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This study investigates the effect of tone inventories on brain activities underlying pitch without focal attention. We find that the
electrophysiological responses to across-category stimuli are larger than those to within-category stimuli when the pitch contours
are superimposed on nonspeech stimuli; however, there is no electrophysiological response difference associated with category
status in speech stimuli. Moreover, this category effect in nonspeech stimuli is stronger for Cantonese speakers. Results of previous
and present studies lead us to conclude that brain activities to the same native lexical tone contrasts are modulated by speakers’
language experiences not only in active phonological processing but also in automatic feature detection without focal attention. In
contrast to the condition with focal attention, where phonological processing is stronger for speech stimuli, the feature detection
(pitch contours in this study) without focal attention as shaped by language background is superior in relatively regular stimuli,
that is, the nonspeech stimuli. The results suggest that Cantonese listeners outperform Mandarin listeners in automatic detection
of pitch features because of the denser Cantonese tone system.

1. Introduction

Pitch perception is very important for tone languages, which
utilize pitch patterns to distinguish lexical meanings. For
example, in Mandarin, a tone language, the same segmental
syllable /ma/ means “mother” when produced with a high
level pitch contour but means “hemp” when produced with
a high rising pitch contour [1]. Tone languages usually have
different tone inventories. For example, Mandarin has four
lexical tones; Cantonese, another tone language, has six
lexical tones. The language backgrounds not only influence
the perception of pitches in speech [2, 3] but also generalize
to nonspeech processing under certain stimulus and task
conditions [3, 4]. Recently, many efforts have been devoted

to studying the neural bases of language influence on pitch
perception under various conditions regarding the types of
stimulus and task. Electrophysiological signals, which can
reflect neural activity involved in cognitive processing at
various levels, are widely used to explore how the brain
processes language, for example, at long-termmemory traces
level [5], at semantic memory level [6], and at syntactic
grammatical level [7], and so forth.

Before the pitch signal is transmitted to the cortex level,
the frequency following responses (FFR) of pitch at the
brainstem have been shown to be sensitive to language-
relevant aspects of pitch contours but not specific to speech
[8]. To record FFR at the brainstem, subjects do not need
to pay attention to the stimuli. Moreover, the information of
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lexical item has not been fully retrieved.Therefore, brainstem
responses to pitch contours carried by speech sound do not
differ from those carried by nonspeech sound [9]. On the
other hand, when subjects pay attention to the incoming
stimuli, the information of lexical item gets fully processed.
Therefore, pitch perception differs in speech and nonspeech
[8]. For example, brain imaging data have pinpointed distinct
brain regions in response to pitch contours superimposed
on linguistic (pseudoword) and nonlinguistic (hum) carriers
[10].This brain imaging finding is consistentwith behavioural
results [11], which show selective enhancement of pitch
discrimination in speech context for native tone language
speakers. This enhancement may result from the phonologi-
cal processing, which can be indexed by a late positive event-
related potential (ERP) component, P300, which is usually
recorded with focal attention [12, 13].

The phonological processing of pitch contours was inves-
tigated in the study of [13] through a 2 × 2 × 2 design
on category status (within versus across-category), context
type (speech versus nonspeech), and the tone inventories
(Mandarin versus Cantonese). In the study, the enhancement
of P300 amplitude from across-category stimuli is more
obvious in speech stimuli than in nonspeech stimuli. More
interestingly, this selective enhancement of pitch discrimina-
tion in speech context is statistically significant by Cantonese
speakers but not byMandarin speakers.The authors attribute
this finding to the influence of different tone inventories in the
two language systems. Mandarin tones tend to be produced
distinctly from each other, allowing theMandarin speakers to
discriminate them readily.On the other hand, the tone system
of Cantonese is acoustically denser than that of Mandarin
and there is significant overlap in pitch height and slope for
the Cantonese tones. The denser tone system might require
the Cantonese speakers to make finer distinctions in pitch
height and slope in order to discriminate certain tones than
the Mandarin speakers.

Although the study compared different conditions involv-
ing the category status and context type, it did not com-
pare different levels of attention. Therefore, it is not clear
whether the observed group difference stems from the
explicit category information (lexical items distinguished by
pitch contours) only, which often requires focal attention to
do online judgment, or also from automatic feature detection
which can be done even without focal attention. In the
oddball paradigm, the brain must form a representation
of the repeated auditory stimulus before the occurrence of
a deviant stimulus, regardless of attention [14]. However,
depending on the status (absence or presence) of subjects’
focal attention, the oddball paradigm will elicit different ERP
components, indexing distinctive stages of brain processing.
P300, which may index the phonological processing, often
is elicited with subjects’ focal attention. On the other hand,
other ERP components (e.g., MMN, mismatch component
[15]), which are elicited without subject’s attention,may index
the automatic feature detection.

In the present experiment, we examine native Mandarin
and Cantonese subjects’ electrophysiological responses to the
same set of speech and nonspeech tonal stimuli as those
used in [13]. Subjects are instructed to ignore these stimuli

presented in the oddball paradigm. Specifically, three ques-
tions will be investigated: (1) whether or not the automatic
detection of across-category deviant is easier than that of
within-category deviant, (2) whether or not the difference in
brain responses which exists between two types of deviants
differs in speech and nonspeech contexts, and (3) whether or
not Cantonese andMandarin speakers performdifferently on
the same set of stimuli.

2. Materials and Methods

2.1. Participants. Fifteen native Mandarin speakers (7 F; age:
22.7 ± 2.2) and fifteen native Hong Kong Cantonese speakers
(7 F; age: 21.6 ± 2.2), with normal hearing and no reported
history of neurological illness, were paid to participate in
the experiment. All subjects were right-handed university
students. Before the age of seven, no subject of either group
had learned the first language of the other group or received
musical training. Approval to conduct the experiment was
obtained from the Survey and Behavioural Research Ethics
Committee of the Chinese University of Hong Kong.

2.2. Stimuli. This study includes two sets of stimuli, speech
syllable /i/ and nonspeech complex tone. Each set included
three stimuli drawn from a continuum of eleven stimuli, that
is, a within-category deviant (stimulus number 1), a standard
(number 4), and an across-category deviant (number 7).

The eleven speech stimuli, each of duration 500 ms, were
synthesized from the Tone 1 syllable /i/ uttered by a native
Mandarin speaker with the pitch contours manipulated as
illustrated in Figure 1(a). End points of this pitch continuum
formed bilinear approximations of the high-level (Tone 1)
and rising tones (Tone 2) in both Mandarin and Cantonese.
The category boundary was determined based on the iden-
tification test, and the naturalness rating for the synthesized
stimuli obtained fromMandarin andCantonese speakers was
comparable [3, 13]. Eleven additional nonspeech stimuli were
synthesized from a complex tone (saw wave) with the same
pitch contours as the speech stimuli. Loudness of the two sets
of stimuli was comparable and the intensity envelopes of the
two stimulus sets were closely matched.

2.3. Procedure. The stimuli (Figure 1(a)) were presented in
an oddball paradigm. 1200 trials of each stimulus set (80%
standards and 10% for each type of deviant; 500ms inter-
stimulus interval, ISI) were pseudorandomized, with at least
two standards preceding each deviant. Two stimulus sets
(i.e., speech and nonspeech) were presented in counter-
balanced order. All stimuli were presented binaurally to
subjects via a pair of E⋅A⋅RTone 3A insert earphones. Subjects
sat in an acoustically shielded booth and were instructed
to watch a self-selected muted movie with subtitles while
ignoring the sound stimuli. Throughout the experiment,
electroencephalographic data were recorded using a 32-
channel ActiveTwo Biosemi EEG system. Fp1, Fp2, and two
additional channels attached near the outer canthus of each
eye were used to monitor artifacts due to eye activities.
Moreover, two additional channels attached at each mastoid
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Figure 1: Pitch contours of stimuli, number 1 within-category deviant, number 4 standard, and number 7 across-category deviant (a). ERPs
for standard (averaged over two language groups and two types of context), deviants (averaged over two language groups, two types of context,
and two types of deviants), and the difference wave between deviants and standard on Fz (b). Topographic distribution of early mismatch
component (250–350ms) and late mismatch component (500–700ms) (c).

were used as references. The recordings were digitized at a
rate of 1024Hz.

After the EEG recordings, a behavioural same/different
discrimination posttest with the stimulus pairs 1–4, 4–1, 4–
7, and 7–4 in both contexts was conducted to confirm the
categorical status of these stimuli. In this task, subjects were
instructed to discriminate whether a pair of stimuli (500ms
ISI) were the same or not by pressing one of the two buttons
within 3 s. Seven repetitions of each pair were presented to
subjects in separate blocks. Results from one extra practice
block were excluded from the analysis.

2.4. Data Analysis. Each comparison unit was comprised of
all trials in four types of comparisons (AB, BA, AA, and BB).
Discrimination response (D hereafter) for each comparison
unit is defined by percentage of correct responses from both
the same and the different pairs (see also [16, 17]).

The EEG recordings were re-referenced offline against
average-mastoid, and 0.5–30Hz band-pass was filtered. ERPs
were 900ms in duration with a 100ms prestimulus baseline
obtained from each condition and each subject. Trials with
ocular artifacts were excluded from averaging. Mismatch
components (MC) were obtained by subtracting the ERP
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of the standard from that of each type of deviant. Two
negative components were determined from the maximal
negativity of the grand-averaged difference waves across all
experimental conditions (see Figure 1(b)). Eight frontal cen-
tral electrodes—F3, Fz, F4, C3, Cz, C4, FC1, and FC2—were
selected according to the region of interest and confirmed by
the topographic distributionmaps (see Figure 1(c)).TheERPs
of temporal electrodes (FC5, FC6, T7, and T8) were too weak
to get any significant effect. Therefore, no further analyses
were applied on them. The early MC and late MC, with
width of 60ms and 100ms, were centred on the individual
peak within the negative deflection window judged from
the grand-averaged difference wave at 200–350ms and 400–
700ms, respectively.

Three-way mixed design repeated-measures analysis of
variance (MANOVA) was carried out on the behavioural
and electrophysiological responses. Two within-subject fac-
tors were context (speech versus nonspeech) and cate-
gory (across-category versus within-category). One between-
subjects factor was language (Mandarin versus Cantonese).
The dependent variable in the behavioural responses was
D, while the dependent variables in ERP were mean
amplitude and peak latency from the early and late MC,
respectively.

The 𝑃 values of the post hoc 𝑡-tests were all corrected
for multiple comparisons wherever appropriate. All tests of
significance were conducted at 𝑃 < 0.05 after the correction.

3. Results

3.1. Behavioural Data. There was only a significant main
effect of category (Figure 2), F(1, 28) = 45.557, 𝑃 < 0.001,
which indicated that the discrimination of pair 4–7 (𝐷 =
0.828 ± 0.013) was easier than that of pair 1–4 (𝐷 = 0.686 ±
0.018).

3.2. Electrophysiological Data

3.2.1. Early Mismatch Component. The MANOVA did not
reveal any significant effect of mean amplitude (Figure 3(a));
but there was a signification category × context interaction
effect of the peak latency (Figure 3(b)), F(1, 28) = 4.551, 𝑃 <
0.05. No other effects reached significance. The interaction
effect on peak latency indicated that across-category and
within-category deviantswere detected atwith different levels
of difficulties (as reviewed in [15]), which depended on the
context (carrier).

3.2.2. Late Mismatch Component. There was not any sig-
nificant effect on peak latency (Figure 3(d)), but only a
signification category × context interaction effect of mean
amplitude (Figure 3(c)) F(1, 28) = 6.803, 𝑃 < 0.05. Moreover,
post hoc analyses revealed a significant category effect—larger
electrophysiological responses from across-category deviants
than within-category deviants were elicited from Cantonese
speakers for nonspeech stimuli F(1, 14) = 6.87, 𝑃 < 0.05.
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Figure 2: Discrimination response 𝐷 for Cantonese (a) and Man-
darin (b).

4. Discussion

4.1. Behavioural Data. The posttest behavioural task shows
that discrimination of the across-category pair is easier than
that of the within-category pair, regardless the type of context
or language background.This result verifies that the selection
of across-category deviant (number 7) and within-category
deviant (number 1) relative to the standard stimulus (number
4) in the electrophysiological recording is appropriate.

4.2. Early Mismatch Component. The early MC showed an
interaction effect of peak latency between category status
and context type. It may reflect that across-category and
within-category deviants are detected with different levels of
difficulties (as reviewed in [15]), which further depends on the
context (carrier). However, since no other effects are obtained
in the post hoc analyses, it is not discussed in detail here.
In contrast to other studies [18, 19], the present study does
not obtain a main category effect in the early time window
without focal attention. The absence of a main category
effect may be due to the usage of a much smaller physical
distance (9Hz) than those in other studies [18, 19], which
often used a much larger distance (above 30Hz) between
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Figure 3: Mismatch component (MC) averaged over eight electrodes from Cantonese and Mandarin participants. The mean amplitude of
early MC (eMC) (a), the peak latency of early MC (b), the mean amplitude of late MC (c), and the peak latency of late MC (lMC) (d).

the deviants and the standard. Although in active processing,
the distance of 9Hz is well enough to elicit categorical
effect due to the facilitation of explicit category information,
such a small distance may not elicit a robust category effect
at this early time window in passive processing. It would
be worthy investigating the relationship of just noticeable
discrimination distance in categorical perception between
with and without focal attention in future investigation.

4.3. Late Mismatch Component

4.3.1. Category Effect. At the late time window, across-
category deviant elicits a larger MC than within-category
deviant in nonspeech context only. This suggests that the
category effect for tones may be present even without focal
attention, although at amuch later time than the classicMMN
[15]. The absence of category effect in speech context may
be due to different spectral structures between speech and
nonspeech contexts (as discussed in [16]). Tone perception
mainly relies on perception of pitch contours, whose infor-
mation can be obtained from the harmonic structure. The
harmonic structure of the nonspeech context is simpler and
more regular than that of the speech context. Therefore, the
category effect may be stronger in the nonspeech context
without focal attention in the present study. Another possible
explanation for the absence of category effect in speech
context is that the activation of auditory cortex, the neural
generator of mismatch component, is suppressed by the
perception of visual stimuli, the movie as well as its subtitles
[20].Moreover, a study has reported that neural activity in the

temporal region is decreased while subjects attended to both
visual and auditory stimuli [21]. Although subjects attended
to the subtitles in both speech and nonspeech conditions, it is
likely that the linguistic interference from subtitles is greater
for speech context than for nonspeech context.

The late MC has been reported to reflect the summa-
tion of MMN generators and memory trace formation on
gestalt bases [22] and is observed in response to changes
in unattended speech or nonspeech stimuli [23], from new
born infants [23, 24], children [22, 23], and adults [25]. It has
been suggested that the late MC, like the classic MMN, is a
prominent tool in studying speech perception and learning
[23]. This late MC is probably not linked with either sensory
or attentional processing of sound differences but reflects
higher-order, cognitive, albeit not explicitly conscious pro-
cessing of sound differences [26]. However, the late negativity
has not always been found and studied in all passive oddball
studies, partly because the ISI was too short to elicit the
component in some earlier studies (e.g., [23]). In the present
study, where the physical distance between the deviants and
the standard is small, the late MC may be a more reliable
indicator for the category effect, which merits more studies
to further investigate the function of late MC.

4.3.2. Language Effect. The post hoc tests reveal that the
category effect from nonspeech context is only present in
the electrophysiological responses of Cantonese speakers.
No effect reaches significance in the responses of Mandarin
speakers. This result is consistent with the hypothesis pro-
posed in the previous study [13] that Cantonese speakers have
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to make finer distinctions in the perception of pitch height
and slope than Mandarin speakers in order to discriminate
the more densely distributed tones. A recent study which
compares the ERP correlates of auditory pitch feedback
between Mandarin and Cantonese speakers also suggests
that Cantonese speakers may require more highly tuned
perceptual abilities for tone discrimination than Mandarin
speakers due to their denser tone inventories than Mandarin
[27].

4.3.3. Context Effect. There is no evidence for the category
effect in the speech context without focal attention in the
present study. In contrast, with focal attention, category effect
is stronger in the speech context than in the nonspeech
context [13]. At the subcortex level where the auditory signal
has not been transmitted to the cortex yet, there is no
context effect for pitch perception [9]. At the cortex level
where the phonological processing with focal attention takes
place, the context effect indexed by P300 reaches significance
[13]. For the intermediate stage, that is, when the auditory
signal reaches the cortex level but without focal attention,
the context effect remains controversial ([18, 28] versus
[29]). Using the same experimental paradigm and stimuli,
the results from the present study complement the early
findings [13] by investigating the pitch perception without
focal attention. The present study suggests that Cantonese
speakers outperformMandarin speakers in automatic feature
detection. Such better performance in feature detection likely
contributes to the P300 CP effect for Cantonese speakers.
Therefore, the better phonological processing ability may
not be the sole reason to explain the P300 CP effect in
[13]. Nonetheless, the result obtained from the present study,
which demonstrates greater CP effect for Cantonese speakers
than for Mandarin speakers even without focal attention, is
also likely due to the denser Cantonese tonal inventory.
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