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Abstract: Osteoclasts are the principal mediators of bone resorption. They form through the fusion
of mononuclear precursor cells under the principal influence of the cytokines macrophage colony
stimulating factor (M-CSF, aka CSF-1) and receptor activator of NF-κB ligand (RANKL, aka TNFSF11).
Sexual dimorphism in the development of the skeleton and in the incidence of skeletal diseases is well
described. In general, females, at any given age, have a lower bone mass than males. The reasons
for the differences in the bone mass of the skeleton between women and men at various ages,
and the incidence of certain metabolic bone diseases, are multitude, and include the actions of sex
steroids, genetics, age, environment and behavior. All of these influence the rate that osteoclasts form,
resorb and die, and frequently produce different effects in females and males. Hence, a variety of
factors are responsible for the sexual dimorphism of the skeleton and the activity of osteoclasts in
bone. This review will provide an overview of what is currently known about these factors and their
effects on osteoclasts.
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1. Introduction

Osteoclasts are the principal mediators of bone resorption (the process by which bone is
removed) [1]. They form predominately under the influence of two cytokines, macrophage colony
stimulating factor (M-CSF, aka CSF-1) and receptor activator of NF-κB ligand (RANKL, aka TNFSF11) [2].
Osteoclasts are multinucleated giant cells, which derive from a hematopoietic myeloid-lineage precursor
cell that can also differentiate into macrophages and dendritic cells [3]. As a result of their heritage,
osteoclasts share a number of characteristics with other innate immune cells. These include the
ability to present antigens to T-lymphocytes, the expression of pattern recognition receptors (PRR),
like the toll-like receptors (TLR) and the production of proinflammatory cytokines [4]. As the principal
mediator of bone resorption, osteoclasts are involved in the development of a number of metabolic
bone diseases including osteoporosis and Paget’s disease of bone [5].

Sexual dimorphism in the development of the skeleton and in the incidence of skeletal diseases
is well described [5]. In general, females, at any given age, have a lower bone mass than males [5].
In addition, women predominate in the incidence of osteoporosis while men more frequently develop
Paget’s disease of bone. The organization of bone into a functional skeleton, which provides organisms
with structural integrity, is the net result of the activity of osteoclasts, which resorb bone, osteoblasts,
which form bone and osteocytes, which coordinate the activities of the other two cell types [6].
The reasons for the differences between women and men in the bone mass of the skeleton at various
ages and the incidence of certain metabolic bone diseases are multiple and include the actions of sex
steroids (estrogens and androgens), genetics and inflammation (Figure 1) [7]. All of these influence
the rate that osteoclasts form, resorb and die, and frequently produce different effects in females and
males. Hence, a variety of factors are responsible for the sexual dimorphism of the skeleton and the
activity of osteoclasts in bone. This review will provide an overview of what is currently known about
these factors and their effects on osteoclasts.
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Figure 1. The reasons for the differences between women and men in the bone mass of the skeleton at
various ages.

2. Sexual Dimorphism in the Innate Immune System

Any discussion of the differences between female and male osteoclasts needs to begin with a
general overview of the sexual dimorphism of innate immune cells, which share a common origin
with osteoclast [7]. Toll-like receptor 7 (TLR7) is encoded on the X chromosome and may escape
X-inactivation in certain cell types. For this reason, its levels can be higher in female cells relative to
male cells [8]. In contrast, TLR9 responses do not seem to vary between the sexes [9]. TLR signaling
pathways in response to stimuli also often demonstrate sexual dimorphism, including higher levels
in females of myeloid primary response gene 88 (MYD88), retinoic acid-inducible gene-I (RIGI),
interferon beta (INFB), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3
(STAT3), NF-κB, interferon gamma (INFG) and tumor necrosis factor alpha (TNF) [10]. Peritoneal
macrophages from males express higher levels of TLR4, which is a receptor for some bacterial cell wall
lipopolysaccharides (LPS), and generate higher amounts of CXCX10 with LPS stimulation compared
to female cells [11]. Female macrophages also have enhanced phagocytosis and antigen presentation
capacity to T-lymphocytes for the initiation of the adaptive immune response [11]. These observed
in vitro responses have led to the conclusion that female innate immune cells have an enhanced
immune response to common stimuli, compared to male cells.

3. Osteoclast Sexual Dimorphism

My laboratory has found that female-derived murine bone marrow osteoclast precursor cell
cultures, treated with M-CSF and RANKL, formed significantly more osteoclasts and demonstrated
enhanced resorptive activity relative to males [12]. Our original studies used cultures of bone
marrow macrophage (BMM), which are a mixed culture [12]. We have seen similar differences
between female and male osteoclastogenesis in cultures of murine bone marrow cells that were
directly isolated by fluorescent-activated cell sorting (FACS) as CD11blo/neg, CD3neg, CD45Rneg, CD115
(CSF-1Receptor)pos [13] and then immediately cultured with M-CSF and RANKL for 6 days [14].
The latter assay did not pretreat cells with M-CSF or M-CSF + RANKL to enhance commitment to
the macrophage/osteoclast lineage, as is done by some investigators. However, our results are not
universal, as some publications found that male cells were more osteoclastogenic, while others found
no differences between male and female cells. Valerio et al. [15] examined FACS purified osteoclast
precursor cells (OCP) defined as murine bone marrow CD11blo cells that were first primed with M-CSF
and RANKL for 48 h and then stimulated with LPS. They found that in this inflammation assay
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male cells formed more osteoclasts compared to female cells. In contrast, Zarei A, et al. [16] found
no differences in osteoclastogenesis between female and male murine BMM cultures that were first
pretreated with M-CSF. These discrepancies probably reflect significant differences in the culture assays
that were employed or the origins of the cells. Significantly, our results correlate with measurements of
the number of osteoclasts in the bones of mice [14]. However, more work is clearly needed to better
understand the reasons for the discrepancies between female and male cultures in the various assays.

4. Effects of Sex Steroids on Osteoclasts

Estrogens

Osteoclasts express estrogen receptor alpha (Erα) [17] and its targeted deletion in myeloid cells in
mice, which include the osteoclast precursor, results in a phenotype of increased osteoclast number and
decreased trabecular bone mass [18]. The deletion of Erα in myeloid cells produced a bone phenotype
that mimicked that of ovariectomized mice. Furthermore, ovariectomizing these mice did not further
decrease their trabecular bone mass or increase their trabecular osteoclast number, as it did in wild type
mice. These results indicate that the loss of trabecular bone mass in mice is mediated by expression of
Erα in myeloid cells, including osteoclasts. Unexpectedly, these authors also found that mice with
deletion of Erα in myeloid cells lost cortical bone mass with ovariectomy [18]. Hence, it appears
that loss of cortical bone mass in mice is not mediated by expression of Erα in osteoclasts. Using a
series of genetic substitutions and specific ligands for nuclear Erα, the authors also demonstrated
that non-nuclear Erα binding in myeloid cells was critical for the protective effects of estrogen on
trabecular bone.

Estrogens promote apoptosis and inhibit resorption [19] in osteoclasts through mechanisms
that depend on Fas ligand (FasL), Fas receptor [20–22] and TGFβ [23,24]. The deletion of ERα in
mature osteoclasts caused an increase in FasL expression in mice that had been estrogen withdrawn
by ovariectomy [20]. In contrast, the deletion of ERα in all myeloid cells, rather than specifically in
osteoclasts, did not induce an increase in FasL with estrogen withdrawal [18]. The reasons for this
discrepancy are unknown. The effects of estrogen on mitochondrial oxidative phosphorylation in
osteoclasts have also been described [25]. It was demonstrated that osteoclasts with deleted ERa
in females, but not males, exhibited trabecular bone loss, which was similar to the osteoporotic
bone phenotype of postmenopausal women [18,20]. Further, it was shown that estrogen induced
apoptosis and upregulated FasL expression in osteoclasts of the trabecular bones of WT, but not ERα
deleted mice [20]. FasL production by osteoblasts in response to estrogen has also been shown to
regulate osteoclast apoptosis by a paracrine mechanism [21]. Significantly, the latter authors failed
to demonstrate upregulation of FasL in osteoclasts with estrogen withdrawal. Hence, this point
remains controversial.

It was also found that antibody inhibition of TGFβ blocked the ability of ovariectomy and its
consequent estrogen withdrawal, to prolong the life span of osteoclasts [23]. These effects appear to
require interaction of Erα with the adapter protein, breast cancer anti-estrogen resistance protein 1
(BCAR1) [26] and expression of the tyrosine kinase Lyn in osteoclasts [27]. ERβ is also expressed in
osteoblasts, osteocytes and osteoclasts [28]. However, its function in these cells is less well understood.
There are also effects of estrogen on osteoclastic bone resorption and trabecular, but not cortical bone
mass, which are mediated by changes in the permeability of the gut wall to bacterial products and,
in turn, alterations of Th17 cell number in Peyer’s patches and T cell TNF production [29].

5. Androgens

Loss of androgens in males leads to a decrease in bone mass and an increase in osteoclasts mediated
bone resorption [5]. A direct role of androgens on osteoclasts is controversial. Two manuscript found
that androgens directly blocked osteoclastogenesis in cultured bone marrow macrophages (BMMs) or
RAW264.7 monocyte-macrophage cells [30,31]. This effect was independent of any action of androgens
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on stromal or osteoblast-lineage cells. Another study using human CD14+ peripheral blood monocytes
also found direct and dose dependent effects of androgens on in vitro osteoclast formation [32]. A more
recent study found that deletion of the androgen receptor (AR), specifically in osteoclasts, had no effect
on in vivo osteoclast surface or bone mass [33]. These investigators also found very low expression of
the AR in osteoclasts. A second group conditionally deleted the AR either in mesenchymal or myeloid
cells in mice, and found that a high turnover, osteopenic trabecular bone phenotype only occurred in
mice when AR was deleted in mesenchymal cells [34]. Mice with deletion of the AR in mesenchymal
cells were also resistant to trabecular bone loss after orchiectomy. Curiously, these investigators also
found that there was no cortical bone phenotype in either of these models (mesenchymal or myeloid
AR deletion), and both models lost equivalent amounts of cortical bone with orchiectomy [34]. Hence,
the regulation of cortical bone loss with loss of androgens appears independent of AR expression in
mesenchymal or myeloid cells.

6. Inflammation

Enhanced osteolysis that is driven by inflammation is characteristic of periodontal disease
and inflammatory arthritis [35]. As with overall immune responses [10], the osteolytic response to
inflammation has been demonstrated to be sexually dimorphic [35]. In models of periodontal disease
using A. actinomycetemcomitans-derived LPS to enhance RANKL-induced osteoclastogenesis, it was
found that the rate of male osteoclastogenesis was greater than that of females [15]. The genes Nfatc1
and Tm7sf4 (encoding dendritic cell-specific transmembrane protein or DCSTAMP) were also more
highly expressed in male osteoclasts in this model. Likewise, it was found that in a mouse model
of pathologic endodontic bone loss, mice with deletion of mitogen-activated protein kinase (MAPK)
phosphatase-1 (MKP-1), had greater bone loss in males than in wild type. However, no differences
were seen in the bone phenotype between female MKP-1 deficient and wild type mice. MKP-1 is an
important negative regulator of the MAPK pathways of the innate immune system [36]. In contrast to
these models of inflammatory osteolysis, we found that in mice in homeostasis bone marrow-derived
osteoclastogenesis was greater in cells from female than from males [14]. Hence, the model in which
osteoclast sexual dimorphism is examined seems to influence what outcome is observed. It is now clear
that there are significant differences between the osteoclasts that derive during homeostasis, and those
that develop during inflammation [37,38]. These differences in osteoclast origin may, in turn, affect the
conflicting results that has been observed in studies of osteoclast sexual dimorphism in murine models.

7. Genetics

It has been demonstrated for over 30 years that female mice have more trabecular osteoclasts and a
lower bone mass that male mice [39]. There are a variety of reasons for this difference, including sexual
dimorphic effects of genes that are expressed in osteoclasts. Treatment of human female and male
peripheral blood monocytes with either estrogen or androgen during their in vitro differentiation
into osteoclasts identified a number of sexually dimorphic gene expression patterns [40]. A variety
of gene deleted mice have also been shown to have sexually dimorphic bone mass or osteoclast
phenotypes. Mice with deletion of lysyl oxidases, which is an enzyme that cross-links collagen,
demonstrated enhanced osteoclastogenesis and bone loss in females compared to males [41]. Male mice
with deletion of transient receptor potential vanilloid 4 (TRPV4) have decreased osteoclasts in their
bones and in bone marrow cell cultures relative to females [42]. Caveolae are a specialized type
of lipid rafts and expression of caveolin-1 is upregulated by RANKL in developing osteoclasts [43].
Deletion of caveolin-1 in mice resulted in higher bone volume in females, but not males relative
to wild type mice [43]. CD59a regulates the membrane attack complex in mice. Its deletion only
in male mice produced a bone phenotype of increased cortical bone volume and reduced bone
mineral density. In vitro, bone marrow cells from male CD59a-deleted mice demonstrated increased
osteoclastogenesis relative to cells from female mice [44]. Disruption of the alternative NF-κB pathway
in mice either by global deletion of NF-κB-inducing kinase (NIK) or the NF-κB subunit RelB produced a
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phenotype of increased bone mass in females only [16]. This was associated with a more sever defect of
osteoclastogenesis in female bone marrow cell cultures. Krox20/EGR2 is a zinc finger transcription factor,
involved in hindbrain development. Targeted deletion of Krox20 in osteoclast progenitors produced a
phenotype of low bone mass and increased resorption only in females [45]. Rac1-specific guanosine
triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is upregulated by RANKL during
osteoclastogenesis. Targeted deletion of Srgap2 in osteoclast precursors produced a female-specific
high bone mass phenotype [46]. Protein kinase C delta (PKC-δ) deletion in osteoclasts resulted in
a high bone mass phenotype only in male mice and an associated decrease in osteoclastogenesis in
cultures of male bone marrow cells [47].

8. Summary

Clearly, we have much to learn about the mechanisms that regulate the sexual dimorphic responses
of osteoclasts. Studies of this phenomenon are important, because they can provide insight into
the pathophysiology of metabolic bone diseases like osteoporosis or the response of individuals to
therapeutic intervention. Elucidating these mechanisms may identify gene targets that lead to more
effective therapies for metabolic diseases of the skeleton.
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