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Characterization of a Synovial B Cell-Derived Recombinant
Monoclonal Antibody Targeting Stromal Calreticulin in the
Rheumatoid Joints

Elisa Corsiero,* Lucas Jagemann,* Mauro Perretti,Jr Costantino Pitzalis,""1 and
Michele Bombardieri*'

Rheumatoid arthritis (RA) is characterized by formation of synovial ectopic lymphoid structures (ELS) supporting B cell autor-
eactivity toward locally generated citrullinated (cit) antigens, including those contained in neutrophil extracellular traps (NETs).
However, only a minority of RA-rmAbs from B cells isolated from ELS* RA tissues react against NETs. Thus, alternative cellular
sources of other potential autoantigens targeted by locally differentiated B cells remain undefined. RA fibroblast-like synoviocytes
(FLS) have been implicated in the release of RA-associated autoantigens. In this study, we aimed to define stromal-derived
autoantigens from RA-FLS targeted by RA-rmAbs. Seventy-one RA-rmAbs were screened toward RA-FLS by living-cell immu-
nofluorescence (IF). Western blotting was used to identify potential autoantigens from RA-FLS protein extracts. Putative candi-
dates were validated using colocalization immunofluorescence confocal microscopy, ELISA, immunoprecipitation assay, and
surface plasmon resonance on unmodified/cit proteins. Serum immunoreactivity was tested in anti-citrullinated peptide/protein
Abs (ACPA)* versus ACPA™ RA patients. Ten out of 71 RA-rmAbs showed clear reactivity toward RA-FLS in immunofluores-
cence with no binding to NETs. One stromal-reactive RA-rmAb (RA057/11.89.1) decorated a ~58-kDa band that mass spectrom-
etry and Western blotting with a commercial Ab identified as calreticulin (CRT). Confocal microscopy demonstrated significant
cellular colocalization between anti-CRT RA057/11.89.1 in RA-FLS. RA057/11.89.1 was able to immunoprecipitate rCRT. Deimi-
nation of CRT to cit-CRT moderately increased RA057/11.89.1 immunoreactivity. cit-CRT displayed increased blocking capacity
compared with unmodified CRT in competitive binding assays. Finally, anti—cit-CRT Abs were preferentially detected in ACPA™
versus ACPA™ RA sera. We identified a synovial B cell-derived RA-rmAb locally differentiated within the ELS™ RA synovium
reacting toward CRT, a putative novel autoantigen recently described in RA patients, suggesting that FLS-derived CRT may

contribute to fuel the local autoimmune response.

heumatoid arthritis (RA) is the most common inflam-
R matory erosive polyarthritis, characterized by breach

of self-tolerance and production of anti-citrullinated
peptide/protein  Abs (ACPA). Highly mutated and Ig class-
switched ACPA can be manufactured within synovial ectopic
lymphoid structures (ELS) displaying features of functional ger-
minal centers (GCs), which develop in around 40% of RA patients
(1-3). The frequent observation that hypermutated B cells within
ELS in the RA synovium and other autoimmune conditions display
evidence of clonal relationship and intratissue clonal diversification
supports the current notion that the humoral autoimmune response
within ELS, such as those developing in the RA joints, is Ag-driven,
leading to the local differentiation of autoreactive B cells (4-8).
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Recently, we have shown that synovial RA-rmAbs gener-
ated from single CD19" synovial B cells isolated from ELS*
ACPA* RA patients recognize locally released citrullinated
Ags, such as those contained in neutrophil extracellular traps
(NETs) (2). However, anti-NET immunoreactivity only ac-
counts for a minority of the cellular immune reactivity of the
large amount of RA-rmAbs that we generated, leading to the
hypothesis that alternative cellular sources exist that are re-
sponsible for the release of other potential autoantigens targeted
by in situ differentiated B cells.

RA fibroblast-like synoviocytes (FLS) play a crucial role in
the pathogenesis of RA, directly contributing to local cartilage
destruction and synovial inflammation (9-14). RA-FLS are
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characterized by a sustained, highly proliferative, and activated
state with an increased level of antiapoptotic and a decreased level
of proapoptotic factors, which induce them to undergo hyperplasia
(15, 16). Recently, RA-FLS have been shown to contribute to the
local release of citrullinated Ags, particularly in the context of
increased autophagy, suggesting that they may contribute to link
local inflammation and autoimmunity by acting as an additional
source of RA-associated autoantigens (17).

Thus, in this work, we aimed to investigate whether RA-rmAbs
generated from single synovial B cells obtained from ELS™ ACPA™*
RA patients display immunoreactivity toward RA-FLS and to
identify putative stromal-derived autoantigens fueling the local
autoimmune response.

Materials and Methods

Patients

Synovial fluids and tissues from RA patients were obtained after informed
consent (National Research Ethics Service Committee London: LREC 05/
Q0703/198) by aspiration of swollen knees and from total joint replacement,
respectively. RA patients were diagnosed according to the revised American
College of Rheumatology criteria (Table I) (18).

Generation of RA-rmAbs from ELS* RA synovial tissue

RA-rmAbs were generated from single synovial CD19* B cells as previ-
ously reported (2, 19). Compared to previous work, we obtained 14 ad-
ditional RA-rmAbs from one additional ELS* ACPA* RA donor, bringing
the total of RA-rmAbs tested to 80. Of these, we were able to express 71
RA-rmAbs at sufficient concentration for downstream analysis. Human
monoclonal IgG from naive B cells obtained from healthy donors (HD;
IgG-2c3) and rmAbs derived from naive and memory B cells from Sjogren
syndrome patients were used as controls (19).

Generation of FLS from RA patients and stimulation
of NETosis

FLS were obtained either from synovial tissue or synovial fluid as previ-
ously described (11, 20). At 90% confluent, FLS were passaged 1:3 using
0.25% trypsin/EDTA (Sigma). Culture medium was replaced every 3 to
4 d. FLS were used after passage 4 and up to passage 8 to avoid any
contamination from synovial macrophages. Neutrophils were isolated from
peripheral blood of HD using discontinuous gradient centrifugation and
seeded onto cell culture cover slides at 2 X 10° cells per well. Cells were
activated with 100 nM PMA for 4 h at 37°C to induce NETosis before
fixation with 4% paraformaldehyde (PFA).

Immunofluorescence microscopy on FLS and NETs

FLS were seeded at 1 X 10* cells per 200 l onto cover slides. After 24 h,
cells were washed in 1X PBS and fixed using either ice-cold 1:1 acetone:
methanol or 4% (final concentration) PFA. After washing in TBS and
blocking with serum-free protein block (DAKO), RA-rmAbs or control
rmAbs were diluted at 50 wg/ml in Ab diluent (DAKO) and applied for 1 h
at room temperature (RT). After washing with 1X TBS, Alexa Fluor 488
goat anti-human IgG was applied for 1 h at RT. DAPI (Invitrogen) was
added to visualize the nuclei. All sections were visualized using an
Olympus BX60 microscope. For double immunofluorescence confocal
microscopy in colocalization experiments, RA-rmAbs or control rmAbs
were incubated as above. A mouse anti-human calreticulin (CRT) (clone:
FMC 75; diluted 1:200; Abcam) was then added for 1 h at RT. After
washing, an Alexa Fluor 555-conjugated goat anti-mouse Ab (1:200;
Invitrogen) was incubated for 1 h at RT. After washing and mounting, the
slides were scanned using a Leica DMS5500 confocal microscope. NETs
were stained with RA-rmAbs diluted in PBS for 1 h RT. After washing
with TBS, Alexa Fluor 488 goat anti-human IgG (1:200; Invitrogen) was
added for 30 min at RT. NETs were visualized by DAPI and cit-H4 using a
polyclonal rabbit anti-histone H4 (citrulline 3; Millipore).

Protein extraction and Western blot analysis

All procedures were performed at 4°C using precooled reagents. FLS were
washed in ice-cold 1X PBS. radioimmunoprecipitation assay buffer
(25 mM Tris-HC1 [pH 7.6], 150 mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% SDS) containing Protease Inhibitor Cocktail (Sigma)
was added to the cell pellet. After 1 h on ice, sample was centrifuged at
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20,000 X g for 10 min at 4°C to pellet the cell debris. Supernatant was
collected, and the protein concentration was measured using the BCA
Protein Assay Kit, following the manufacturer’s instructions (Thermo
Fisher Scientific).

Five hundred nanograms of human recombinant CRT (hrCRT) (Abcam)
or protein extract obtained from RA-FLS was loaded on 4-20% SDS-
polyacrylamide gels (Bio-Rad), and proteins were transferred to a nitro-
cellulose membrane (GE Healthcare Life Sciences). The blocking was
performed in 5% (w/v) nonfat dry milk in 0.1% (v/v) TBST (blocking
buffer) overnight at 4°C with gentle agitation, followed by incubation with
the primary Ab RA-rmAbD or IgG-2c3 at 40 pg/ml in 5% blocking solution
for 2 h at RT with agitation. As a positive control for the Western blot,
40 ng of hrCRT was loaded on the gel, and mouse anti-CRT Ab 1:2000
(Abcam) was used for the blotting. After rinsing three times for 10 min in
TBST, the membranes were incubated with goat anti-human IgG peroxi-
dase 1:10,000 (Jackson ImmunoResearch Laboratories) or goat anti-mouse
IgG peroxidase 1:5000 (Santa Cruz Biotechnology) in 5% blocking buffer
for 1 h at RT. The membranes were washed again and incubated for 2 min
in Clarity Western ECL substrate (Bio-Rad). Band detection was per-
formed using Hyperfilm ECL (GE Healthcare Life Sciences) and devel-
oped in a Konica medical film processor (Konica Minolta). Densitometry
analysis was performed using Image] software.

Immunoprecipitation experiment

Immunoprecipitation (IP) was performed by mixing equal amounts
(6 pg) of RA-rmAb or IgG-2¢3 and hrCRT in 500 pl of Pierce IP Lysis
Buffer (Thermo Fisher Scientific) on a rotary shaker for 2 h at 4°C.
Protein A Sepharose beads (GE Healthcare Life Sciences) in IP Lysis
Buffer were added to the mixture and incubated on a rotary shaker for
2 h at 4°C. After centrifugation and washing three times with cold IP
Lysis Buffer, the immunoprecipitates were eluted with 1X Laemmli
buffer and resolved using SDS-PAGE. Following the electrophoresis,
the gel was stained using SimplyBlue SafeStain (Invitrogen), and the
band around 58 kDa was excised and analyzed by mass spectrometry, as
described below.

Enzymatic digestion

In-gel reduction, alkylation, and digestion with trypsin were performed on
the excised gel bands prior to subsequent analysis by mass spectrometry.
Cysteine residues were reduced with DTT and derivatized by treatment
with iodoacetamide to form stable carbamidomethyl derivatives. Trypsin
digestion was carried out overnight at RT after initial incubation for 2 h
at 37°C.

Liquid chromatography—tandem mass spectrometry analysis

Peptides were extracted from the gel pieces by a series of acetonitrile and
aqueous washes. The extract was pooled with the initial supernatant and
lyophilized. The sample was then resuspended in 18 pl of 50 mM am-
monium bicarbonate to be analyzed by liquid chromatography—tandem
mass spectrometry (LC-MS/MS). Chromatographic separation was per-
formed using an EASY-nLC system (Thermo Fisher Scientific). Peptides
were resolved by reversed-phase chromatography on a 75-pum C18 column
using a three-step linear gradient of acetonitrile in 0.1% formic acid. The
gradient was delivered to elute the peptides at a flow rate of 300 nl/min
over 60 min. The eluate was ionized by electrospray ionization using an
Orbitrap Velos Pro (Thermo Fisher Scientific) operating under Xcalibur
v2.2. The instrument was programmed to acquire in automated data-
dependent switching mode, selecting precursor ions based on their inten-
sity for sequencing by collision-induced fragmentation using a Top20 CID
method. The tandem mass spectrometry (MS/MS) analyses were con-
ducted using collision energy profiles that were chosen based on the mass-
to-charge ratio and the charge state of the peptide.

Raw mass spectrometry data were processed into peak list files using
Proteome Discoverer (v1.4; Thermo Fisher Scientific). Processed raw data
were searched using the Mascot search algorithm (www.matrixscience.
com) against the Uniprot database using All Taxonomy and Human
Taxonomy.

Citrullination of CRT in vitro

hrCRT protein (Abcam) was incubated with rabbit skeletal muscle PAD (7.5
U/mg) in 0.1 M Tris-HCI (pH 7.4), 10 mM CaCl,, and 5 mM DTT for 2 h
at 50°C. After incubation, CRT was stored at —20°C. Citrullination was
confirmed by Western blot analysis using an Anti-Citrulline (Modified)
Detection Kit (Merck Millipore) following the manufacturer’s instruction
(Supplemental Fig. 1).
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ELISA assay for anti-CRT and inhibition assay

ELISA plates were coated overnight with unmodified/citrullinated CRT
protein in 1X PBS at 1 pg/ml. RA-rmAbs or serum samples were trans-
ferred into ELISA plates and incubated for 1 h at RT. Unbound samples
were removed before incubation for 1 h with HRP-coupled goat anti-
human IgG (1:5000). Assays were developed using tetramethylbenzidine
(TMB) Substrate Reagent Set (Becton Dickinson Optical Enzyme
ImmunoAssay [BD OptEIA]). ODs were measured at 450 nm. All the RA-
rmAbs and controls were tested at 50 pg/ml followed by 1:5 serial dilution
(CRT protein only). Serum samples were tested after a 1:100 dilution. For
the inhibition assay, RA057/11.89.1 Ab at different dilutions was pre-
incubated with unmodified/citrullinated CRT protein at 0.1 pg/ml for 1 h at
RT before being transferred to the unmodified/citrullinated CRT-coated
plates. Thereafter, ELISA was carried out as described above. Results on
RA sera were expressed as arbitrary units (AU). AU = (100/N) X ODys0nm
serum sample, where N is the lowest OD 50, Value in the anti-CRT Ab in
the ACPA™ RA patient group.

Surface plasmon resonance analysis via Biacore platform

All experiments were performed using a Biacore T200 instrument from GE
Healthcare Life Sciences. Sensor chip Protein A, designated to bind human
Abs, and running buffer 10X HBS-EP+ were purchased from GE
Healthcare Life Sciences. Running buffer was diluted 10 times with
deionized water, filtered (0.22 wm), and degassed. RA-rmAb or control
rmAb was immobilized on the sensor chip surface at 2 pg/ml for 30 s at a
flow rate of 10 pl/min. CRT protein diluted at 500, 250, and 125 nM in 1X
running buffer was injected for 30 s at a flow rate of 10 wl/min. Running
buffer was then flushed for 45 s at a flow rate of 10 wl/min, and finally the
chip was regenerated by injecting a glycine solution (10 mM, pH 1.5) for
30 s at a flow rate of 10 pl/min.

Statistical analysis

Differences in quantitative variables were analyzed by unpaired (two-
sample) ¢ test and one-way ANOVA (multiple groups) using GraphPad
Prism 5.01 software. Correlations were determined using the “rcorr”
function in R’s ¢, which computes a matrix of the Pearson r and p cor-
relation coefficients for all possible pairs of columns between two input
matrices (i.e., anti—cit-CRT Abs and each clinical data point). Missing
values were deleted in pairs. A p value <0.05 was considered statistically
significant. Immunofluorescence colocalization analysis was performed by
the Pearson correlation coefficient using ImageJ software (21).
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Results

A subset of RA-rmAbs derived from synovial B cell clones
target RA synovial FLS

Seventy-one RA-rmAbs generated from single synovial B cells (2)
were tested for their reactivity toward synovial RA-FLS to assess
whether the synovial B cell clones could target stromal-derived
autoantigens. Immunofluorescence analysis showed that 10 out
of 71 (14%) rmAbs were uniquely reactive toward RA-FLS
(Fig. 1A-C), suggesting that anti-FLS and anti-NET Abs are
produced by largely independent populations of synovial B cells
(Fig. 1B). Conversely, none of the control rmAbs showed reac-
tivity toward RA-FLS (Fig. 1D). As depicted in representative
images in Fig. 1A, RA-rmAbs displayed a prevalent anti-
cytoplasmic pattern in RA-FLS, with invariably absent antinu-
clear immunoreactivity. As shown in Supplemental Fig. 2, the
RA-rmAb RAO057/11.89.1 conserved the immunostaining on
RA-FLS also in nonpermeabilized RA-FLS, suggesting that this
Ab can also recognize the cell-surface form of CRT.

Identification of CRT as an antigenic target of
a specific RA-rmAb

To characterize the stromal autoantigens recognized by the
RA-rmAbs, protein extract from RA-FLS was separated on
SDS-PAGE, transferred on nitrocellulose membranes, and probed
with the RA-rmAbs. As shown in Fig. 2A, one RA-rmAb
(RA057/11.89.1) clearly displayed a strong reactivity toward
a protein migrating in the ~58-kDa region. The band at 58 kDa
was excised from the gel followed by trypsin digestion into
peptides before mass spectrometry analysis (Fig. 2B). LC-MS/
MS analysis on the excised band corresponding to the 58 kDa
molecular mass confirmed the presence of human CRT,
showing that CRT was the third most-represented protein
(from over 100 detected by the LC-MS/MS analysis) with a
high amount of sequence coverage (62%) across the full length
of CRT.

B RA057/11.89.1 19G-2c3
o - -
w
>
=]
I
19G-2¢3 S$S-rmAb

RA-FLS

FIGURE 1. Synovial RA-rmAbs display immunoreactivity toward FLS. (A) Representative immunofluorescence picture of RA-FLS and NETs incubated

with different RA-rmAbs demonstrating selective immunoreactivity toward FLS-derived Ags (green). NETs were stained by DAPI (blue) and cit-H4 (red)
using a polyclonal rabbit anti-histone H4 (citrulline 3; Millipore). (B) Representative immunofluorescence pictures of HUVECs incubated with the RA057/
11.89.1 rmAbD and the control rmAb IgG-2c¢3. (C) Pie chart summarizing the RA-rmAbs’ reactivity toward RA-FLS (14%), FLS-NETs (6%), NETs only
(40%), and unknown reactivity (40%). (D) Representative immunofluorescence pictures of RA-FLS incubated with control rmAbs, including IgG-2¢3 and
rmAbs from Sjogren syndrome patients.
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80 MLLSVPLLLG LLGLAVAEPA VYFKEQFLDG DGWTSRWIES KHKSDFGKFV
LSSGKFYGDE EKDKGLQTSQ DARFYALSAS FEPFSNKGQT LVVQFTVKHE
58 QNI DEIGGGYV KLEPNSLDQT DMHGDSEYNI MFGPDIEBIGPG TKKVHVIFNY
- e~ KGKNVLINKD | REKDDEFTH LYTLIVRPDN TYEVKIDNSQ VESGSLEDDW
46 DFLPPKKIKD PDASKPEDWD ERAKIDDPTD SKPEDWDKPE HIPDPDAKKP
EDWDEEMDGE WEPPVIQNPE YKGEWKPRAQI DNPDYKGTW I HPE IDNPEYS
PDPSIYAYDN FGVLGLDLWQ VKSGTIFDNF LITNDEAYAE EFGNETWGVT
32 KAAEKQMKDK QDEEQRLKEE EEDKKRKEEE EAEDKEDDED KDEDEEDEED
KEEDEEEDVP GQAKDEL
N
oé G
N
i}&\ /\\\
@o Q?’Q‘)
C D Intracellular-CRT cs-CRT
RA-FLS
rCRT 1 2 3
(/2]
|
— L
o <IE
(14

anti-hCRT

FIGURE 2. CRT expression in RA-FLS. (A) RA-FLS protein extract was subjected to Western blotting and probed with anti-human CRT mAb or
RA-rmAb. A protein of around 58 kDa is bound by the RA-rmAb RA057/11.89.1 and anti-CRT Ab. (B) Following mass spectrometry analysis by collision-
induced dissociation and database searching, peptide and protein assignment detected a high amount of sequence coverage (62%) across the full length of
the CRT protein in the RA-FLS protein extract. Twenty-one unique peptides were assigned from a total of 39 tandem mass spectra (MS/MS; highlighted in
yellow). Modifications to particular amino acids are highlighted in green. (C) Representative CRT expression in RA-FLS from different donors (n = 3) by
Western blot. (D) Representative immunofluorescence pictures of RA-FLS showing expression of intracellular CRT and cell-surface (cs)-CRT (red). For
intracellular CRT, RA-FLS were fixed in ice-cold 1:1 acetone:methanol. For cs-CRT, RA-FLS were fixed in 4% PFA. Nuclei were stained with DAPI (blue).

CRT is a conserved chaperone protein mostly expressed in the en-
doplasmic reticulum that migrates to a ~58-kDa position in SDS-PAGE
(22). Besides MS analysis, we screened in silico for putative targets
with similar expected molecular mass in SDS-PAGE based on the
proteome analysis of RA-FLS performed by Dasuri et al. (23). Inter-
estingly, CRT emerged as one of the putative matches. Hence, a
commercial mouse anti-CRT mAb specifically recognized a band of
overlapping molecular mass in RA-FLS protein extracts (Fig. 2A).

We next confirmed the expression of CRT in RA-FLS from
different donors by protein immunoassay and cell-based immu-
nofluorescence. As shown in Fig. 2C, CRT was found abundantly
in RA-FLS protein extracts. We used hrCRT to confirm the spe-
cific binding of the commercial anti-CRT Ab used in Western blot,
although hrCRT displayed a slightly higher molecular mass
compared with naturally occurring CRT in RA-FLS, proba-
bly because of posttranslation modifications in Escherichia coli.
Using immunofluorescence with a commercial anti-CRT Ab on
living cells in permeabilizing and nonpermeabilizing conditions,
we demonstrated that CRT can be expressed by RA-FLS both
intracellularly and on the cell surface (Fig. 2D).

The RA-rmAb RA057/11.89.1 targets FLS-derived CRT

We then confirmed that the RA-rmAb RA057/11.89.1 specifically
targets FLS-derived CRT. As shown in Fig. 3A, double immu-
nofluorescence staining with RA057/11.89.1 in combination with
an anti-CRT Ab in permeabilizing conditions, analyzed with
confocal microscopy, demonstrated a strong cellular colocaliza-
tion with CRT and the RA-rmAb, which also recognizes CRT in
RA-FLS protein extracts. The degree of colocalization between

the two fluorophores was quantified using ImageJ, with the Pearson
correlation coefficient showing a strong correlation (r = 0.92). We next
used hrCRT to screen the RA057/11.89.1 Ab by Western blot. As
shown in Fig. 3B, this RA Ab confirmed the binding toward hrCRT in
Western blot, whereas not only RA-rmAbs with no binding to RA-FLS
in cell-based immune screening but also other RA-FLS-reactive
RA-rmAbs failed to recognize CRT in Western blot (Fig. 3C,
Supplemental Fig. 3, respectively).

The binding toward arg-hrCRT was quantitatively assessed by
screening the RA057/11.89.1 in ELISA. The RA-rmAb showed
binding to CRT in a dose-dependent manner (Fig. 3D, red line). In
contrast, a large majority of RA-rmAbs failed to display any binding
to CRT (Fig. 3D, black lines). We used inhibition assay to further

Table I. Clinical data of the RA patients used for anti—cit-CRT Abs
ELISA assay

RA patients (n = 84)

Gender, %

Female 72.6
Male 27.4
Age 525 £ 1.7
ESR 38.6 £ 34
CRP 18.7 = 35
VAS 649 = 2.8
Tender joints 10.3 £ 0.7
Swollen joints 6.7 = 0.6
DAS28 55 %02

CCP (or ACPA) Abs

65 (ACPA™)/19 (ACPA™)

The values are expressed as mean = SEM.
CCP, cyclic citrullinated peptide; CRP, C-reactive protein.
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Table II.  V(D)J gene usage and somatic mutation analysis of RA057/11.89.1
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RA057/11.89.1 IgM

H chain Vu D Ju (=) CDR3 (Amino Acid) (+) Length
1-18 2-2 6 1 RYCSSTSCYKGSYYYYYYYMDV 2 22
L chain Vk Ik (=) CDR3 (Amino Acid) +) Length
3-20 4 0 QQYGSSPLT 0 9
V Region Nb  FRI Nb of CDRINbof FR2 Nb of CDR2 Nb of FR3 Nb of CDR3 Nb of
Mutations of Mutations Mutations Mutations Mutations Mutations Mutations Mutations
H chain 1 1 0 0 0 0 0
L chain 12 12 0 0 0 0 0

(—)/(+), negative/positive charges; FR, framework region; Nb, number.

confirm whether CRT protein was recognized by the RA-rmAb. As
shown in Fig. 3E, preincubation of the RA057/11.89.1 Ab with CRT
reduced the binding to arg-CRT protein to around 60%.

To corroborate the CRT/RA-rmAb binding results, IP assays
were performed. As shown in Fig. 4A, IP of hrCRT with the
RA-rmAb displayed a band around 58 kDa. Although we
observed a similar band using the control rmAb IgG-2c3,
because the H chain of the Igs (50 kDa) migrates in the
same region of CRT (data not shown), LC-MS/MS analysis of
the excised immunoprecipitate complexes clearly identified
CRT in the IP CRT-RA057/11.89.1 sample but not in the IP
CRT-1gG2c3 sample (Fig. 4B, 4C). Finally, binding to CRT
was confirmed by surface plasmon resonance via Biacore
platform (Fig. 4D).

anti-hCRT

RA-rmAb

RA057/11.89.1

0.6

0.54

0.44

0.34

arg-CRT
OD 450 nm

0.24

0.14

0.0+
1000 10000 100000

RA-rmAb [ng/mL]

RA-rmAb binding characterization toward deiminated CRT

We next investigated whether the identified RA-rmAb with anti-CRT
immunoreactivity displayed enhanced binding toward an in vitro
citrullinated form of CRT (cit-CRT). CRT’s primary structure has
eight arginine residues that are potential sites of citrullination. Thus,
unmodified CRT (arg-CRT) was deiminated in vitro by peptidyl ar-
ginine deiminase 2 (PAD2), and citrullination was confirmed by
Western blotting using a specific anti-citrulline Ab (Supplemental
Fig. 1). We used both Western blot and ELISA to screen the
RA-rmAbD toward unmodified and deiminated CRT. As shown in Fig.
5A, densitometry analysis of SDS-PAGE Western blot suggested that
the anti-CRT RA-rmAb displayed an increased binding toward cit-
CRT. Similar data were observed in ELISA toward citrullinated
versus arg-CRT, as depicted in Fig. 5B. As represented in Fig. 5C,

E *kkk

100+

FIGURE 3. A specific RA-rmAb recognizes unmodified CRT. (A) Representative immunofluorescence picture showing staining for CRT (red) and
RA-rmAbD (green). Nuclei were stained with DAPI (blue). (B and C) RA-rmAbs binding to arg-CRT in Western blot. As negative control, an rmAb (IgG-2c3)
from HD naive B cells was used. (D) RA057/11.89.1 RA-rmAb (red line) and negative RA-rmAb binders (black lines) binding to arg-CRT by ELISA. All
RA-rmAbs were tested at a concentration of 50 wg/ml followed by four serial dilutions (1:5). Results are expressed as absorbance at 450 nm. The data are
the results of two independent experiments. (E) Binding inhibition of RA057/11.89.1 RA-rmAD to arg-CRT preincubated with or without soluble arg-CRT
(inhibitor). Results are expressed as percentage of binding inhibition. The data are the results of three independent experiments. **#*p < 0.0001.
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FIGURE 4. Binding studies of RA057/11.89.1 toward CRT. (A) IP of hrCRT and RA057/11.89.1 or IgG-2c3. As control, hrCRT alone was loaded.
Coomassie staining is shown. (B and C) CRT protein was detected in the IP sample RA-rmAb/CRT following LC-MS/MS and database searching against
the human portion of the Uniprot database but not in the IP sample with the control rmAb IgG-2c3. Example of a fragmentation spectra of a peptide from
the CRT protein detected in the IP sample is shown. MS/MS fragmentation spectra of a peptide ion with mass-to-charge (m/z) ratio of 1043.99**. Fragment
ions annotated with the y-series are database assigned from the C-terminal end of the peptide, whereas fragmentation peaks annotated with the b-series arise
from the N-terminal end of the peptide. A strong consecutive matching of the peaks in both series provides strong evidence for the correct database
assignment of the spectra to the peptide in the protein of interest. (D) Sensorgrams showing binding of RA057/11.89.1 RA-rmAb and one control rmAb to
CRT protein used at different concentrations. Binding is expressed as responsive unit (y-axis) over time (x-axis).

preincubation of the RA-rmAb with deiminated CRT induced a
greater decrease (around 60%) in the binding to in vitro cit-CRT
compared with preincubation with soluble arg-CRT.

Increased levels of anti—cit-CRT Abs in sera from ACPA*
RA patients

We finally investigated the prevalence of anti-CRT Abs in a
cohort of 84 patients with early arthritis who were naive to any

treatment and part of the Pathobiology of Early Arthritis Cohort
(http://www.peac-mrc.mds.qmul.ac.uk/), and 16 HD. Serum
anti—cit-CRT Abs were measured by ELISA using deiminated
hrCRT (Fig. 5D, Supplemental Fig. 4). Early RA patients were
divided into ACPA* (n = 65) and ACPA™ (n = 19) based on
conventional anti-CCP2 test, with HD serum samples used as
controls. As shown in Fig. 5D, Ab levels to cit-CRT in ACPA*
RA patients were significantly increased compared with
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FIGURE 5. RA057/11.89.1 immunoreactivity toward deiminated CRT and expression of anti—it-CRT Abs in serum of RA patients. (A) Left panel,
RAO057/11.89.1 RA-rmADb was tested in Western blot toward arg-CRT versus cit-CRT. Total arg-/cit-CRT protein is shown in the top blot. Right panel,
Densitometry analysis of the Western blot is shown. Data were normalized toward total protein for arg-CRT and cit-CRT, respectively. (B) RA057/11.89.1
RA-rmAb binding to arg- and cit-CRT by ELISA. RA-rmAb was tested at a concentration of 50 pg/ml followed by four serial dilutions (1:5). Results are
expressed as absorbance at 450 nm. (C) Binding inhibition of RA057/11.89.1 RA-rmAb to cit-CRT preincubated with or without soluble arg- or cit-CRT
(inhibitor). Results are expressed as percentage of binding inhibition. (D) Anti-arg-CRT and anti—cit-CRT Ab level in serum from ACPA* RA patients (n = 65),
ACPA™ RA patients (n = 19), and HD (n = 16) measured by ELISA. Results are expressed as AU. AU = (100/N) X ODysonm serum sample, where N is
the lowest ODysonm value in the anti—arg-CRT Ab in ACPA™ RA patient group. (E) Summary table showing correlation of serum anti-cit-CRT Abs with
ACPA, CRP, ESR, RF, VAS, tender/swollen joints, and DAS28 score. The data in (A), (B), and (D) are the results of two independent experiments, whereas
data in (C) are the results of three independent experiments. *p < 0.05, **p < 0.01. CRP, C-reactive protein.

ACPA . Analysis was performed to evaluate correlation be-
tween anti—cit-CRT Abs in RA patient sera and the levels of
ACPA, CRP, erythrocyte sedimentation rate (ESR), rheumatoid
factor (RF), visual analog scale of pain (VAS), tender/swollen
joints, and disease activity score (DAS) 28 score at baseline
(Fig. 5E). A significant correlation was observed between anti—
cit-CRT Abs, ACPA (r = 0.26, p = 0.02), CRP (r = 0.27,
p =0.01), and ESR (r = 0.23, p = 0.04).

Discussion

The identification of ELS developing in the joints of RA patients as
functional sites of B cell affinity maturation and the evidence that
within ectopic GCs B cells undergo intrasynovial clonal diversi-
fication strongly indicated that humoral immune responses in
the RA synovium are driven by locally released (auto)antigens
(4-6, 8).

To investigate the cellular sources and the nature of the Ags
recognized by hypermutated synovial B cells, we optimized
a method to generate full rmAbs from B cells single-sorted from
ELS" synovial tissues from ACPA* RA patients. So far, we have
generated over 80 RA-rmAbs that display for the vast majority

highly mutated Ig H and L chain V genes and evidence of intra-
tissue affinity maturation (2). In previous work, we identified a
subset of around 40% of RA synovial B cells derived from ectopic
GCs that displayed reactivity toward Ags released by NETs, and
we characterized these autoantigens as primarily citrullinated
histones H2A and H2B (2). In the present work, we explored the
possibility that alternative, non-NET cellular sources exist in the
RA joints that are capable of releasing other potential auto-
antigens, driving the local adaptive immune response in the RA
synovial tissue. In particular, we focused our attention on FLS, a
key proinflammatory component of the RA synovitis that contain
a high amount of putative RA-associated autoantigens in their
deiminated form, such as vimentin and a-enolase, as shown in a
proteomic profiling of RA-FLS (23). Additionally, recent work
that we contributed to demonstrated that the induction of auto-
phagy in RA-FLS favors the generation of citrullinated Ags,
suggesting that RA-FLS may contribute to inflammation and au-
toimmunity also by releasing RA-associated autoantigens in the
synovial microenvironment (17).

Therefore, we initially screened our RA-rmAbs using indirect
immunofluorescence with live primary RA-FLS from different
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donors as substrate. By this method, we identified 10 (14%)
RA-rmAbs with clear immunoreactivity to RA-FLS without any
binding to NETs. Of relevance, all the anti-FLS clones displayed
a prevalent cytoplasmic pattern in immunofluorescent staining
and for the vast majority were immunoreactive using both per-
meabilizing and nonpermeabilizing methods.

Using immunoblot from RA-FLS protein extracts, we observed
that one RA mAb (RA057/11.89.1) was strongly reactive toward a
~58-kDa band. Analysis of the V(D)J gene usage for both H and L
chains revealed that RA057/11.89.1 mAb was characterized by
Vy1-18/D2-2/Jy6 and Vk3-20/Jk4 gene segments. Furthermore, the
original isotype of this clone was Igj., which sustained the low number
of mutations observed in the H chain V region (n = 1). Instead, we
observed a higher number of mutations in the L chain V region
(n =12). A detailed analysis of this clone is reported in Table II.

Mass spectrometry of RA-FLS protein extract, in silico analysis
of RA-FLS proteomic profiles, and a series of coimmunoblot and
colocalization confocal microscopy experiments identified the
58-kDa band as CRT. CRT is a conserved chaperone protein that
migrates into the 58-kDa position in SDS-PAGE (22), is mainly
expressed in the endoplasmic reticulum, and is responsible for
Ca** transportation and folding of glycoproteins (24). CRT can
also be expressed on the cell surface, playing a critical role in the
clearance of apoptotic cells (25), and can be released in the ex-
tracellular environment via the secretory pathway (26). It is
formed by three domains: 1) N-terminal domain, 2) middle do-
main (named P-domain), and 3) C-terminal domain. CRT has been
found to be abundantly expressed in RA-FLS (23), and several
studies indicated a higher concentration of CRT in the serum and
synovial fluid of RA patients compared with osteoarthritis and HD
serum samples that correlated with RA disease activity (27, 28).
Increased levels of CRT in the synovial tissue of RA compared
with osteoarthritis patients have been also demonstrated (24, 25,
27-29). Interestingly, it has been shown that CRT recognizes the
RA shared epitope HLA domain sequence and can modulate the
signaling activated by the shared epitope ligand when present in
its citrullinated form (29). Moreover, although native CRT has
been described as an autoantigen in several autoimmune conditions
(30, 31), its role as a target of autoreactive B cells in RA has only
very recently been investigated, with the demonstration that around
60% of RA patients display circulating anti—cit-CRT Abs (32).

In our work, we first confirmed, to our knowledge, that CRT was
highly expressed in RA-FLS not only intracellularly but also on
the cell surface using a highly monoclonal anti-CRT Ab. The
specific reactivity of one of our RA-rmAbs (RA057/11.89.1) with
CRT was then confirmed by using at least three methods: 1)
colocalization with anti-CRT in confocal microscopy; 2) Western
blot using RA-FLS protein extracts and/or hrCRT as substrates
and IP using CRT and the RA-rmAb, followed by LC-MS/MS
analysis; and 3) ELISA using hrCRT with competitive binding
assays. We also generated cit-CRT by deiminating CRT with
PAD2 in vitro and demonstrated using both immunoblot and
ELISA that the anti-CRT rmAb identified displayed enhanced
binding to the citrullinated compared with the native form of CRT,
with preincubation with cit-CRT able to decrease RA057/11.89.1
immunoreactivity by 60%.

To confirm the results obtained at the single synovial B cell
clonal level with the systemic autoantibody production in RA
patients, we tested the reactivity of 84 patients with early RA
toward cit-CRT. We significantly detected anti—cit-CRT Abs more
frequently in the serum of ACPA™ RA patients compared with
those with a negative ACPA status, expanding on recent data
obtained in established RA patients (32) and suggesting that CRT
acts as an autoantigen already in early stages of RA in a subset of
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patients. Interestingly, anti—cit-CRT Abs were significantly and
positively correlated with ACPA, CRP, and ESR levels, although
their clinical significance in the context of the ACPA family re-
mains to be elucidated in larger prospective cohorts.

Nevertheless, our work highlights CRT as a novel autoantigen
locally released in the RA synovial compartment that appears to
promote local humoral autoimmunity. These data are also of
interest in line with recent studies showing that cell-surface CRT
in its citrullinated form can enhance the binding to a shared
epitope ligand and can activate downstream innate and adaptive
immune cell signaling, which is in keeping with the notion that
ACPA are strongly associated with the shared epitope amino
acid sequence of the HLA-DR B-chain (shared epitope) (25, 29,
33-35). Whether anti-CRT Abs could interfere with the strength
of signaling from the proposed CRT—shared epitope complex re-
mains to be formally elucidated, but it has been proposed that these
Abs might affect the binding of cit-CRT to the shared epitope li-
gand, thus influencing the inflammatory cascade activated by this
interaction (32). Likewise, further experiments are needed to in-
vestigate whether anti-CRT Abs can modulate RA-FLS function and
promote a proinflammatory phenotype in these cells. The charac-
terization of RA057/11.89.1 as an anti-CRT rmAb provided in our
work will pave the way for such functional experiments.

In summary, in this work we identified synovial B cell clones
diversified within RA synovial ELS that react against RA-FLS-
derived autoantigens, and we characterized RA057/11.89.1 as a
novel mAD targeting stromal-derived CRT. These results, linked
with recent data reporting a high prevalence of anti-CRT Abs in
RA patients, suggest that CRT can act as a locally released
autoantigen that can be targeted by autoreactive B cells.
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