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Abstract: Accumulating evidence has suggested the significant potential of chemically modified
hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different ma-
terials, structures and loading cargoes, the desires from clinical applications have not been fully
validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration
process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differen-
tiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play
critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteo-
clast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP)
cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate
bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional
modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable
peptides-based hydrogels for bone regeneration were then discussed.

Keywords: MMP-cleavable peptides; crosslinking; hydrogels; degradation; bone regeneration

1. Introduction

Bone tissue regeneration in orthopedic and maxillofacial surgery remains a common
challenge [1]. Trauma, tumors, infectious diseases, biochemical disorders, congenital
disorders or abnormal skeletal development are the cause of bone defects, resulting in
functional, esthetic and psychological defects in patients [2]. Natural healing of skeletal
structure is relatively limited and requires assistance during pathological conditions such
as severe injuries, osteoporosis, osteosarcoma and infection [3]. Autogenous bone was
identified as the gold standard for bone defects and retained perfect biocompatibility, but it
could not fully satisfy the requirements due to low yield, iatrogenic injury and risk [4]. Other
solutions such as allografts, xenografts and bone substitute materials hold corresponding
shortcomings in terms of, for example, immune response, infectious risk and disease
transmission [5,6]. Therefore, a further sustainable and high-yielding strategy is required,
which leads us to tissue engineering methods. Numerous studies have recently introduced
bioactive scaffolds and their interaction with adjacent bony tissues, and hydrogels have
received attention due to their excellent biocompatibility, biodegradability and plasticity [7–9].

With their hydrophilic polymeric networks, hydrogels are considered the most promis-
ing polymer scaffold in bone tissue engineering [10], and the modification of their perme-
ability and stiffness enables substance exchanges and cell function [11,12]. As the basis
and guiding principle of bone regeneration, the degradation behavior of hydrogels is
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directly related to the speed and quality of bone repair [13]. Specifically, hydrogels in
bone regeneration should be constructed by biocompatible materials and hold enough
stability for cell activity at an early stage [14,15]. Along with cell growth and microstruc-
tural remodeling, biodegradation of hydrogels is required to create appropriate space
for the incoming inhabitants. Despite the natural and synthetic polymers used in their
preparation, the degradation solution of hydrogels mainly takes into account temperature,
pH, light irradiation, ultrasound and enzymes, among other aspects. [16–18]. Among them,
enzymatically responsive hydrogels are well-recognized at present for their controlled and
tunable degradation adapted to in vivo circumstances [19,20].

Response and adaption under environmental variation are intrinsic properties of
all biosystems, as well as biomaterials [21]. The transformation of spatial configurations,
physical properties or structural stability under proper stimulation helps in the degradation
of bone fillers and the release of bioactive cargoes. Enzymes were valued as a promising
trigger for novel responsive polymers, considering their biological origin, efficiency and
high selectivity [22]. Leading-edge research reported that clustered regularly interspaced
short palindromic repeats (CRISPR)-associated enzymes could be utilized to cleave DNA
cargoes in responsive hydrogels and for the delivery of genetic information [23]. Remark-
ably, enzyme levels vary with in vivo microenvironments and biological behaviors, and
this variation was used in a novel strategy that integrates enzymatic reaction and controlled
release [24]. For instance, a smart hydrogel constructed by glutathione-modified collagen
and MMP-cleavable peptide targeted myocardial infarction and ameliorating myocardium
remodeling in vivo in a “release on-demand” manner [25]. Particularly, it was revealed
that MMPs are involved in bone remolding. Thus, the MMP-cleavable peptides-based
hydrogels are promising candidates for bone tissue engineering.

The growing demand for MMP-cleavable peptides-based hydrogel as a platform for
biomedical applications exhibits a strong need for a timely review on a wide range of their
fabrication and applications in bone repair. This review discusses the latest advances in
MMP-cleavable peptides-based hydrogels for biomedical applications in bone regenera-
tion. The MMP-cleavable peptides are introduced as crosslinkers for hydrogels. The three
commonly used MMP-cleavable peptides-based hydrogels, including Poly(ethylene glycol)
(PEG)-, hyaluronic acid (HA)- and chitosan (CS)-based hydrogels, are then highlighted.
The advantages and limitations of using these hydrogels along with their different syn-
thesis methods are summarized. Additionally, their most recent advances in the field of
bone science, including hydrogel-based 3D in vitro models and bone healing, are subse-
quently reviewed. Finally, the current challenges and future perspectives of MMP-cleavable
peptides-based hydrogels are briefly discussed.

2. MMP-Cleavable Peptides
2.1. Definition of MMP-Cleavable Peptides

Due to the bioactivates and biological function of MMPs, they can be used as triggers
in degradable biomaterials. MMP-cleavable peptides, which are composed of several
amino acids in a specific sequence and are sensitive to different MMPs, were previously
synthesized and incorporated into functional hydrogels [26]. The peptides mimic the natu-
ral ECM and could be recognized and degraded by MMPs in the cleavage site. For example,
the most commonly used sequence (GPQG↓IWGQ), where ↓ suggests the cleavage site,
is sensitive to MMP-2, MMP-9 and MMP-14 [27]. The flanking linker sequence has been
regarded as a popular solution for peptide modification. For example, the GCRD sequence
was utilized to synthesize the GCRD-VPMS↓MRGG-DRCG complex. In this regard, the
water-solubility of the peptide was upregulated via the hydrophilic arginine (R), and the
thiol group-based crosslinker was introduced due to the existence of cysteine (C), glycine
(G) and aspartic acid (D) as spacers [17].

MMP-cleavable peptides-based hydrogels have been designed and applied in tis-
sue engineering for decades. MMP-2 and MMP-9 could be manufactured by MSCs and
endothelial cells to degrade ECM during bone resorption and formation [28,29]. Hence,
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hydrogels crosslinked with the MMP-cleavable peptide (GKKC-GPQGIWGQ-CKKG) have
been commonly designed and implanted into bone defect sites of mice to promote bone
regeneration [30]. In addition, MMP-7 is commonly over-expressed in the tumor microen-
vironment, and is identified as promising stimuli. The MMP-7-sensitive peptide sequence
(CGG-PLGLA-GGC) containing thiol groups was applied to crosslink maleimide (MAL)
groups in polymers inside specific hydrogels [31]. A short peptide-based, self-assembled
Ac-I3SLKG-NH2 hydrogel was introduced by Chen et al., which is sensitive to MMP-2 and
could be degraded into Ac-I3S and LKG-NH2. The anticancer peptide-G3 entrapped into
the hydrogel could be released in a “cell-demand” manner, and thus, inhibit the tumor
growth along with the hydrogel degradation that overexpressed MMP-2 by HeLa cells
are exposed to [32]. Thus, MMP-cleavable peptides have exhibited exciting potential for
biomedical tissue engineering.

2.2. Kinetic Parameters of MMP-Cleavable Peptides

In order to quantize the degradation kinetics of MMP-cleavable peptides, Michaelis–
Menten analysis was adapted to measure the kinetic parameters of the substrates by
a fluorometric experiment [33]. The two major kinetics parameters KM and kcat were
calculated by fitting rate and substrate concentration according to the Michaelis–Menten
equation (Figure 1). KM is the Michaelis constant, which is related to enzymes, and
kcat stands for the ability of enzymes to catalyze substrates. For example, MMPs were
cocultured with different substrates at 30 ◦C in buffer solution. Then, the degradation rates
were monitored by measuring the fluorescence intensity [34].

It is well known that the degradation rates depend on several factors, such as peptide
substrate sequences, and the type and concentration of MMP. Compared to GPQGIWGQ,
the kcat value of GPQGIAGQ is increased, meaning that the degradable rate has been
accelerated by transferring an amino acid substitution (A to W) [33]. In addition, different
peptides are optimized for different MMPs. For example, the peptide (VPMSMRGG) is
optimal for MMP-1 degradation and shows a faster degradation rate than GPQGIAGQ or
GPQGIWGQ [35]. Furthermore, the degradable rates of sequence varied for different types
of MMPs [36–38]. As a result, the degradation duration of different sequences could vary
from less than 2 days to more than 10 days.
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3. General Materials for MMP-Cleavable Peptides-Based Hydrogels
3.1. Hyaluronic Acid

Hyaluronic acid (HA) is a kind of non-sulfated glycosaminoglycan, which is found
from the vitreous body of the eye to the extracellular matrix (ECM) of cartilage tissue,
throughout the body. Because of its high biocompatibility, low immunogenicity, biodegrad-
ability and ability to interact with extracellular information molecules [39–41], HA is widely
used in medical products, including engineering hydrogels [42,43], cell therapy and three-
dimensional (3D) cell culture [44] (Figure 2). For example, Zhu et al. prepared antibacterial
sanguinarine/gelatin microsphere/dextran-HA hydrogels by oxidizing glucan and amino
HA [45]. Its application in the treatment of full-thickness burn infections in the standard
deviation rat model was evaluated. It was found that the hydrogel had a longer drug
release time, as well as effective antibacterial activity and wound regeneration ability. It
can effectively inhibit the formation of scars after burn infection.
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In addition, hyaluronic acid (HA) has bifunctional modification sites and multiple
active groups, which can be easily chemically modified to meet the functional needs of
different situations [46]. Wang et al. modified HA with hydrazides or aldehydes and
mixed them to form shear-thinning and self-healing hydrogels through dynamic hydra-
zone bonds [47]. Then, the HA was further modified with β-cyclodextrin to encapsulate
cholesterol-modified siRNA and limit the passive diffusion of siRNA, and injectable and
protease-degradable hydrogels were prepared. According to the proteolytic activity after
myocardial infarction, the hydrogel can release siRNA as needed, silence the expression
of MMP2, and then affect the function of cardiac cells, resulting in the improvement of
hemodynamic function.

Besides, HA hydrogel is also widely used in the field of bone tissue regeneration [46].
Ren et al. designed and synthesized a biomimetic hydrogel system based on Maleimide-
modified HA [48]. With the MMP-sensitive peptide (GCRDGPQGI↓WGQDRCG) being
used as the cross-linker, the hydrogel was prepared by coupling the collagen mimetic
peptide (GPO)8-CG-RGDS with HA. It was found that the hydrogel could mimic the
properties of collagen and was sensitive to MMP-2. In addition, it could also increase the
expression of collagen alpha 1 (II), aggrecan and SOX9 genes in bone marrow mesenchymal
stem cells, which may have the potential to induce BMSCs to differentiate into cartilage
and inhibit the hypertrophic phenotype during differentiation.

It was reported that HA-based hydrogels that are sensitive to MMPs but not sensitive
to hydrolysis can be prepared by crosslinking Maleimide-modified HA macromolecules
with MMP-cleavable peptides [49]. Feng et al. designed and synthesized two kinds of
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hydrolysis-insensitive HA hydrogels, compared the effects of MMP-sensitive hydrogels and
MMP-insensitive hydrogels on human mesenchymal stem cells (hMSCs), and eliminated
the confounding factors of hydrogel degradation due to hydrolysis [50]. Studies have
shown that the cell-mediated degradation of matrix metalloproteinases in hyaluronic
acid hydrogel promotes the cartilage formation of hMSCs but inhibits the hypertrophy
of hMSCs.

3.2. Poly (Ethylene Glycol) (PEG)

Poly (ethylene glycol) (PEG) is a hydrophilic polymer that has the characteristics of
biocompatibility and bioinertia, and it can support cell growth after the addition of the
appropriate protease-sensitive connectors and cell adhesion sites [51]. Therefore, PEG
hydrogel is a promising synthetic hydrogel. PEG hydrogels have interconnected micro-
porous networks that provide continuous nutrient flow, cell growth and vascularization
of engineering tissue (Figure 2). Studies showed that PEG hydrogel helps to maintain the
phenotype of natural heart valve cells [52], optimize cell viability and morphology [53], and
promote the production of extracellular matrix [54]. Dai et al. prepared a kind of stromal
cell-derived factor-1-α-loaded MMP degradable PEG hydrogel [55]. The experimental
data show that the hydrogel has good biocompatibility, can promote the recruitment of
mesenchymal stem cells, can promote the phenotypic polarization of M2 macrophages,
and has good tissue remodeling ability. The hydrogel can also improve the adhesion,
activity and proliferation of bone marrow mesenchymal stem cells (BMSCs) and promote
the differentiation of BMSCs into valvular interstitial-like cells.

In addition, PEG hydrogels can be modified to meet the needs of specific applications
in vitro and in vivo [8,56–59]. Metzger et al. cross-linked Streptavidin with PEG to prepare
hydrogel, which can release immobilized growth factor (GF) and does not depend on the
degradation of hydrogel [60]. Research data show that through the appropriate design of
the release system, GF can be released by PEG hydrogels in a soluble form that is more
effective than the supplementary cell culture medium for local delivery.

Moreover, PEG hydrogel is widely used in cell delivery and bone tissue engineer-
ing [61]. Sridhar et al. developed a peptide- and protein-functionalized PEG hydrogel.
After being co-cultured with the hydrogel for 14 days, chondrocytes significantly increased
the deposition of glycosaminoglycans and collagen, maintained a high level of activity, and
produced a more widely distributed matrix. This shows that hydrogel can promote the
production of cartilage matrix [62].

It was reported that PEG hydrogel can be used as a blank skeleton, in which multi-
ple scaffolds with various functions can be systematically introduced into the scaffold to
allow integrin binding [63], proteolysis and degradation [33,51], and even local isolation
of growth factors [64]. Therefore, PEG hydrogels with specific material compositions can
be used to guide mesenchymal stem cells to differentiate into specific types of chondro-
cytes [65]. Nguyen et al. designed and synthesized a three-layer composite hydrogel, based
on PEG, that was doped with chondroitin sulfate, metalloproteinase-sensitive peptides
and HA [66]. The results show that the hydrogel can not only induce MSCs to differentiate
into chondrocytes, but also customize the phenotype and matrix production pattern of
differentiated cells according to the specific region of articular cartilage by changing the
material composition.

3.3. Other Polymers

Chitosan-based hydrogels were chosen as an embolic matrix because of their good
biocompatibility, biodegradability, injectability and adhesion at room temperature [67,68]
(Figure 2). They can also rapidly undergo sol–gel transition at body temperature. Zehtabi
et al. designed and synthesized Chitosan-Doxycycline hydrogel [69]. The hydrogel can be
injected through a microcatheter and has gelation and mechanical properties that are rapid
enough to block the tubular structure under physiological pressure. The hydrogel can also
release bioactive Doxycycline (DOX), inhibit the MMP-2 activity of human glioblastoma
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cells, remove endothelium and induce vascular thrombosis. Preliminary in vivo tests on
porcine renal arteries showed that the success rates of immediate and delayed embolization
were 96 and 86%, respectively. Gustafson et al. prepared a hydrogel that can be degraded by
matrix metalloproteinases by modifying the skeleton of silk-elastin-like protein polymers
(SELPs) with matrix metalloproteinase-sensitive peptides [70]. The results showed that
MMP-2 and MMP-9 increased protein loss by 63 and 44% respectively, increased the release
of 65 and 95% MMP-sensitive hydrogels, and decreased the compression modulus by 41
and 29%, respectively. It was suggested that the SELP reacted by matrix metalloproteinases
may transport bioactive substances locally where MMPs are overexpressed. Fonseca et al.
modified sodium alginate with matrix metalloproteinase-sensitive peptides to prepare
an injectable hMSC-MMP-sensitive alginate saline hydrogel [71]. The experimental re-
sults show that the hydrogel can be used as a local repository of cells to promote tissue
regeneration and provide protection for transplanted cells at the same time.

Moreover, the hydrogels prepared by some synthetic polymers also have excellent
properties. For example, Qian et al. synthesized poly (propylene sulfide) 120 (PPS120),
which has hydrophobicity- and reactive oxygen species (ROS)-quenching and H2O2-
responsive abilities [72]. Reactive oxygen species depletion hydrogels were prepared
by embedding PPS120 with Matrix metalloproteinase (MMP)-responsive triglycerol monos-
tearate. The hydrogel can release Cur in cerebrospinal fluid, effectively reduce the ROS
level of astrocytes in vitro and in the human brain, and effectively protect the blood–brain
barrier and improve brain edema. In the work of Chung et al, based on the environ-
mentally friendly poly (N-isopropylacrylamide-co-acrylic acid) hydrogel, the degradable
cross-linking agent of matrix metalloproteinase-13 (MMP-13) and the peptide-containing
integrin-binding domain (Arg-Gly-Asp) were combined [73]. The experimental results
show that the hydrogel can significantly promote bone regeneration in a rat femoral abla-
tion model.

4. Synthesis of MMP-Cleavable Peptides-Based Hydrogels
4.1. Polymer Modification

The thiol groups of cysteine usually act as a crosslinker in MMP-cleavable peptides.
Although some MMP-cleavable peptides could be crosslinked with polymers by introduc-
ing chemical groups via the grafting of amino acids to peptides, tt is easier to introduce
some functional groups into the polymers to construct hydrogels with the amino acid
sequences. Several common methods of polymer modification are discussed below.

4.1.1. Maleimide Functionalization

Maleimide (MAL) groups are famous chemical fragments and are widely used as
small molecule linkers in medical chemistry and biochemistry [74]. Their application
fields vary from multifunctional polymers to biomaterials due to their fast kinetics, which
means the polymers crosslink quickly and form hydrogels in situ [75,76], a light-mediated
reagent that may be toxic is not necessary for the reaction system [77], and the competing
side-reactions are minimized by the high specificity and reaction efficacy [78]. There
are several approaches for MAL group introduction. The carboxyl group of hyaluronic
acid (HA) was activated after adding N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide
hydrochloride (EDC·HCl) and N-hydroxysulfosuccinimide (Sulfo-NHS). Then, the MAL
group of N-(2-Aminoethyl) maleimide trifluoroacetate salt (AEM) could be grafted to HA
via the amino-carboxyl reactions [48]. Therefore, chondroitin sulfate, which also contains a
carboxyl group, could employ the MAL group in the same way.

4.1.2. Norbornene Functionalization

Norbornene (NB) groups, which are also molecule linkers, have attracted increasing
attention because their photo-crosslink property and have been widely introduced into
biomaterials for use as a bioink in bioprinting [79–81]. It is well-known that the photo-
chemical reaction of the NB group holds a speedy reaction rate under physiological pH
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and temperature, and that the reactions could occur at relatively low radical concentra-
tions [82]. These advantages demonstrate that introducing the NB group into biomaterials
might be a promising solution in biomedicine and tissue engineering. Gelatin is a natural
polymer, which exhibits cell-interactive properties, and could be easily modified due to
its diverse chemical groups, including -OH, -COOH and -NH2. Therefore, gelatin could
employ an NB group using 5-norbornene-2-carboxylic acid in the reaction of the carboxylic
acid and the primary amines [82]. The norbornene derivant could also be utilized in NB
group insertion; Guo et al. synthesized norbornene-collagen that was obtained from acidic
collagen after reacting with carbic anhydride [83].

In addition, PEG, which is identified as one of the most common synthesis polymers, also
combines with the NB group under the appropriate circumstances. Eight-arm PEG-hydroxyl,
dissolved in dichloromethane (DCM) with pyridine and 4-Dimethylaminopyridine (DMAP),
could introduce NB groups via an overnight reaction with 5-norbornene-2-carboxylic acid
and N,N’-dicyclohexylcarbodiimide under nitrogen conditions [84]. The hydrogel could be
formed with MMP-cleavable peptides under ultraviolet light (UV) with lithium phenyl-
2,4,6-trimethylbenzoylphosphinate (LAP) and elevated alkaline phosphatase (ALP) activity.
As a result, it could be developed as a prospective biomaterial for bone regeneration.

4.1.3. Vinyl-Sulfone Functionalization

Vinyl-sulfone (VS) groups are widely used in hydrogels as a non-zero-length cross-
linker and offer such advantages as physiological and biocompatible reaction conditions,
non-initiator gelation, high mechanical stability, and reasonable specificity [85,86]. There-
fore, VS groups are considered as an optimal choice to construct injectable hydrogels [9].
On the other hand, when comparing with MAL groups, VS groups exhibit a much slower
reaction rate, which provides abundant time for the mixture of reactive precursors. Fur-
thermore, VS can react with amine or thiol groups of peptides [87,88]. Nowadays, VS
groups have been introduced to more and more polymers, such as PEG, HA, dextran,
gellan gum and so on [89,90]. It is well known that VS could be deprotonated in strongly
alkaline condition. Thus, Dextran could employ a VS group in NaOH solution after adding
divinyl sulfone via the Michael addition reaction with -OH and C=C [87]. This reaction
could be stopped by lowering the pH. Different concentrations of RGD peptides were
grafted to Dextran-VS via a thiol-vinyl sulfone reaction. The Dextran-VS-based hydrogel
demonstrated that a low concentration of RGD (0.1%) was enough for cell adhesion. The
polymers carrying -OH groups could be introduced to the VS groups in the same way [91].

4.1.4. Other Functionalization

In addition to what has been mentioned above, there are varieties of ways to modify
the polymers. The fact that stem cell technology has been used widely for tissue regenera-
tion and biomaterial design represents a significant development. As the reaction of gelatin
is important for cell encapsulation in the hydrogel, Paez et al. utilized the methylsulfonyl
(MS) and thiols groups to form a hydrogel with a suitable reaction kinetic for cell encapsu-
lation [92]. MS groups could be introduced into PEG via the reaction of PEG-NHS and an
intermediate, which were obtained from MS-coupled Boc-glycine. The hydrogel exhibited
hydrolytic stability and biocompatibility, but it could be easily degraded by MMPs due to
the MMP-cleavable peptides crosslinked with PEG-MS via thiol-MS reaction.

In addition, acrylate groups are also employed to modify the polymers. Acrylate func-
tionalized hyaluronic acid (HA-AC) hydrogel was developed to deliver genetic information
for local regulation [93]. Acrylate groups were introduced into HA via the Michael addition
reaction after the carboxyl groups of HA reacted with adipic dihydrazide (ADH). HA-AC
could be crosslinked with cysteine of MMP-degradable peptides to form a hydrogel via a
Michael addition reaction in the presence of poly(ethylene imine) (PEI), which transfers
DNA. The influence factors of transgene expression, such as matrix stiffness and RGD
concentration, have also been investigated. The hydrogel was a promising way to deliver
genes during in vivo gene therapy.
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4.2. Chemical Reactions Using MMP-Cleavable Peptides
4.2.1. Click Chemistry Reaction

The click chemistry reaction is inspired by nature and boasts mild reaction condi-
tions, and also has high specificity, rich yielding and a speedy reaction rate [94,95]. In
particular, it is biorthogonal and widely used in cell therapy with few side reactions [96].
Cysteine is commonly grafted into peptides since its thiol group and alkenes groups are
rarely found in nature. Such peptides are extensively used to crosslink the polymers
possessed alkene groups (typically the norbornene groups) to form hydrogels via the thiol-
ene photo-click chemistry reaction between the thiol group and the alkene groups with
cytocompatible light initiation. The reaction, which is mediated by light, starts with radical
initiation upon irradiation to form a thiyl radical [97]. Furthermore, the hydrogels are
polymerized in a step-growth manner. As a result, the hydrogels exhibit a spatiotemporally
controlled gelation behavior and excellent cell encapsulation ability [98]. MMP-sensitive
PEG-based hydrogels were identified, and they were found to be formed via the click reac-
tion between 4-arm PEG-modified with norbornene groups and MMP-cleavable crosslinker
(KCGPQG↓IWGQCK) [62]. Cells and growth factors were co-encapsulated into the hydro-
gel and functioned well based on the biocompatibility of this polymer (Figure 3).
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This reaction is usually applied in 3D printing due to its mild reaction condition and
fast gel rate [99]. For example, collagen was found to possess many inherently useful
properties for regenerative medicine, and it has also been widely used in the 3D printing
field. Guo et al. developed a norbornene-functionalized collagen-based hydrogel, which
acted as a bio-ink and exhibited cell viability, spreading and proliferation properties [83].
The printability property, which is critical for 3D printing, was tested using different
printing methods. As a result, it was demonstrated that the norbornene-functionalized
collagen bio-ink showed potential prospects in bioprinting [83].

Nevertheless, there are still some issues that should be precisely considered when
adopting the thiol-ene photo-click reaction. In particular, the reaction may generate free-
radical species under light exposure, and might be lethal to adjacent proteins. Additionally,
as a result of the infeasibility of light exposure in specific tissues or organs, its application
is partly limited in clinical contexts.

4.2.2. Michael Addition Reaction

The Michael addition reaction is also biorthogonal and takes place in alkaline condi-
tions. Maleimide, acrylate, methacrylate and vinyl sulfone groups are the common groups
that react with peptides in Michael addition reactions [100]. The mechanism of the Michael
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addition reaction is that the thiolate anion coming from the deprotonated thiol reacts with
maleimide and creates the intermediate. Then, the intermediate provides the object product
after deprotonating an additional thiol [101]. It is suitable for cell encapsulation due to the
mild reaction condition, fast kinetics, spontaneous initiation and 3D network [102]. An
MMP-degradable hydrogel was synthesized by crosslinking MMP-cleavable peptides with
PEG-MAL, which acted as the backbone of the polymer [103]. Biological properties of this
hydrogel were tested after cell loading. As a result, this enzyme-degradable hydrogel is
claimed as a promising biomaterial for stem cell delivery [104]. Similarly, 4-arm PEG-SH
was crosslinked with MMP-sensitive peptide modified with MAL to construct novel MMP
degradable hydrogels [105].

The Michael addition reaction is also utilized in drug delivery and the releasing of
on-demand materials [106]. According to Guo et al., Diacrylate modified 8-arm PEG
was crosslinked with MMP-sensitive peptide (CGPQG↓IWGQC) via the Michael addi-
tion reaction [107]. Cargoes could be released under the presence of MMPs, and it was
found that the release kinetics may be adjusted with different drug loading methods and
environmental MMP concentrations.

However, this type of reaction may lead to unexpected off-stoichiometric reactions
of monomers [98]. Furthermore, the spontaneous initiation under basal conditions made
it difficult to control the spatiotemporal process, which might limit its application in
tissue engineering.

4.2.3. Other Reactions

Different methods for connecting polymers and peptides have recently been intro-
duced. Following guest–host chemistry methods, Rodell et al reported a noncovalent
injectable hydrogel; this was self-assembly crosslinked via the guest–host complexation of
adamantane (guest, Ad) and β-cyclodextrin (host, CD) [108]. Ad was coupled to MMP-
degradable peptides (VPMS↓MRGG) and CD was bound to HA, respectively. The hydrogel
exhibited shear-thinning characteristics, selective proteolytic degradability and prolonged
target retention.

Hydrogels consisting of glutamine-peptide-functionalized 8-arm PEG-VS and MMP-
Lys-peptide-modified chondroitin-sulfate-MAL could be crosslinked by transglutaminase
factor XIII, under physiological conditions, without any other initiators [109]. The hydrogel
exhibited a highly specific crosslink mechanism that could be used as a modular method to
form hydrogel for regenerative medicine. Above all, there are still many other reactions to
form MMP-cleavable hydrogels; those that are described in this paper are a selection of the
popular strategies used in hydrogel preparation (Figure 4).
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5. Applications of MMP-Cleavable Peptides-Based Hydrogels in Bone Science
5.1. Hydrogel-Based 3D In Vitro Models for Studying Cellular Responses
5.1.1. Enhancing Osteogenic Capacity

Hydrogels, which possess a three-dimensional network and a high amount of water,
are prospective biomaterials for cell encapsulation. Cell behaviors in hydrogels have been
widely investigated in recent years, including cell adhesion, spreading, proliferation and
differentiation (Figure 5) [110]. Many efforts have been made to further increase osteogene-
sis. The most common approach is to incorporate biomaterials or biomolecules into the
hydrogel. Growth factors have been loaded in hydrogels to promote osteogenesis. Bone
morphogenetic protein (BMP) has been successful in bone regeneration. Direct loading
offers a simple means of generating a burst release and elevating the local concentration.
Schoonraad et al. developed a novel MMP-cleavable peptides-based hydrogel via the
modification of BMP-2 with the thiol group [111]. In this way, BMP-2 could be tethered into
the hydrogel, which was composed of PEG-NB crosslinked with MMP-cleavable peptide
(GCVPLSLYSGC), and which functioned well in terms of enhancing the osteogenesis of
cells via the SMAD 1/5/8 pathway in the 3D microenvironment.
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In addition, some biomaterials were incorporated with MMP-degradable hydrogels
to accelerate bone repair (Figure 6a). For example, hydroxyapatite nanoparticles (nHAPs)
are often applied in biomaterials for bone tissue engineering due to their advanced perfor-
mance in bone regeneration [112]. A nHAP-embedded MMP-degradable hydrogel was
constructed by crosslinking PEG-NB with peptide crosslinker (CVPLSLYSGC) and was
shown to be able to encapsulate functional live cells under UV light [113]. Including the
evaluation of alkaline phosphatase (ALP) activity and cellular morphology after 28 days
of cell culture, the results claimed that osteogenesis was enhanced. Thus, the biomate-
rial contained PEG, peptide crosslinker, RGD peptide and nHAP exhibited potential for
bone regeneration.
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5.1.2. Promotion of Cell Spreading

The degradation of hydrogels provides space for cells to adhere and migrate [68].
Cell migration can be enhanced in the MMP-degradable hydrogel [114]. An enzymatically
degradable hydrogel-crosslinked norbornene-functionalized alginate with MMP-cleavable
and RGD peptides under UV was developed to culture cells [17]. The 3D synthetic environ-
ment can not only maintain cell viability for over 2 weeks, but also promote cell spreading.

It has been demonstrated that physical cues could impact the fates of cells, includ-
ing spreading and differentiation (Figure 6b). The stiffness of hydrogels was reported to
promote cell differentiation [115]. Hydrogels with variable stiffness can be synthesized
by changing the concentration of polymers or the density of crosslinkers [103,105]. Un-
fortunately, the dense networks may reduce the degradation rate and provide little space
for cells to migrate [116]. Moreover, it was found that the increased stiffness would result
in a decreased speed of migration due to an increased physical barrier [117]. Wei et al.
designed a soft hydrogel that was crosslinked PEG-MAL with MMP-peptides. The cells
encapsulated in hydrogel could proliferate to obtain enough cells that maintain the os-
teogenic differentiation potential with bone morphogenetic protein-2 (BMP-2) and migrate
to the interface of bone defect to induce osteogenesis [103]. Furthermore, it was found
that YAP (yes-associated protein) could promote osteogenesis [118]. In degradable hydro-
gels, YAP/TAZ signaling is not only regulated by stiffness, but is also sensitive to other
parameters, such as dimensionality and degradability [119]. Meanwhile, the stiffness and
roughness of hydrogels would change when the hydrogel degraded. As a result, YAP
signaling pathway would be activated in MMP-cleavable peptides-based hydrogels. The
soft hydrogel, which has similar properties to bone marrow stiffness, may offer an optimal
strategy for bone regeneration.

Furthermore, polymers also influence cell spreading. To obtain sufficient mechanical
properties, gelatin is required in a high concentration. As a result, the dense networks
are too close for cells to spread. Several methods have been developed to seek a suitable
structure, such as enlarging the pore sizes of hydrogels [120]. Collagen was chosen due
to its complete triple helix structure and was crosslinked with peptides after modification
with NB groups [83]. The collagen hydrogels possess good cell viability, spreading and
proliferation with low solid and pore structures.

In addition, the degradation rates of hydrogels can impact cell behaviors (Figure 6c).
Studies have revealed that cell spreading could enhance osteogenesis [49]. An MMP-
sensitive PEG-NB hydrogel was developed for the spreading and osteogenesis of encap-
sulated human mesenchymal stem cells (hMSCs) [121]. Compared with nondegradable
hydrogels, the degradable hydrogels whose degradability is mediated by cells would pro-
mote cell spreading and enhance the osteogenic capacity of hMSCs. Hydrogels composed
of peptide (CVPLS↓LYSGC) are susceptible to MMP-14 and have a faster degradation
compared with the hydrogels that possess the peptide (CRGRIGF↓LRTDC), resulting in
faster cell migration as well as accelerated early osteogenesis. Therefore, such hydrogels
exhibit promising applications for bone tissue engineering. Recently, some researchers
have found that the adhesive peptide (GFOGER) not only enhances the adhesion strength,
but also improves the reparative activity of BMSC (Figure 6d).
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for cells [108]. After degradation, hydrogel could not only provide space for cell migra-
tion, but also release extracellular matrix (EMC) molecules that induce cell adhesion, mi-
gration and differentiation [123,124]. As a result, biodegradable hydrogels could promote 
bone regeneration (Figure 7). Recently, Kim et al. developed a novel type of degradable 
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Figure 6. Hydrogel-based 3D in vitro models for studying cellular responses. (a) The nHAPs have
also been embedded in MMP-cleavable peptides-based hydrogels to promote osteogenesis [113].
Reprinted with permission from Copyright © 2018 IOP Publishing Ltd. (b) The stiffness of MMP-
cleavable peptides-based hydrogels influenced cell proliferation [105]. * p < 0.0001 for 10 wt% relative
to 5 and 7.5 wt% at a given time point, # p < 0.05 for 7.5 wt% relative to 5 wt% at a given time point,
$ p < 0.05 for a given time point relative to day 1, and ** p < 0.01 [105]. Reprinted with permission
from Copyright © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) The degradation
rates of MMP-cleavable peptides-based hydrogels are critical to accelerating early osteogenesis [121].
Reprinted with permission from Copyright © 2019 John Wiley and Sons. (d) Adhesive peptides of
MMP-cleavable peptides-based hydrogels enhance the adhesion strength of cells [122]. ANOVA
(p < 0.0001) was used to detect statistical differences followed by Sidak’s multiple comparisons
test with adjustment for multiple comparisons, *** p < 0.0001 vs. GFOGER CTL. Reprinted with
permission from Copyright © 2020 Nature Publishing Group.

5.2. Hydrogels for Bone Healing
5.2.1. Biodegradable Hydrogels Required for Bone Regeneration

Biodegradability was found to be necessary for the application of hydrogels in con-
trolled therapeutic delivery as it enables noninvasive clearance and creates living space for
cells [108]. After degradation, hydrogel could not only provide space for cell migration,
but also release extracellular matrix (EMC) molecules that induce cell adhesion, migration
and differentiation [123,124]. As a result, biodegradable hydrogels could promote bone
regeneration (Figure 7). Recently, Kim et al. developed a novel type of degradable hydrogel
made of chitosan and lysozyme through visible light [68]. They demonstrated that the
degradation of this chitosan hydrogel was conducted by combining lysozyme, and it pro-
moted bone formation. As it is known that MMPs play important roles in bone remodeling,
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several MMP-cleavable hydrogels have been developed for bone tissue engineering recent
years (Figure S1A,B). Furthermore, some hydrogels have been designed to be adhesive,
and it was found that they could adhere to the bone and, thus, be maintained in situ
(Figure S1E). HA was found to be a component of the bone matrix and is considered as an
ideal material. The novel HA-based hydrogel-containing adhesive peptide (RGD) was de-
signed by combining MAL-HA and MMP-cleavable peptides (GCRDVPMSMRGGDRCG)
via the Michael addition reaction [125]. In order to create a suitable microenvironment for
bone regeneration, BMP-2 was added to the hydrogel (Figure 8a). According to the in vitro
and in vivo evaluations, the hydrogel showed upregulated osteogenic gene expression and
excellent bone regeneration ability.
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More and more researchers have found that the RGD peptide in MMP-degradable
hydrogels has vital advantages in terms of cell adhesion and spreading [125]. For in-
stance, MMP-cleavable hydrogels grafted with RGD-adhesive peptide could improve
the osteogenic capability (Figure 8b). Recently, another adhesive peptide (GFOGER)
showed greater bone formation than RGD due to the intrinsic osteoinduction activity
of GFOGER [8]. An α2β1 integrin-specific MMP-cleavable hydrogel was synthesized
by introducing GFOGER or RGD-adhesive peptide [122]. The hMSC-loaded GFOGER
hydrogel maintained hMSC activity for a long time, upregulated host angiogenic and
osteogenic gene expression, and shifted the secretion profile to promote bone regeneration.
The hydrogels were cast within 4-mm long polyimide tube sleeves (microlumen) and put
into the 2.5 mm bone defect (Figure S1C,D). After implantation for 8 weeks, the bone
formation was significantly accelerated in the hMSC and GFOGER peptide groups, as
compared to the control groups.
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Angiogenesis and sensory nerve innervation were proven to be critical during bone
repair [126]. According to this, a special type of cell-loaded hydrogel, formed by PEG-NB
and an MMP-degradable crosslinker (GKKCGPQGIWGQCKKG) under UV, was designed
as a biomimetic periosteum (TEP) for the treatment of bone defects [30]. It was found that
MMP-TEP enhanced bone generation and neurovascularization during an early stage, as
well as leading to faster cell recruitment and migration in vivo (Figure 8c). This could
represent a promising means of partly replacing allografts for critically sized bone defects.
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MMP-cleavable peptides-based hydrogels with adhesive peptide (GFOGER) enhanced bone regeneration in challenging
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hydrogels were used as tissue-engineered periosteum (TEP) to coordinate bone repair via recruitment and support of
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peptides-based hydrogels were explored for pro-angiogenic peptide drug delivery to increase vascularization in vivo [127].
Reprinted with permission from Copyright © 2015 Elsevier B.V.

5.2.2. Biodegradable Hydrogels as Delivery System

Hydrogels have been used as cell or growth factor vehicles in many fields [25,55].
For example, endothelial progenitor cells (EPCs) are applied to promote angiogenesis and
growth factors manufacturing, in order to restore and maintain the bone microenvironment
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during regeneration. The hydrogel-containing adhesive peptide RGD was constructed
by mixing PEG-VS and MMP-cleavable peptide solution, which carried EPCs and the
growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF) [59]. The growth factors were released after hydrogel degradation and
promoted EPC differentiation, thus accelerating the neovascularization process.

Various peptides were applied to accelerate vascularization [127], but the applications
were obviously limited due to fast clearance and poor pharmacokinetics. In order to
overcome the limitations, a stimuli-responsive peptide drug delivery system was developed
to deliver and release peptides on demand, such as an MMP-cleavable hydrogel composed
of PEG-NB and the enzymatically responsive IPES↓LRAG sequence [128]. The functional
peptides were embedded inside the sequence, which could be crosslinked with PEG-NB
after the introduction of cysteine. The hydrogel could be degraded by intrinsic MMPs and
peptide drugs could be released to promote endothelial cell tube formation (Figure 8d).

6. Conclusions and Future Outlook

MMPs take part in numerous cell activities and are identified as environmentally re-
sponsive triggers in the design of biomaterials. As the biodegradability of filling materials
has been widely proven to be beneficial for bone regeneration in the literature, it offers a
promising way to apply MMP-cleavable peptides-based hydrogels in bone tissue engineer-
ing. In this review, we summarized the polymers, degradable property, modified groups,
reactions of hydrogels and applications of MMP-cleavable peptides-based hydrogels in
bone tissue engineering.

Varieties of polymers have been identified to synthesize MMP-degradable hydrogels.
In fact, different polymers have varied characteristics and advantages, as well as chemical
groups and reactions. For example, due to its mild reaction conditions and fast gelatin rate,
the NB group is usually adopted for 3D printing as a bio-ink via the thiol-ene photo-click
chemistry reaction. Biodegradability plays a critical role in bone repair and its subsequent
regeneration, and thus, MMP-cleavable hydrogels have been designed and widely used to
fill bone defects and degrade appropriately. At the cellular level, the degradable hydrogels
could promote cell spreading and enhance osteogenic capability. In summary, MMP-
cleavable hydrogels accelerated bone formation rates via the delivery of growth factors
and through their adaptive degradation rates under metabolic conditions, and thus, show
great potential prospects in the regenerative field.

However, the degradation rates of peptides are diverse from each other and suscep-
tible to different MMP subtypes. As the intercellular microenvironment is complex and
dynamically changing, there may be more than one type of MMP in the regeneration site.
Degradation rates might be altered inside different tissues or under different pathological
conditions. As a result, it is rather difficult to propose the most accurate peptide for regener-
ative medicine. In addition, a great deal of polymers have been crosslinked with functional
peptides to form dual-network hydrogels, whereby degradation rates could be further
optimized. Last but not least, the crosslink density, concentration and molecular weight of
the polymers are also critical factors that alter the degradation rates. Although there are
still challenges to be honored, there is no doubt that the MMP-cleavable peptides-based
hydrogels deserve further investigation and possess a rather promising future in the bone
regeneration area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels7040199/s1, Figure S1: The MMP-Cleavable peptides-based hydrogels and the process
of implantation.
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