were a 
significant increase in both GFAP (see Fig. 6A and rela-
tive densitometric analysis in Fig. 6A1 for western blot 
and Fig. 6D and relative densitometric analysis in 6F for 
immunohistochemical) and Iba-1 (see Fig. 6B and relative 
densitometric analysis in Fig. 6B1 for western blot and 
Fig. 6H and relative densitometric analysis in Fig. 6J for 
immunohistochemical) expressions compared to sham 
animals (see Fig. 6A and relative densitometric analysis 
in Fig. 6A1 for western blot and Fig. 6G and relative den-
sitometric analysis in Fig. 6F for immunohistochemical 
of GFAP; Fig. 6B and relative densitometric analysis in 
Fig. 6B1 for western blot and Fig. 6G and relative densi-
tometric analysis in Fig. 6J for immunohistochemical of 
Iba-1). Daily administration of Açai at the dose of 500 mg/
kg significantly reduce both expressions (see Fig. 6A and 
relative densitometric analysis in Fig. 6A1 for western 
blot and Fig. 6E and relative densitometric analysis in 
Fig. 6F for immunohistochemical of GFAP; Fig. 6B and 

relative densitometric analysis in Fig. 6B1 for western 
blot and Fig. 6I and relative densitometric analysis in 
Fig. 6J for immunohistochemical of Iba-1).

Açai Berry Reduces Proinflammatory Cytokine 
Release, Neutrophilic Infilitration, and Lipid 
Peroxidation

MPTP triggers an inflammatory response that aids in the 
progression of neurodegeneration. The proinflammatory 
cytokines TNF-α, IL-1β, and IL-6 are produced by astro-
cytes and glia [76]. By ELISA kit, we investigated brain 
release of proinflammartory cytokines and we found a sig-
nificantly increase in TNF-α (Fig. 7A), IL-1β (Fig. 7B), and 
IL-6 (Fig. 7C) after MPTP induction compared to sham 
group. As supposed, we found a significantly decrease after 
Daily administration of Açai. MPO and MDA levels in brain 
tissue have been found to be elevated in numerous neurode-
generative diseases [77, 78]. In accordance with the bibliog-
raphy, we found a significantly increase in MPO and MDA 
levels after MPTP induction (Fig. 7D) compared to control 
group. On the other hand, Açai considerably decreases both.

Fig. 6  Açai supplementation counteract astrogliosis and micro-
gliosis. Western blots and relative densitometric analysis of GFAP 
(A and A1) and Iba-1 (B and B1). Immunohistochemical locali-
zation of GFAP and Iba-1 in brain section of Sham (C and G), 
MPTP (D and H), and MPTP + Açai (E and I); quantification of 

positive pixel of  GFAP+ (F) and Iba-1+ (J). See manuscript for 
further details. Scale bar 25  μm represents 100 × magnification. 
Values are means ± SEM of 6 mice for all group. ***p < 0.001 vs. 
sham; ###p < 0.001 vs. MPTP
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Açai Supplementation Improves Antioxidant 
Defense

In PD, oxidative stress plays a key role in the cascade that 
leads to dopamine cell destruction [79]. We investigated the 
oxidative stress by the analysis of ROS and antioxidant sys-
tem, and we found that after MPTP induction, there were 
an increase in ROS production (Fig. 8A) and a decrease 
in Nrf-2 (Fig. 8B and relative densitometric analysis in 
Fig. 8B1) pathways as well as in HO-1 (Fig. 8C and relative 
densitometric analysis in Fig. 8C1), SOD (Fig. 8D), CAT 
(Fig. 8E), GPx (Fig. 8F), and GSH (Fig. 8G) compared to 
sham group. Açai administration 500 mg/kg significantly 
improve physiological antioxidant defense decreasing ROS 
production.

Açai Berry Limits Dopaminergic Neuronal Death

By western blot and colocalization TH/TUNEL, we 
investigated neuronal death. We found that after Açai 
administration, there were a significant increase in Bcl-2 
expression (Fig. 9A and relavive densitometric analysis 
in Fig. 9A1) as well as a considerably decrease in Bax 
expression (Fig. 9B and relavive densitometric analysis 
in Fig.  9B1) compared to MPTP group. To investigate 
in particular dopaminergic death, we analyzed TUNEL 

and TH expression and we found that MPTP significantly 
induce dopaminergic death (Fig. 9D and apoptotic index 
in Fig. 9F) compared to sham group (Fig. 9C and apoptotic 
index in Fig. 9F), whereas Açai at the dose of 500 mg/kg 
considerably reduces  TH+ cell death.

Discussions

PD is the most prevalent neurological movement disorder, 
with a global frequency of 0.1% and a prevalence of 3% 
in those over 65. After the loss of > 50% of dopaminergic 
(DAergic) neurons in the substantia nigra (SN) pars com-
pacta and > 80% drop in DA levels in the striatum, motor 
symptoms such as bradykinesia, tremor, and stiffness appear. 
In addition, psychological comorbidities such as depression 
and anxiety are frequent in people with Parkinson’s disease, 
and they lead to considerable functional impairment as well 
as poor motor and social performance. This results in a 
lower quality of life and a greater strain on caregivers [80, 
81]. Mood disorders are frequently misdiagnosed because 
their symptoms coincide with the cognitive and motor 
aspects of Parkinson's disease. As a result, early diagnosis 
and treatment for anxiety and depression are critical in the 
treatment of PD [82, 83]. The buildup of α-synuclein-rich 
protein aggregates, known as Lewy bodies, and a rise in 

Fig. 7  Açai berry reduce proinflammatory cytokine release, neutro-
philic infilitration, and lipid peroxidation. ELISA quantification for 
TNF-α (A), IL-1β (B) and IL-6 (C) MPO quantification (D), and 

lipid peroxidation (E). See manuscript for further details. Values 
are means ± SEM of 6 mice for all group. ***p < 0.001 vs. sham; 
###p < 0.001 vs. MPTP
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Fig. 8  Açai supplementation improve antioxidant defense. ROS 
content (A); Western blots and relative densitometric analysis 
of Nrf-2 (B and B1) and HO-1 (C and C1); SOD (D); CAT(E); 

GPx (F) and GSH (G). See manuscript for further details. Values 
are means ± SEM of 6 mice for all group. ***p < 0.001 vs. sham; 
###p < 0.001 vs. MPTP

Fig. 9  Açai Berry limits dopaminergic neuronal death. Western blots 
and relative densitometric analysis of Bcl-2 (A and A1) and Bax (B 
and B1); Immunofluorescence co-localization of TH/TUNEL in brain 
section of Sham (C), MPTP (D) and MPTP + Açai (E); apoptosis 

index expressed in percentual (F). See manuscript for further details. 
Values are means ± SEM of 6 mice for all group. ***p < 0.001 vs. 
sham; ###p < 0.001 vs. MPTP
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the neuroinflammatory indicators of microgliosis and astro-
gliosis are the well know anatomopathological hallmarks 
of the illness [3]. Replacement of striatal DA is the focus 
of current pharmaceutical treatment. Levodopa crosses the 
blood–brain barrier and enters the presynaptic neurons via 
the DA transporter (DAT), where it is converted to DA and 
stored in vesicles. For decades, these medications, alone or 
in conjunction with pharmaceuticals that affect cholinergic 
modulation, have been of great help to most PD patients. 
However, while these methods alleviate motor symptoms, 
it is unclear if they aid in slowing the disease’s course [84]. 
Stopping the chain of events that leads to the development 
of PD is undoubtedly a major problem that necessitates a 
neuroprotective strategy to maintain the DAergic neurons 
that are still viable in the newly diagnosed patient alive and 
functional. To make progress in this area, a greater under-
standing of PD etiopathology is required, followed by the 
identification of molecular targets that might support the 
development of a neuroprotective medication in the clinic. 
Although there is no single cause of Parkinson’s disease, 
evidence from sporadic and familial cases, as well as chemi-
cal and genetic animal models, clearly shows that oxidative 
stress plays a key role in the illness’s onset and development. 
As a result, pharmaceutical intervention, whether or not to 
alleviate or counteract excessive ROS generation, might 
become a novel neuroprotective technique [2].

There is now a variety of early research suggesting that 
some foods may slow the course of Parkinson’s disease. 
These findings are not surprising, given that nutrients 
inf luence mitochondrial energy function and offer 
important antioxidant capabilities that reduce oxidative 
phosphorylation's free radical byproducts. Increased 
oxidative stress from a poor diet may compromise 
the antioxidant defense system. A well-balanced diet 
rich in a range of nutrients, such as several servings of 
vegetables and fruits, moderate doses of omega-3 fatty 
acids, tea, coffee, and wine, on the other hand, may give 
neuroprotection [11, 85]. The new food, generally known 
as “Açai,” is a berry native to South America that belongs 
to the Euterpe genus of tropical palm plants. Scientists 
have been studying Euterpe oleracea because of its high 
antioxidant content when compared to other fruits and 
berries. Açai pulp composition research also revealed that 
it includes several physiologically active phytochemicals. 
Açai berries have been shown to have neuroprotective 
qualities in a number of studies [24]. Many of these 
diseases are multifactorial, resulting from a combination 
of aging, genetic disorders, and exposure to one or more 
environmental factors, which cause oxidative stress, 
chronic neuroinflammation, excitotoxicity, mitochondrial 
dysfunction, and irregular protein accumulation in brain 
tissues, among other cellular etiologies. Experiments 
showed that Açai berry extracts provide neuroprotection 

by exhibiting antioxidant and anti-inf lammatory 
properties, suppressing harmful protein aggregation, and 
restoring calcium homeostasis and mitochondrial function, 
among other things. Açai fruit also has antidepressant 
and anticonvulsant properties, which might be useful to 
persons with these neurodisorders [86–93]. With this aim 
in our mind, we used a consolidated murine model of PD 
to investigates beneficial effects of Açai supplementation 
in behavioural disorders as well as against astrogliosis and 
microgliosis, oxidative stress and apoptosis.

In our study using different behavioral tests, we found that 
Açai supplementation was in grade to reduces both motor 
and non motor deficits limiting axiety and depression state 
as well as tremor, bradikynesia and stiffness. Additionally, 
we found that that Açai berry supplementation at the dose of 
500 mg/kg administred daily limits histological alteration in 
the substantia nigra MPTP-induced restoring TH and DAT 
expression as well as was able to reduce α-syn aggregation.

In accordance with the bibliography, we found that Açai 
berry supplementation was able to counteract astroglio-
sis and microgliosis as well as proinflammatory cytokine 
release, neutrophilic infilitration and lipid peroxidation. 
These beneficial effects are probably due to effects that 
Açai berry showing on physiological anti oxidant defence. 
We found that Açai Berry supplementation at the dose of 
500 mg/kg administred daily significantly improve Nrf-2 
expression as well as HO-1, SOD, CAT, GPx, and GSH 
reducing oxidative stress general state.

The improvement of anti oxidant defence was also 
reflected in the reduction of neuronal death with particular 
attention on dopaminergic death. In conclusion with 
our work, we confirmed that diet is the best medicine in 
several disorders, including neurodegenerative disease 
and in particular we demonstrated for the first time that 
Açai berry supplementation at the dose of 500 mg/kg was 
useful to counteract the neuroinflammatory and oxidative 
events characteristic of the PD, limiting neuronal death and 
improving physiological antioxidant defense.
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