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Breast cancer is distinguished by its profound hetero-
geneity, which significantly influences the variability in 
treatment approaches and patient prognoses. Clinically, 
breast cancer entities are stratified into three principal 
groups according to estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) expression: ER-positive, HER2-pos-
itive, and triple-negative breast cancer (TNBC). The 
intrinsic molecular landscape of breast cancer can be fur-
ther differentiated into five distinct subtypes, each with 
its own set of biological, clinical, and prognostic traits. 
These subtypes are luminal A, luminal B, HER2-enriched, 
basal-like, and claudin-low, offering a nuanced under-
standing of the disease and guiding tailored therapeutic 
strategies for patients [2].

Recent research has revealed a novel subtype of 
breast cancer that has garnered significant interest: 

Introduction
The most recent cancer 2024 statistics indicate that 
breast cancer remains the most prevalent malignant 
tumor among women, constituting approximately 32% 
of all female cancer diagnoses. Notably, the incidence of 
breast cancer continues to rise annually, accompanied by 
a concerning shift toward affecting younger people [1]. 
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Abstract
Triple-positive breast cancer (TPBC), a unique subtype of luminal breast cancer, is characterized by concurrent 
positivity for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 
2 (HER2). Owing to the crosstalk between the ER and HER2 signaling pathways, the standard of care and drug 
resistance of this particular subtype are difficult challenges. Recent research and clinical trials have indicated a 
shift in the treatment paradigm for TPBC from single-target therapies to multi-pathway, multitarget strategies 
aiming to comprehensively modulate intricate signaling networks, thereby overcoming resistance and enhancing 
therapeutic outcomes. Among multiple strategies, triple-drug therapy has emerged as a promising treatment 
modality, demonstrating potential efficacy in patients with TPBC. Moving forward, there is a critical need to 
perform in-depth analyses of specific mechanisms of cancer pathogenesis and metastasis, decipher the complex 
interactions between different genes or proteins, and identify concrete molecular targets, thus paving the way for 
the development of tailored therapeutic strategies to combat TPBC effectively.
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triple-positive breast cancer (TPBC). TPBC is a rela-
tively rare subtype within the luminal breast cancer type, 
accounting for 5–10% of all pathological types of breast 
cancer, and is characterized by the concurrent positive 
expression of ER, PR, and HER2. Therefore, chemother-
apy, HER2-targeted therapy, and endocrine therapy have 
become important treatment modalities for this subtype 
[3]. Nonetheless, in the therapeutic algorithm, TPBC is 
uniquely influenced by the activation and intersecting 
roles of the HER2 and ER signaling pathways, imparting 
a distinct set of clinical and pathological traits that dif-
fer from those observed in other breast cancer subtypes. 
Confronted with the intricate and heterogeneous nature 
of TPBC, the selection of pharmacological agents and the 
strategic sequencing of their administration pose formi-
dable challenges in advancing clinical therapeutics.

Previously, the clinical standard of care primarily 
involved the combination of targeted therapy with che-
motherapy; however, owing to relatively low response 
rates, unfavorable prognosis, and challenges such as sus-
ceptibility to metastasis and the development of drug 
resistance, there is an urgent need to explore new thera-
peutic approaches and optimize treatment strategies [4, 
5]. This review focuses on the pathological characteristics 
of TPBC, elucidating the intricate signaling pathways, 
gene mutation profiles, and molecular underpinnings of 
drug resistance. A tailored, precision medicine approach 
that involves multidrug combinations is imperative. Syn-
thesizing and juxtaposing diverse therapeutic modali-
ties and combinatorial strategies could achieve a “triple 
therapy” regimen integrating endocrine therapy, targeted 
therapy, and CDK4/6 inhibitors; this approach could 
maximize patient outcomes and potentially set a new 
benchmark for TPBC management.

Characteristics of triple-positive breast cancer
Pathologic features of TPBC
Most patients with triple-positive breast cancer are diag-
nosed between the ages of 45 and 75 years [6]. Clinical 
studies illuminate a more aggressive biological profile for 
TPBC, with pathological hallmarks that include large, 
often calcified, tumor masses, typically graded as III. The 
tumors frequently exhibit irregular margins, granular cal-
cifications, and evidence of vascular or neural invasion, 
predisposing them to metastasize to axillary lymph nodes 
[7]. In a comprehensive analysis of tumor specimens from 
2,284 female patients with primary breast cancer, Kast 
and colleagues reported that TPBC is associated with a 
significantly greater recurrence rate than that of luminal 
A breast cancer. Interestingly, despite TPBC’s aggressive-
ness, patients tend to have a more favorable prognosis 
than those with HER2-overexpressing breast cancers. 
The predominant pathological subtype is invasive duc-
tal carcinoma, with a propensity for distant metastasis to 

visceral organs and bones [8]. Moreover, TPBC is charac-
terized by a positive correlation between Ki-67 and HER2 
expression, with elevated levels of both proteins indicat-
ing a worse prognosis [9]. At the proteomic level, a nega-
tive correlation exists between the expression of ER and 
PR and that of HER2. The interplay between the ER and 
HER2 pathways has also been identified as a significant 
contributor to endocrine therapy resistance in TPBC, 
underscoring the complexity of treatment strategies for 
this subtype [10].

Major signaling pathways of TPBC
Research has revealed an intricate interplay between 
multiple segments of the ER- and HER2-mediated sig-
naling cascades in TPBC. The ER signaling pathways 
can be categorized into two principal types. The initial 
type, recognized as the genomic or classical pathway, is 
instigated by the activation of the ER upon encounter-
ing a specific stimulus. The quintessential trigger for 
ER activation is the binding of estrogen (E2) to its cog-
nate receptor (ER). The E2–ER complex subsequently 
migrates to the nucleus, where it docks onto estrogen 
response elements (EREs). These EREs are situated 
within the DNA sequence and are pivotal in modulating 
the transcriptional activity of genes under ER regulation 
[11]. The second category of ER signaling is character-
ized by a nongenomic mechanism. The alternative path-
way involves ER activation at the plasma membrane or 
in proximity to receptors, facilitated by a suite of protein 
kinase cascades. This activation elicits a rapid cellular 
response, encompassing the release of nitric oxide (NO), 
the modulation of transmembrane ion fluxes, and the ini-
tiation of the receptor tyrosine kinase (RTK) and proteo-
lipid kinase pathways [12].

In TPBC, amplification of the ERBB2 gene, which 
encodes HER2, is typically observed at relatively low 
levels [13]. Nevertheless, at the cellular level, HER2 
can interact with other ERBB family members, includ-
ing EGFR, HER3, and ERBB3, forming homo- or het-
erodimers that amplify the activation of downstream 
signaling pathways via kinase activity. For example, the 
EGFR/HER2 heterodimer is known to activate the RAS–
RAF–MEK–ERK pathway, commonly referred to as the 
MAPK/ERK pathway, whereas the HER2/HER4 heterodi-
mer triggers the PI3K–AKT–mTOR pathway [14]. These 
signaling cascades are instrumental in various cellular 
processes, including cell cycle progression, apoptosis, 
cell polarity, and cell motility, all of which contribute to 
breast cancer’s growth and metastatic spread [15].

The intricate crosstalk between the ER and HER2 sig-
naling pathways, predominantly via the PI3K‒AKT‒
mTOR and RAS‒RAF‒MAPK axes, is now recognized 
as a key regulatory mechanism for ERα activity [16]. 
The ER interfaces with the HER signaling network at the 
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cellular membrane and within the nucleus, engaging with 
and activating various components of the HER signaling 
cascade, including PI3K, AKT, MAPK, and RAS. Upon 
estrogen binding, nongenomic ERs interact directly or 
indirectly (via G proteins) with HER2/HER1-4 dimers, 
thereby activating downstream Ras-MAPK and PI3K-
AKT signaling pathways, which subsequently phosphor-
ylate the ER, a host of transcription factors (TFs), and 
coregulators such as coactivators (CoAs) and corepres-
sors (Rs). Phosphorylation modulates gene expression 
patterns within the cell [17]. Moreover, the ER has the 
capacity to ignite signaling cascades that involve the tyro-
sine kinase c-Src and other downstream elements of the 

HER signaling network [18]. Estrogen signaling increases 
the expression of growth factors such as transforming 
growth factor-α (TGF-α) and insulin-like growth factor-1 
(IGF1) [19, 20] (Fig. 1).

Crosstalk between two signaling pathways is a crucial 
determinant of the metastatic progression and therapeu-
tic resistance of TPBC. Nonetheless, the intricate mecha-
nisms underlying the interplay of potential molecular 
and druggable target interactions within these pathways 
are yet to be fully elucidated. There is a pressing need for 
researchers to thoroughly investigate novel therapeutic 
strategies and devise more efficacious approaches to pre-
vent recurrence and metastasis.

Fig. 1  Schematic diagram of the crosstalk between key targets in different signaling pathways in triple-positive breast cancer and therapeutic drugs. 
HER2 binds to its family members (such as EGFR/HER3/HER4) and forms homo- or heterodimers. After the ligand binds to HER2, the tyrosine kinase of 
HER2 is activated. Moreover, after binding to the estrogen receptor (ER), estrogen (E2) can interact with HER2/HER1-4 dimers directly or indirectly (via G 
proteins), stimulate the tyrosine kinase c-Src, activate the downstream Ras-MAPK and PI3K-AKT signaling pathways, and then phosphorylate the ER and 
other transcription factors (TFs) and coactivators/coinhibitors (CoAs/R). The E2–ER complex translocates to the nucleus and binds to estrogen response 
elements (EREs) in DNA, regulating the transcription of ER genes. Furthermore, estrogen signaling affects the expression of growth factors, such as the 
upregulation of transforming growth factor-α (TGF-α) and insulin-like growth factor 1 (IGF1). Estrogen receptor activation at the plasma membrane or in 
proximity to receptors is mediated by various protein kinase cascades, resulting in responses such as nitric oxide (NO) release, increased transmembrane 
ion flux, and activation of RTK and proteolipid kinase pathways. (A). Targets of HER2-targeted drugs. (B). Mechanism of action of endocrine drugs: AIs block 
the conversion of androgens into estrogens; tamoxifen competitively binds to the ER and blocks the binding of the ER to E2; and fulvestrant promotes 
ER degradation
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Mutation profiles in TPBC
Research into the genomic lineage heterogeneity of 
HER2-positive breast cancer indicates that genes such 
as TP53, CDK12, PIK3CA, and RARA, demonstrate 
high mutation frequencies, in addition to the ERBB2 
gene, pivotal for comprehending the underlying molecu-
lar mechanisms of this disease. Comparative analyses 
between HR+/HER2 + and HR-/HER2 + patients revealed 
significant differences in mutation types between the two 
groups (767 vs. 352). Notably, in the HR+/HER2 + cohort, 
there was a marked amplification of genes such as 
SPOP, CCND1, FGF19, FGF4, FGF3, RNF43, RAD51C, 
ADGRA2, and MDM4, alongside frequent mutations in 
the GATA3 gene [21]. Mutation of GATA3 is particularly 
noteworthy, as this gene directly upregulates ERα and 
other oncogenes related to the estrogen signaling path-
way, such as DACH1 and GREB1, and genes involved in 
growth factor signaling pathways, such as KIF16B and 
ERBB4, which promote the development of luminal-
type breast cancer [22]. Moreover, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis revealed significant enrichment of mutated genes in 
the HR+/HER2 + patient group within pathways such as 
homologous recombination repair, TGF-β, and WNT 
[21]. PARP inhibitors are potent targeted therapeutic 
agents against the DNA damage response (DDR) path-
way, suggesting the potential application of PARP inhibi-
tors in the treatment of HR+/HER2 + diseases.

Current status of treatment for TPBC
Neoadjuvant chemotherapy is favored by clinicians for 
treating TPBC and is chosen by more patients because 
it can achieve similar efficacy as receiving standard post-
operative chemotherapy. Docetaxel (DTX) and albumin 
paclitaxel are commonly used first-line drugs in che-
motherapy and have obvious inhibitory effects on the 
growth and reproduction of breast cancer cells. How-
ever, it is noteworthy that clinical data indicate TPBC 
patients still exhibit comparatively lower long-term sur-
vival rates than certain other breast cancer subtypes even 
after receiving chemotherapy, likely attributable to the 
heterogeneous nature of these tumors and variations in 
treatment response profiles. Since the pathogenesis of 
TPBC is a direct result of extensive crosstalk between 
the ER and HER2 signaling pathways, therapeutic strate-
gies that target only one of these pathways usually lead 
to the upregulation of the other pathway and, ultimately, 
resistance to treatment. Therefore, modulating and dis-
rupting the crosstalk between these two signaling path-
ways is essential for more effective TPBC treatment. An 
increasing number of targeted drugs, endocrine thera-
peutics, and novel drugs are becoming available on the 
market; however, it is highly important to explore how to 
more effectively select optimal treatment strategies and 

combinatorial approaches among HER2-targeted ther-
apy, endocrine therapy, and chemotherapy.

Monoclonal antibody
With advancements in breast cancer molecular biol-
ogy research, HER2-targeted therapeutic agents have 
been developed, and trastuzumab has become the thera-
peutic agent of choice for patients with HER2-overex-
pressing breast cancer. Trastuzumab is a recombinant 
DNA-derived humanized monoclonal antibody that pre-
vents the binding of epidermal growth factor to HER2 
by binding to the HER2 extracellular structural domain 
(ECD) and inhibits the intracellular HER2 signaling path-
way, blocking the growth of cancer cells; trastuzumab 
also inhibits cell cycle blockade, mediates antibody-
dependent cell-mediated cellular cytotoxicity (ADCC) 
effects, and directly kills tumor cells [23]. The treatment 
of HER2-positive breast cancer is now a focus of “tar-
geted therapy” approache, substantially altering patient 
outcomes. The addition of trastuzumab to postopera-
tive adjuvant therapy for patients with HER2-positive 
early-stage breast cancer has long been the standard of 
care, and the efficacy of trastuzumab in patients with 
HER2-positive early-stage breast cancer has been con-
firmed in several important clinical studies, such as the 
HERA study, which demonstrated that the prognosis 
of patients with HER2-positive early-stage breast can-
cer could be significantly improved by treatment with 
trastuzumab [24]. The B-31 and N9831 studies compared 
chemotherapy regimens alone with chemotherapy com-
bined with trastuzumab, establishing that the addition 
of a trastuzumab monoclonal antibody unequivocally 
improved disease-free survival (DFS) and overall sur-
vival (OS) outcomes through 10 years of follow-up [25]. 
The results of the NOAH study confirmed that chemo-
therapy in combination with trastuzumab resulted in a 
higher pathologic complete response (pCR) rate than did 
chemotherapy alone in HER2-positive patients receiv-
ing neoadjuvant therapy; the patients’ event-free sur-
vival (EFS) was also increased. Patients who achieved 
pCR had longer DFS and OS durations than those who 
did not [26]. These findings established trastuzumab 
as the standard of care in the neoadjuvant treatment of 
HER2-positive breast cancer. The results of the M77001 
study confirmed that paclitaxel combined with trastu-
zumab significantly improved progression-free survival 
(PFS) and OS outcomes in patients with HER2-positive 
advanced recurrent metastatic breast cancer [27]. Thus, 
anti-HER2 therapy based on trastuzumab is necessary 
and effective for HER2-positive breast cancer patients, 
regardless of whether it is applied as an early adjuvant 
therapy, neoadjuvant therapy, or advanced recurrent 
breast cancer treatment.
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Furthermore, early studies revealed that multiple 
domains within HER2 can exert synergistic antitumor 
effects, which led to the development of pertuzumab, the 
first monoclonal antibody referred to as a “HER dimer-
ization inhibitor.” Pertuzumab slows tumor growth by 
blocking the formation of homo- or heterodimers of 
HER2 with other HER receptors. Thus, the “dual-target 
era” has begun, and the APHINITY study revealed that 
adding pertuzumab to adjuvant trastuzumab and chemo-
therapy in HER2-positive patients with early-stage breast 
cancer significantly improved DFS outcomes [28]. The 
NeoSphere study confirmed that adding pertuzumab to 
the combination of paclitaxel and trastuzumab can fur-
ther improve pCR rates in HER2-positive patients [29]. 
The CLEOPATRA double-blind randomized trial com-
paring the first-line efficacy of pertuzumab, trastuzumab, 
and docetaxel with that of trastuzumab and docetaxel 
in the treatment of HER2-positive metastatic breast 
cancer revealed that the combination of pertuzumab, 
trastuzumab, and docetaxel significantly improved the 
treatment outcome for patients with HER2-positive met-
astatic breast cancer [30]. Improvements in OS outcomes 
were found to be maintained after a median follow-up of 
more than 8 years, and the long-term safety and cardiac 
safety profiles of the combination were also maintained 
in the overall safety population and crossover patients 
[31]. These results constitute a far-reaching milestone in 
clinical research. The TRAIN-2 study revealed that, in 
patients younger than 60 years of age with a high tumor 
load and platinum resistance, compared with anthracy-
cline-containing regimens, paclitaxel and carboplatin 
in combination with trastuzumab versus pertuzumab 
resulted in the same rate of pCR and significantly lower 
toxicity responses, such as neutropenia [32]. With the 
confirmation of the above clinical findings, dual-targeted 
therapy is now recommended for patients who are suit-
able for single-targeted therapy in the neoadjuvant phase.

Small-molecule tyrosine kinase inhibitors (TKIs)
Approximately 30–50% of patients with advanced HER2-
positive breast cancer will develop central nervous sys-
tem (CNS) metastases, with a risk of approximately 10% 
per year, and half of these patients will die from disease 
progression in the brain [33]. The combination of trastu-
zumab, pertuzumab, and docetaxel essentially delays 
the onset of brain metastases in advanced breast can-
cer patients [34]. However, the effective utilization of 
these drugs is greatly reduced because of their inability 
to penetrate the blood–brain and blood–tumor barri-
ers [35]. TKIs, which are small-molecule targeted drugs, 
primarily inhibit cancer cell proliferation and pro-
mote apoptosis by competitively binding to the binding 
domain of the epidermal growth factor receptor (EGFR) 
family with the intracellular homologous structure of 

adenosine triphosphate (ATP), thereby blocking the sig-
naling pathway downstream of tyrosine phosphoryla-
tion and ligand binding [36]. TKIs have a significantly 
lower molecular weight than monoclonal antibodies, and 
this allows TKIs to cross the blood‒brain barrier more 
effectively and exert drug effects. Furthermore, TKIs are 
administered orally and demonstrate less cardiotoxicity, 
indicating potential advantages in clinical applications. 
Currently, TKIs are mainly used for anti-HER2 treatment 
after failure of trastuzumab treatment for HER2-positive 
advanced breast cancer and intensive treatment after 
partial completion of 1 year of adjuvant therapy with a 
trastuzumab monoclonal antibody.

Lapatinib is an orally active quinazoline character-
ized by its ability to reversibly block the phosphorylation 
of EGFR1, HER2, HER4, extracellular signal-regulated 
kinase 1,2 (ERK-1,2), and protein kinase B (PKB/AKT). 
Additionally, lapatinib inhibits cell cycle protein D 
expression levels in human tumor cell lines and xeno-
grafts [37]. It is used clinically, mainly in combination 
with capecitabine, in metastatic or advanced breast 
cancer patients with HER2 overexpression previously 
treated with anthracycline, paclitaxel, or trastuzumab. 
The EGF100151 study demonstrated thatlapatinib in 
combination with capecitabine versus capecitabine alone 
prolonged patients’ time to progression (TTP) and PFS 
duration [38]. In addition, lapatinib in combination with 
paclitaxel significantly improved the median OS, median 
PFS, and objective response rate (ORR) outcomes com-
pared with those of the paclitaxel and placebo groups 
[39]. However, in the ALTTO study, although the com-
bination therapy arms had higher DFS rates, these dif-
ferences were not significant, and patients treated with 
lapatinib experienced higher rates of severe side effects, 
such as diarrhea, rash, and hepatic toxicity [40]. There-
fore, considering the increased toxicity and limited 
therapeutic improvement associated with lapatinib, this 
medication is currently not recommended for routine 
use in the neoadjuvant or adjuvant treatment setting.

Neratinib is an irreversible pan-HER family (HER1, 
HER2, and HER4) inhibitor that blocks the downstream 
PI3K/Akt and Ras/Raf/MEK/ERK signaling pathways 
[41]. Clinical and preclinical studies have shown that the 
combination of trastuzumab and neratinib for the treat-
ment of breast cancer cells is an effective regimen to 
counteract both innate and acquired resistance to trastu-
zumab. Regarding the adjuvant treatment of early-stage 
breast cancer, the ExteNET study demonstrated that 
patients with stage II-III HER2-positive breast cancer 
who completed 1 year of standard trastuzumab therapy 
followed by 1 year of intensive oral neratinib therapy had 
significantly improved iDFS outcomes [42]. The results 
of the NALA study revealed that, in the treatment of 
advanced breast cancer, neratinib in combination with 
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capecitabine significantly prolonged PFS durations while 
delaying the onset of symptomatic brain metastases com-
pared with lapatinib in combination with capecitabine 
in patients with advanced or metastatic HER2-positive 
breast cancer who had received ≥ 2 anti-HER2 therapies 
[43], suggesting that neratinib is a new option after the 
failure of advanced multiline therapy.

Pyrotinib is a novel orally administered and irreversible 
TKI with a mechanism similar to that of neratinib. In the 
PHOEBE phase III study, the combination of pyrotinib 
with capecitabine significantly improved PFS outcomes 
in patients who had previously received trastuzumab and 
paclitaxel analogs [44]. Pyrotinib provides better survival 
benefits to patients and provides more effective treat-
ment options to combat resistance to trastuzumab, which 
inevitably occurs in the treatment of metastatic HER2-
positive breast cancer.

Different from the three TKIs mentioned above, tuca-
tinib blocks HER2 and not EGFR. Tucatinib is currently 
used in combination with trastuzumab and capecitabine 
for the treatment of patients with locally advanced unre-
sectable or metastatic HER2-positive breast cancer who 
have received at least three lines of anti-HER2 thera-
pies. The HER2CLIMB study revealed that treatment 
with tucatinib in combination with trastuzumab and 
capecitabine significantly improved OS and PFS out-
comes and significantly reduced the risk of death in the 
tucatinib arm compared with a placebo in combination 
with trastuzumab and capecitabine. Moreover, in the 
subgroup with brain metastases, the median CNS PFS 
and median OS durations were significantly prolonged in 
the tucatinib group, and the intracranial ORR was signifi-
cantly greater in the tucatinib group than in the control 
group, significantly reducing the risk of progression of 
the CNS and the risk of death [45]. In summary, the tuca-
tinib combination is expected to become the new stan-
dard of care for HER2-positive metastatic breast cancer 
patients with brain metastases.

Antibody-drug conjugates (ADCs)
ADCs are humanized or human-derived monoclonal 
antibodies that combine the high specificity of monoclo-
nal antibodies with the potent cytotoxicity of small-mole-
cule drugs. The mechanism involves binding the antibody 
component to tumor antigens, where the ADC-antigen 
complex undergoes receptor-mediated endocytosis to 
enter the cell. Once inside the cell, the active cytotoxic 
agent is released, leading to the targeted destruction of 
tumor cells [46]. ADCs have better pharmacokinetic 
characteristics and cytotoxic effects than traditional tar-
geted drugs and can effectively kill cancer cells, reduce 
toxic side effects, and have broader application prospects.

Trastuzumab emtansine (T-DM1) is the first ADC 
approved for anti-HER2 therapy in breast cancer. This 

pioneering compound results from strategic conjuga-
tion between HER2-targeting trastuzumab and the 
microtubule-inhibiting chemotherapeutic agent emtan-
sine (DM1), facilitated by an innovative nonreducible 
thioether linker. The EMILIA study confirmed a greater 
PFS and OS benefit from T-DM1 than capecitabine in 
combination with lapatinib in patients with HER2-pos-
itive locally advanced or metastatic breast cancer who 
previously received trastuzumab in combination with 
paclitaxel, independent of the ER/PR status. These ben-
efits were also observed in patients with metastatic dis-
ease, particularly those with a disease-free interval of less 
than six months after completing adjuvant or neoadju-
vant treatment with trastuzumab [47]. The KATHERINE 
study revealed that in patients who did not achieve pCR 
after neoadjuvant therapy with trastuzumab in combina-
tion with paclitaxel, postoperative adjuvant therapy with 
T-DM1 significantly improved iDFS outcomes compared 
with trastuzumab [48].

Trastuzumab deruxtecan (DS-8201) is a novel anti-
body–drug coupling agent comprising trastuzumab and 
a type I topoisomerase inhibitor linked by an enzymati-
cally cleavable peptide junction. DS-8201 crosses cell 
membranes more readily and has a more potent cyto-
toxic effect on tumor cells than T-DM1. In the DES-
TINY-Breast01 and DESTINY-Breast02 studies, DS-8201 
demonstrated favorable therapeutic efficacy in patients 
with HER-2-positive advanced metastatic breast can-
cer who had received T-DM1 treatment [49, 50]. Simi-
larly, in the DESTINY-Breast03 study, compared with 
T-DM1, DS-8201 significantly improved patients’ PFS 
outcomes and reduced the risk ratio for disease progres-
sion or death by 72%, establishing the status of DS-8201 
after trastuzumab failure [51]. Notably, unlike T-DM1, 
DS-8201 also kills tumor cells with low HER-2 expres-
sion, potentially due to the “bystander effect” of DS-8201, 
killing adjacent tumor cells with low HER2 expression 
through effective transport or release of the drug [52]. 
The DESTINY-Breast04 study compared the efficacy of 
DS-8201 with that of physician-selected chemotherapy 
regimens in patients with hormone receptor-positive 
HER-2 overexpression, suggesting that DS-8201 was sig-
nificantly more efficacious than chemotherapy in patients 
who had received 1–2 lines of prior therapy, with the 
benefit being especially pronounced in the prespecified 
subgroup of HR-positive patients [53].

PI3K/AKT/mTOR inhibitors
The phosphatidylinositol 3-kinase (PI3K)/protein kinase 
B (AKT)/mammalian target of rapamycin (mTOR) sig-
naling pathway (PAM signaling pathway), which plays 
an important role in the development of breast cancer, 
is closely related to resistance to endocrine therapy in 
advanced breast cancer patients, and anticancer therapies 
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targeting key molecules in the PAM signaling pathway 
have become a research focus in recent years. Targeting 
PAM signaling pathway inhibitors has obvious clinical 
benefits for advanced breast cancer patients, especially 
those with hormone receptor-positive, HER2-negative 
disease.

The emergence of trastuzumab resistance is usually 
thought to be mediated by the PI3K/AKT/mTOR path-
way, and activation of the PI3K pathway is caused mainly 
by PIK3CA mutation or amplification and PTEN dele-
tion [54]. PTEN activation is a novel mechanism for the 
antitumor activity of trastuzumab. Conversely, PTEN 
deletion induces trastuzumab resistance in HER2-over-
expressing breast cancers [55]. In preclinical models, 
PTEN loss results in a cascade reaction with PI3K, lead-
ing to mTOR activation [56]. mTOR, in turn, regulates 
transcription and translation by phosphorylating down-
stream proteins, including 40  S ribosomal protein S6 
[57].

Everolimus is a mTOR inhibitor, and in an in vivo study, 
the combination of trastuzumab and everolimus signifi-
cantly reduced the tumor volume in mice compared with 
either drug alone (p < 0.05). In addition, compared with 
everolimus alone, the combination of trastuzumab and 
everolimus reduced the expression levels of Ki67, AKT1, 
and phosphorylated AKT (p < 0.05) [58]. In a phase I 
study, the coadministration of trastuzumab, vincristine, 
and everolimus was associated with overall remission in 
44% of patients with trastuzumab-resistant breast cancer 
and 55% of patients with paclitaxel-resistant and trastu-
zumab-resistant tumors [59, 60]. Similarly, in a phase I 
pilot study in patients with trastuzumab-resistant, HER2-
overexpressing metastatic breast cancer, the addition of 
everolimus to the combination of paclitaxel and trastu-
zumab was generally well tolerated and associated with 
an initially high tumor response rate [59]. These studies 
enhanced the potential activity of everolimus in the treat-
ment of HER2-overexpressing metastatic breast cancer 
and the role of mTOR inhibitors in delaying or revers-
ing trastuzumab resistance mediated by the PI3K/AKT/
mTOR pathway. In addition, the results of the RAD001 
study revealed that the combination of everolimus 
and trastuzumab resulted in a clinical benefit in 34% of 
patients with trastuzumab-resistant tumors [61].

A series of studies have confirmed that the therapeu-
tic strategy of combining anti-HER2 targeted drugs 
with chemotherapy can alter the progression of dis-
ease in patients with TPBC, and this combination is 
often considered the first-line treatment for metastatic 
breast cancer (Table  1). Some TPBC patients initially 
exhibit a pronounced response; however, a proportion of 
patients are nonresponders, leading to rapid tumor pro-
gression and recurrence. Therefore, it is imperative to 

concurrently suppress the expression of both HER2 and 
HR to enhance the treatment efficacy for these patients.

Endocrine therapy combined with targeted therapy
Endocrine therapy, also referred to as antihormone ther-
apy, mainly regulates hormone secretion and prevents 
cancer cells from accessing and utilizing the natural hor-
mones (mainly estrogen and progesterone) needed for 
growth. The mechanism involves changing the breast 
cancer cells’ growth-related endocrine microenviron-
ment, halting proliferation at the G0/G1 stage to control 
the tumor and promote remission. The different mecha-
nisms of action can be classified into five major catego-
ries: selective estrogen receptor modulators (SERMs), 
ovarian function suppressors (OFSs), aromatase inhibi-
tors (AIs), selective estrogen receptor downregulators 
(SERDs), and sex hormone analogs. Endocrine therapy 
not only reduces the risk of recurrence in early-stage 
breast cancer patients but also prolongs PFS durations in 
patients with metastatic breast cancer. Endocrine therapy 
has mild adverse effects on patients’ quality of life and is 
critical for the treatment of HR-positive breast cancer.

Endocrine therapy combined with single-targeted therapy
For patients with advanced TPBC, anti-HER2 targeted 
therapy combined with endocrine therapy can signifi-
cantly improve outcomes compared with endocrine 
therapy alone. Preclinical evidence suggests that cross-
talk between HER2 and ER signaling pathways in breast 
cancer also contributes to resistance to hormone therapy. 
Trastuzumab in combination with tamoxifen or fulves-
trant restores tumor sensitivity to these hormonal agents 
and may inhibit tumor growth [62]. Thus, it is evident 
that concurrent inhibition of the HER2 and ER signaling 
pathways is more efficacious than inhibition of the ER 
pathway alone.

Patients with TPBC receiving first-line treatment 
with either an aromatase inhibitor (AI) in combination 
with lapatinib or trastuzumab monotargeted therapy 
had better PFS outcomes than did those receiving treat-
ment with an aromatase inhibitor alone. The TAnDEM 
study demonstrated that trastuzumab, in combination 
with anastrozole, improved the median PFS compared 
with anastrozole alone in patients with confirmed hor-
mone receptor positivity [63]. A pilot study revealed 
that the combination of letrozole and lapatinib signifi-
cantly reduces the risk of disease progression compared 
with letrozole–placebo and that the clinical benefit 
rate (≥ remission or stabilization at 6 months) is signifi-
cantly improved with lapatinib–letrozole [64]. Notably, 
the results of the SYSUCC-002 study revealed that in 
patients with advanced metastatic TPBC, trastuzumab 
combined with endocrine therapy was no less efficacious 
than trastuzumab combined with chemotherapy, with the 



Page 8 of 16Xie et al. Cancer Cell International           (2025) 25:77 

Trial 
information

Study design Sam-
ple 
size

Population Outcomes

NSABP B-31 
and NCCTG 
N9831 [25]

doxorubicin + cyclophos-
phamide + paclitaxel (DCP) 
vs. doxorubicin + cyclo-
phosphamide + paclitax-
el + trastuzumab (DCPT)

4046 HER2-positive operable breast cancer, 
(ER or PR-positive: n = 2115/4046, 52%)

DCPT led to a 37% relative improvement in OS 
(p < 0.001) and an increase in 10-year OS rate from 
75.2–84%.; in 10-year DFS rate from 62.2–73.7%.

NOAH [26] Chemotherapy (C) vs. 
chemotherapy + trastu-
zumab (TC)

235 HER2-positive locally advanced or in-
flammatory breast cancer, (HR-positive: 
n = 84/235, 36%)

C vs. TC in the 3-year event-free survival was 56% vs. 
71%

M77001 [27] trastuzumab + docetaxel 
(TD) vs. docetaxel (D)

186 HER2–positive metastatic breast cancer, 
(HR-positive: n = 91/186, 49%)

TD vs. D in terms of overall response rate was 61% v 
34%; median OS was 31.2 v 22.7 months; median time 
to disease progression was 11.7 v 6.1 months; median 
time to treatment failure was 9.8 v 5.3 months.

APHINITY [28] pertuzumab + chemo-
therapy + trastuzumab vs. 
placebo + chemothera-
py + trastuzumab

4805 node-positive HER2-positive early BC, 
(HR-positive: n = 3082/4805, 64%)

pertuzumab vs. placebo groups:6-year iDFS being 
88% vs. 83%.

NeoSphere 
[29]

pertuzumab + trastuzum-
ab + docetaxel (PTD) vs. 
trastuzumab + docetaxel 
(TD)

417 locally advanced, inflammatory, or 
early-stage HER2-positive breast cancer, 
(HR-positive: n = 197/417, 47%)

pCR 85% in PTD vs. 76% in TD.

CLEOPATRA 
[30]

pertuzumab + trastu-
zumab + docetaxel vs. 
placebo + trastuzum-
ab + docetaxel

808 HER2–positive metastatic breast cancer, 
(HR-positive: n = 388/808, 48%)

placebo versus pertuzumab arm in terms of median 
PFS of 12·4 vs. 18·7 months; the risk of death in the 
pertuzumab group was reduced by 34%.

EGF100151 
[38]

lapatinib + capecitabine 
(LC) vs. capecitabine(C)

408 HER2-positive MBC female patients 
who have received treatment, (ER or 
PR-positive: n = 192/408, 47%)

LC vs. C in terms of median OS times were 75.0 v 64.7 
weeks.

NCT00281658 
[39]

lapatinib + paclitaxel (LP) 
vs. placebo + paclitaxel (P)

444 HER2-overexpressing metastatic breast 
cancer, (ER or PR-positive: n = 224/444, 
50%)

LP vs. P in terms of median OS was 27.8 v 20.5 
months; median PFS was 9.7 v 6.5 months; ORR was 
69% v 50%.

ExteNET [42] Neratinib vs. Placebo 2840 After trastuzumab-based adjuvant 
therapy in women with HER2-
positive breast cancer, (HR-positive: 
n = 1631/2840, 57%)

Neratinib vs. Placebo of the 5-year invasive disease-
free survival was 90·2% vs. 87·7%.

NALA [43] neratinib + capecitabine 
(NC) vs. lapa-
tinib + capecitabine (LC)

621 HER2-positive, metastatic breast cancer 
with ≥ 2 previous HER2-directed MBC 
regimens, (HR-positive: n = 367/621, 
59%)

NC vs. LC in terms of ORRs was 32.8% vs. 26.7%; me-
dian DoR was 8.5 vs. 5.6 months; diarrhea 83% v 66%; 
and nausea 53% v 42%.

PHOEBE [44] pyrotinib + capecitabine 
(PC) vs. lapa-
tinib + capecitabine (LC)

267 HER2-positive metastatic breast cancer, 
(ER or PR-positive: n = 120/267, 45%)

PC vs. LC in terms of median PFS was12·5 months vs. 
6·8 months.

HER2CLIMB 
[45]

tucatinib + trastuzum-
ab + capecitabine (TTC) 
vs. placebo + trastuzum-
ab + capecitabine (PTC)

291 HER2–positive breast cancer with brain 
metastases, (HR-positive: n = 166/291, 
57%)

In the TTC, the risk of intracranial progression or death 
was reduced by 68%; the risk of death was lowered 
by 42%. TTC vs. PTC in terms of median PFS was 
9.9 versus 4.2 months; median OS was 18.1 vs. 12.0 
months; ORR was 47.3% vs. 20.0%.

EMILIA [47] T-DM1 vs. lapa-
tinib + capecitabine (LC)

991 HER2-positive advanced breast cancer, 
(HR-positive: n = 545/991, 55%)

T vs. LC in terms of median PFS was 9.6 vs. 6.4 months; 
median OS was 30.9 vs. 25.1 months; ORR was 43.6% 
vs. 30.8%; Rates of adverse events of grade 3 or above 
was LC vs. T (57% vs. 41%).

KATHERINE 
[48]

T-DM1 vs. trastuzumab 1486 HER2-positive early breast cancer after 
receiving neoadjuvant therapy, (HR-
positive: n = 1074/1486, 72%)

The estimated percentage of patients who were free 
of invasive disease at 3 years was 88.3% in the T-DM1 
vs. 77.0% in the trastuzumab.

DESTINY-
Breast01 [49]

Trastuzumab deruxtecan 
(T-DXd)

184 HER2-positive metastatic breast cancer 
who had received previous treatment 
with T-DM1, (HR-positive: n = 97/184, 
53%)

The median duration of follow-up was 11.1 months; 
the median response duration was 14.8 months; and 
the median PFS was 16.4 months.

Table 1  Clinical experimental study of targeted therapy combined with chemotherapy
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former associated with better median PFS and median 
OS outcomes and fewer adverse effects. For patients with 
a disease-free interval (DFI) of > 24 months, trastuzumab 
in combination with endocrine therapy may be of greater 
benefit [65]. Therefore, HER2-targeted therapy combined 
with endocrine therapy can replace standard HER2-tar-
geted therapy combined with a chemotherapy approach, 
and the principle of endocrine therapy preference also 
applies to patients with advanced metastatic TPBC.

Endocrine therapy combined with dual-targeted therapy
With the widespread use of pertuzumab in the clinic, 
dual-targeted combination chemotherapy with trastu-
zumab and pertuzumab has effectively improved the 
survival benefit of patients with breast cancer. More-
over, dual-targeted combined endocrine therapy has also 
become mainstream, and the combination of different 
drugs in combination therapy deserves in-depth clini-
cal exploration to further improve the survival benefit of 
TPBC patients.

The CLEOPATRA clinical trial evaluated the combi-
nation of pertuzumab plus trastuzumab plus docetaxel 
versus trastuzumab plus docetaxel plus placebo for the 
first-line treatment of HER2-positive metastatic breast 
cancer and revealed that the former significantly pro-
longed PFS durations without a significant increase in 
cardiotoxic effects [66]. In the most recent PERTAIN 
study, a randomized trial was conducted in 258 patients 
with TPBC assigned to either dual-target therapy incor-
porating trastuzumab and pertuzumab alongside an aro-
matase inhibitor or a single-target regimen combining 
trastuzumab with an aromatase inhibitor. The findings 
indicated that the group receiving dual-target therapy 
in conjunction with endocrine therapy exhibited supe-
rior median PFS and OS benefits. Furthermore, among 

patients who have not undergone neoadjuvant chemo-
therapy, the combination of endocrine therapy with dual-
targeted treatment has demonstrated enhanced survival 
benefits [67]. The ALTERNATIVE trial enrolled a total 
of 355 patients with advanced first- or second-line and 
above HR+/HER2 + breast cancer who were treated with 
endocrine medications in combination with anti-HER2 
monoclonal antibodies and tyrosine kinase inhibitors. 
The results indicate that the combination therapy of lapa-
tinib plus trastuzumab and aromatase inhibitors (AI) 
demonstrates superior PFS benefits compared to trastu-
zumab plus AI treatment in patients with TPBC, sug-
gesting that the tolerability of the trastuzumab, lapatinib, 
and AI regimen is favorable, holding promise as a rec-
ommended treatment protocol for TPBC [3]. This find-
ing also suggests that for highly selected TPBC patients, 
chemotherapy may be circumvented, and dual-targeted 
therapy in conjunction with endocrine treatment could 
provide an effective and safe therapeutic option.

The HeredERA study is a randomized, open-label, 
multicenter, phase III study evaluating the efficacy and 
safety of Giredestrant (an oral SERD drug) in combina-
tion with Phesgo after a dual-target subcutaneous agent 
(Phesgo) + induction chemotherapy (taxanes) compared 
with Phesgo (+/- endocrine therapy) in patients with pre-
viously untreated HER2+/ER + locally advanced or meta-
static breast cancer [68]. The oral SERD drug giredestrant 
inhibits tumor cell proliferation by completely antago-
nizing the ER, blocking the ER signaling pathway, and 
enabling ER degradation, potentially providing additional 
patient benefits.

The results of the above studies demonstrate the ben-
efits of simultaneously inhibiting the HER2 and estrogen 
receptor signaling pathways. Nonetheless, future investi-
gations are warranted to explore the therapeutic efficacy 

Trial 
information

Study design Sam-
ple 
size

Population Outcomes

DESTINY-
Breast02 [50]

T-DXd vs. 
capecitabine + trastuzum-
ab or capecitabine + lapa-
tinib (TC/LC)

608 HER2-positive metastatic breast cancer 
who were refractory or resistant to 
T-DM1, (HR-positive: n = 356/608, 59%)

T-DXd vs. TC/LC in the median follow-up was 21·5 
months vs. 18·6 months; median PFS was 17·8 
months versus 6·9 months; median OS 39 vs. 26.5 
months; ORR was 69.7% vs. 29.2%.

DESTINY-
Breast03 [51]

T-DXd vs. T-DM1 524 HER2-positive metastatic breast cancer 
previously treated with trastuzumab 
and a taxane, (HR-positive: n = 265/524, 
51%)

T-DXd vs. T-DM1 of those who were alive without 
disease progression at 12 months was 75.8% vs34.1%; 
patients who were of alive at 12 months was 94.1% 
vs. 85.9%; an overall response was 79.7% vs. 34.2%.

DESTINY-
Breast04 [53]

T-DXd vs. chemotherapy 557 HR positive and negative HER2 low 
expression in patients with advanced 
breast cancer, (HR-positive: n = 490/557, 
88%)

In the HR–positive cohort, T-DXd vs. C in terms of 
median PFS was 10.1 vs. 5.4 months; OS was 23.9 vs. 
17.5 months. Among all patients, T-DXd vs. C in terms 
of median PFS was 9.9 vs. 5.1 months; OS was 23.4 vs. 
16.8 months.

RAD001 [61] trastuzumab + everolimus 47 HER2-overexpressing metastatic breast 
cancer, (ER or PR-positive: n = 28/47, 
60%)

everolimus + trastuzumab resulting in a clinical ben-
efit rate of 34%, the median PFS was 4.1 month.

Table 1  (continued) 
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of combining diverse endocrine treatments, thereby 
informing the development of clinical strategies and 
guiding the selection of endocrine therapeutics for the 
management of TPBC.

Endocrine therapy and targeted therapy combined with 
CDK4/6 inhibitors
Given that cell cycle protein-dependent kinase (CDK) 4/6 
inhibition combined with endocrine therapy results in 
favorable PFS and OS benefits for patients with advanced 
hormone receptor-positive, HER2-nonamplified 
(HR + HER2-) breast cancer, this study also provides new 
ideas for the treatment of patients with advanced TPBC.

Cell division activity is orchestrated by the collabora-
tive action of cell cycle proteins (cyclins) and cell cycle 
protein-dependent kinases (CDKs). In many cancers, the 
cell cycle protein D-CDK4/6 pathway is overactivated 
and is no longer dependent on the stimulation of mitotic 
behavior, thus contributing to the infinite prolifera-
tion of tumor cells. CDK4/6 inhibitors can regulate the 
cell cycle and selectively inhibit CDK4/6 kinase activity, 
thus blocking the progression of the cell cycle from the 
G1 to the S phase in cancer cell transformation, inhibit-
ing the unlimited proliferation of tumor cells. Moreover, 
CDK4/6 inhibitors have synergistic effects with endo-
crine therapy, inhibiting the expression of the estrogen 
receptor signaling pathway and delaying and reversing 
resistance to endocrine therapy [69]. There are currently 
four approved CDK4/6 inhibitors on the market: palbo-
ciclib, ribociclib, abemaciclib, and dalpiciclib. CDK4/6 is 
overactivated in HR + breast cancer, and blockade of the 
dual pathways of CDK4/6 and ER can effectively inhibit 
breast cancer cell proliferation and tumor progression 
[70].

The NA-PHER2 study explored the administration of 
trastuzumab, pertuzumab, palbociclib, and fulvestrant 
during the neoadjuvant phase of therapy up to the time 
of surgery, with a decrease in Ki67 from 31.9 to 12.1% at 
baseline and a pCR of 27%, with preliminary data analy-
sis showing an acceptable safety profile of the treatment 
while simultaneously demonstrating a good antitumor 
effect [71]. The PATRICIA phase II clinical study dem-
onstrated the efficacy and safety of the CDK4/6 inhibi-
tor palbociclib in combination with trastuzumab in the 
treatment of advanced HER2-positive breast cancer. The 
results of the study revealed that patients with advanced 
TPBC had a better prognosis when treated with palboci-
clib and trastuzumab and when the combination was fol-
lowed by letrozole as a “triple therapy“ [72]. In the phase 
II MonarcHER study, 237 patients with advanced TPBC 
who have received at least second-line anti-HER2 therapy 
were enrolled and randomized to three treatment groups 
(Group A: CDK4/6 inhibitor abemaciclib + trastuzumab 
+ fulvestrant, Group B: CDK4/6 inhibitor abemaciclib + 

trastuzumab and Group C: trastuzumab + chemother-
apy). The outcome showed that Group A demonstrated 
significantly improved PFS and had a significantly higher 
ORR than those treated with the other two regimens. The 
regimen administered to Group A also demonstrated a 
tolerable safety profile, confirming that triple therapy can 
achieve certain clinical remission rates in the later-line 
treatment of TPBC patients. Therefore, chemotherapy-
free regimens may be an alternative treatment option for 
patients with hormone receptor-positive, HER2-positive 
advanced breast cancer [73]. The LORDSHIPS first-/
second-line phase Ib clinical study, which enrolled 15 
patients with advanced TPBC, revealed that the three-
agent combination of dalpiciclib + pyrotinib + letrozole 
may be the most beneficial in the first-line treatment of 
patients with advanced TPBC [74].

Therefore, combining anti-HER2 targeted therapy and 
endocrine therapy with CDK4/6 inhibitors is expected 
to achieve greater benefits for patients with advanced 
TPBC. With the increase in clinical research data and the 
development of precision therapy, the efficacy of salvage 
therapy for advanced TPBC patients is becoming clearer, 
and “triple combination” therapy is expected to become 
one of the best options for advanced TPBC patients 
(Table 2).

Mechanisms of TPBC drug resistance
Mechanisms of resistance to endocrine therapeutic 
strategies
ESR1 gene mutations are infrequently observed in pri-
mary breast cancer but are found in approximately 
20% of patients with metastatic breast cancer who have 
received endocrine therapy, particularly after treatment 
with AIs [75]. Analyses of circulating tumor DNA from 
patients treated with AIs have shown that tumors with 
Y537S and D538G mutations exhibit increased invasive-
ness and reduced sensitivity to tamoxifen and fulvestrant 
[76].

The overexpression of HER2 diminishes sensitivity to 
antiestrogen therapy, with one of the mechanisms being 
the activation of the PI3K–AKT–mTOR and mitogen-
activated protein kinase (MAPK) pathways [77]. The 
constituents of the MAPK pathway include NF1, KRAS/
NRAS/HRAS, BRAF, and MAP2K1; the neurofibro-
min (NF1) gene is frequently associated with metastatic 
breast cancer [78]. NF1 encodes neurofibromin, a nega-
tive regulator of Ras-GTP activation; loss of NF1 leads 
to the activation of RAS, thereby triggering downstream 
activation of the MAPK pathway [79]. The absence of 
NF1 also promotes estrogen resistance in ER-positive 
breast cancer cells by inducing the expression of cyclin 
D1 in a cell cycle-independent manner [80].

DNA methylation contributes to endocrine ther-
apy resistance in ERα-positive breast cancer by 
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downregulating ER expression and modulating ER target 
genes. Studies have shown that decreased expression of 
the transcription factor SALL2 leads to the downregula-
tion of ER and PTEN expression, thereby activating the 
AKT/mTOR signaling pathway and resulting in tamoxi-
fen resistance in ERα-positive breast cancer patients [81]. 
In HR-positive breast cancer, somatic mutations in his-
tone methyltransferases, such as KMT2B, KMT2D, and 
KMT2E, and histone demethylases, including KDM4A, 
KDM5B, KDM5C, and KDM6A, are particularly pro-
nounced [82].

Breast cancer stem cells (BCSCs) are frequently associ-
ated with endocrine therapy resistance in breast cancer 
and are key drivers of metastasis and endocrine resis-
tance in this disease. The receptor Notch 4 is an impor-
tant regulator of cancer stem cells and is overexpressed in 
BCSCs [83]. Gene expression profiles derived from breast 
cancer cells and xenografts treated with tamoxifen or 
fulvestrant revealed elevated expression of Notch target 
genes [84]. Death domain-associated protein 6 (DAXX) 
has been identified as a novel target of the Notch signal-
ing pathway, with its RNA expression inversely correlated 
with Notch signaling in ER-positive breast tumor sam-
ples. High DAXX expression can inhibit tumor stem cells 
[85].

Mechanisms of resistance to targeted therapeutic 
strategies
Structural changes, including HER2 truncation mutants 
(p95HER2) and Δ16HER2, lead to the emergence of 
drug resistance. More importantly, p95HER2 can form 
heterodimers with HER3 and activate downstream 
pathways. Patients with high p95HER2 expression have 
shorter PFS and OS durations [86]. The overexpression 
of Δ16HER2 can downregulate the expression of miR-
7, thereby activating and upregulating the Src signaling 
pathway [87].

Both HER2 phosphorylation and PI3K activation are 
associated with high expression of insulin-like growth 
factor 1 receptor (IGF-1R), which is a member of the 
tyrosine kinase receptor family and shares common 
downstream signaling pathways with HER2 and other 
EGFRs [88]. Upon ligand binding and subsequent acti-
vation, IGF-1R can bypass the activation of the PI3K 
signaling pathway, thereby contributing to trastuzumab 
resistance to a certain extent. Other tyrosine kinases, 
including AXL and EphA2, have also been implicated in 
trastuzumab resistance [89, 90].

The epithelial‒mesenchymal transition (EMT) plays a 
significant role in the initiation, progression, and metas-
tasis of breast cancer [91]. EMT induction results from 

Table 2  Clinical experimental study of targeted combined with endocrine therapy
Trial 
information

Study design Sam-
ple 
size

Population Outcomes

TAnDEM [63] trastuzumab + anastrozole (TA) vs. 
anastrozole (A)

212 Postmenopausal women with 
HER2/HR–copositive MBC

TA vs. A in the median PFS was 4.8 vs. 2.4 months; 
CBR was 47% vs. 22%; ORR was 21% vs. 9%.

NCT00073528 
[64]

letrozole + placebo (LP) vs. lapa-
tinib + letrozole (LL)

1286 Postmenopausal women with 
HER2/HR–copositive MBC

LL vs. LP in the median PFS was 8.2 v 3.0 months; 
clinical benefit (responsive or stable disease ≥ 6 
months) was 48% v 29%.

SYSUCC-002 
[65]

trastuzumab + endocrine therapy (ET) 
vs. trastuzumab + chemotherapy (CT)

392 HR and HER2-positive meta-
static breast cancer

ET vs. CT in the median PFS was 19.2 months vs. 
14.8 months; OS was 33.9 vs. 32.5 months.

CLEOPATRA 
[66]

pertuzumab + trastuzumab + docetaxel 
(PTD) vs. placebo + trastuzum-
ab + docetaxel (TD)

808 HER2-positive metastatic 
breast cancer

TD vs. PTD in the median PFS was 12.4 vs. 18.5 
months.

PERTAIN [67] pertuzumab + trastuzumab + AI (PTA) 
vs. trastuzumab + AI (TA)

129 HER2 and HR–positive meta-
static/ locally advanced breast 
cancer (MBC/LABC)

PTA vs. TA in the median PFS was 18.89 months 
vs. 15.80 months; rates of grade ≥ 3 AEs were 64 
(50.4%) of 127 and 48 (38.7%) of 124.

ALTERNATIVE 
[3]

lapatinib + trastuzumab + AI (LTA) vs. 
trastuzumab + AI (TA) vs. lapatinib + AI 
(LA)

355 Postmenopausal women 
with HER2 and HR-positive 
metastatic breast cancer

LTA vs. TA in the median PFS was 11 v 5.6 months.

PATRICIA [72] palbociclib + trastuzumab (A) vs. 
palbociclib + trastuzumab + letrozole(B)

71 HER2-positive advanced 
breast cancer

Primary endpoint was progression-free survival 
rate at 6 months of A vs. B was 42.8% (12/28) vs. 
46.4% (13/28); median PFS was 10.6 vs. 4.2 months.

monarcHER 
[73]

abemaciclib + trastuzumab + ful-
vestrant (group A) vs. abemaci-
clib + trastuzumab (group B) vs. 
chemotherapy + trastuzumab (group 
C)

237 HR and HER2-positive ad-
vanced breast cancer

In median OS was group A (31.1 months) vs. group 
B (29.2 months) vs. group C (20.7 months)

LORDSHIPS 
[74]

dalpiciclib + pyrotinib + letrozole 15 Postmenopausal women with 
HER2/HR–copositive MBC

The confirmed ORR of study treatment as first line 
(1 L) and second line (2 L) HER2-targeted therapy 
was 85.7% (6/7) and 50.0% (4/8); median PFS was 
11.3 months (95% CI: 5.3 months to not reached).
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the synergistic action of various signaling pathways and 
molecules, with the primary inducer being the transform-
ing growth factor TGF-β family, among which TGF-β2 
and TGF-β3 are highly expressed in trastuzumab-resis-
tant cells [92]. A multitude of transcription factors also 
play a role, such as the activation and overexpression of 
Snail, Twist, ZEB, Goosecoid, and Foxc2, conferring a 
mesenchymal phenotype upon tumor cells, leading to a 
significant decline in prognosis [93]. Notably, the overex-
pression of Snail, Twist, and other proteins during EMT 
strongly promotes trastuzumab resistance [94].

Mechanisms of drug resistance regulated by the tumor 
microenvironment
The tumor microenvironment is the tumor’s complex 
internal environment, including tumor cells, various 
nonmalignant cells (such as fibroblasts and immune 
cells), and extracellular components (such as growth fac-
tors and cytokines) [95]. Complex bidirectional signal 
transmission among these components jointly regulates 
the growth and proliferation of tumor cells, participates 
in angiogenesis, provides nutrients, and promotes the 
immune escape of tumor cells [96]. Studies have shown 
that tumor-associated fibroblasts (CAFs), tumor-asso-
ciated macrophages (TAMs), tumor-infiltrating lym-
phocytes (TILs), and their secreted factors in the tumor 
microenvironment play key roles in cancer drug resis-
tance [97, 98].

After breast epithelial cells become malignant, the 
microenvironment components change significantly, 
leading to uncontrolled proliferation and tumor cell inva-
sion [99]. Studies have reported that CAFs increase the 
number of cancer stem cells by secreting cytokines such 
as interleukin 6 (IL-6) and monocyte chemoattractant 
protein 1 (MCP-1/CCL2), thereby activating multiple 
pathways (such as the NF-κB, JAK/STAT3, PI3K/AKT/
mTOR and MAPK/ERK pathways) and inducing resis-
tance to breast cancer treatment [100, 101]. Interestingly, 
the fibroblast growth factor receptor (FGFR) on the sur-
face of CAFs is also involved in breast cancer resistance 
to treatment. For example, in HER2-positive breast can-
cer trastuzumab-resistant cells, FGFR4 expression is 
upregulated, and the extracellular structural domain of 
FGFR4 interacts with fibroblast growth factor to activate 
β-catenin/TCF-4 signaling through the phosphorylation 
of GSK-3β, which drives drug resistance in HER2-posi-
tive breast cancer [102]. In addition, CAFs can recon-
struct the extracellular matrix (ECM), forming a barrier 
between tumor cells and immune cells, hindering the 
approach of immune cells and thus achieving immune 
escape [103]. Notably, the reactive oxygen species (ROS) 
produced by CAFs during energy metabolism can induce 
EMT and acquire stem cell characteristics in tumor cells 
through the COX-2/NF-κB/HIF-1 signaling pathway, 

thereby leading to tamoxifen resistance in breast cancer 
[104, 105].

TAMs are derived mainly from circulating monocytes 
at tumor sites and promote tumor angiogenesis and can-
cer therapy resistance through metabolic reprogramming 
[106]. TAMs and breast cancer cells secrete inflamma-
tory cytokines and chemokines, such as TNF-α, IL-6, and 
CCL18, which cause crosstalk in multiple signaling path-
ways and promote drug resistance [107]. Studies have 
shown that TAMs secreting CCL2 can activate the PI3K/
AKT/mTOR signaling pathway in breast cancer cells, 
increasing resistance to trastuzumab and TAM recruit-
ment [108]. In addition, TAMs activate EGFR signaling 
via the Src/STAT3/ERK1/2 signaling pathway in breast 
cancer cells by secreting IL-8, promoting resistance to 
lapatinib [109]. TNF-α and IL-6 secreted by TAMs can 
activate the NF-κB/STAT3/ERK signaling pathway and 
ERα hyperphosphorylation in breast cancer cells, leading 
to the overexpression of cyclin D1, c-Myc, and IL-6 and 
promoting drug resistance [110].

Mechanisms of resistance regulated by epigenetic 
modifications
Epigenetics studies reversible and heritable changes in 
gene function, including DNA methylation, histone mod-
ification, chromosome remodeling, and noncoding RNA 
regulation, without changing the nuclear DNA sequence 
[111]. Abnormal epigenetic modifications cause cells 
to exhibit diverse gene expression patterns that affect 
embryonic development, stem cell differentiation, senes-
cence, tumorigenesis, progression, and drug resistance in 
complex biological processes.

DNA methylation is an important form of epigenetic 
modification that mainly occurs on CpG islands in gene 
promoter regions. In breast cancer, the promoter regions 
of tumor suppressor genes such as BRCA1 and BRCA2 
are hypermethylated, causing these genes to be silenced 
and thereby losing their inhibitory effect on tumor cell 
growth [112]. In addition, hypomethylation of the pro-
moter region of the drug resistance-related gene MDR1 
leads to upregulation of its expression, promoting drug 
efflux and increasing tumor cells’ resistance to chemo-
therapeutic drugs [113].

Numerous studies have suggested that dysfunctional 
epigenetic regulation may be responsible for the develop-
ment of cellular transformation and endocrine therapy 
resistance in breast cancer [114]. One study revealed that 
the histone methylase SET8 directly interacts with the 
key EMT regulator TWIST, jointly promoting the EMT 
and metastasis of breast cancer cells. This study revealed 
that SET8 directly regulates the transcription of the 
TWIST target genes E-cadherin and N-cadherin in a dual 
mode through its catalytic product, monomethylated 
histone H4K20 [115]. KDM6B induces drug resistance 



Page 13 of 16Xie et al. Cancer Cell International           (2025) 25:77 

in cells by modifying histones through demethylation 
and altering the epigenetic landscape and chromatin 
structure [116]. Interestingly, histone acetyltransferases 
(HATs) catalyze the acetylation of histones, transcription 
factors (TFs), and heat shock proteins, which can lead to 
resistance to tamoxifen treatment [117]. In breast cancer, 
ARID1A determines breast ductal luminal profile fidelity 
and sensitivity to endocrine therapy, and mechanistically, 
ARID1A deletion reduces chromatin accessibility and the 
binding of transcription factors (TFs) and decreases the 
binding of ERα and FOXA1 to chromatin [118]. Notably, 
under hypoxic conditions, HIF-1α and HIF-2α induce 
ALKBH5 expression, leading to increased mRNA sta-
bility of pluripotency factor genes such as NANOG and 
promoting the self-renewal and proliferation of breast 
cancer stem cells by increasing the stability of NANOG 
mRNA [119].

Challenge and perspective
A recent study demonstrated that ACTL6A can be an 
important biomarker for tumor proliferation and drug 
resistance in TPBC [120]. High GATA3 expression 
may be associated with poor prognosis in breast can-
cer patients and may reduce the occurrence of immune 
infiltration in TPBC [121]. For the precision treatment 
of TPBC, multiomics analysis, such as genome and tran-
scriptome analysis of single tumor cells, can more accu-
rately reveal the heterogeneity between cells, providing 
new options for tumor heterogeneity research. Tracing 
the origin of tumor cells and locking in tumor-initiating 
and metastasis-initiating cells helps analyze the mecha-
nisms underlying tumor metastasis.

The treatment of TPBC is unique in that it typically 
begins with targeted combination chemotherapy, is 
maintained with endocrine cotargeting, is augmented by 
targeted intensification with TKIs, and relies on ADCs, 
CDK4/6 inhibitors, and PIK3CA inhibitors for further 
guarantees, with anti-HER2 therapy as the mainstay. 
However, it is hoped that patients will obtain substan-
tial benefit regardless of the choice of surgical, neoad-
juvant, or adjuvant therapy. The innovative trajectory 
for the future treatment of TPBC necessitates a holistic 
approach that balances the considerations of both the 
HR and HER2 pathways. It is imperative to surmount 
the crosstalk between these pathways to discern the 
most efficacious therapeutic strategies and combination 
modalities among chemotherapy, HER2-targeted thera-
pies, and endocrine treatments, thereby optimizing their 
pharmacological potential. Harnessing the synergistic 
effects of a diverse array of pharmaceuticals can signifi-
cantly enhance therapeutic outcomes for patients with 
TPBC, mitigate the risks of recurrence and metastasis, 
and establish a robust foundation for improved clinical 
outcomes and patient prognoses.

However, tumorigenesis is a complex, multigene, mul-
tistep, and long-term process involving numerous con-
nected factors. Although significant advancements have 
been made in our understanding of the mechanisms 
underlying cancer development, these represent the tip 
of the iceberg, and there remains a pressing need for con-
tinued diligent exploration. Compared with other types 
of breast cancer, research on TPBC is relatively rare both 
domestically and internationally. Moreover, improv-
ing early screening and diagnostic methods for TPBC 
is a future research priority. Although combination 
therapy can theoretically lead to increased benefit for 
TPBC patients, the issue of drug resistance remains to be 
addressed, and research into resistance mechanisms will 
help clinicians better develop individualized and precise 
treatment regimens to maximize patient outcomes.
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