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Abstract: Autologous blood products, such as platelet-rich plasma (PRP), are gaining increasing
interest in different fields of regenerative medicine. Although growth factors, the main components
of PRP, are thought to stimulate reparation processes, the exact mechanism of action and main
effectors of PRP are not fully understood. Plasma contains a high amount of extracellular vesicles
(EVs) produced by different cells, including anucleated platelets. Platelet-derived EVs (PL-EVs)
are the most abundant type of EVs in circulation. Numerous advantages of PL-EVs, including
their ability to be released locally, their ease of travel through the body, their low immunogenicity
and tumourigenicity, the modulation of signal transduction as well as the ease with which they
can be obtained, has attracted increased attention n. This review focuses briefly on the biological
characteristics and isolation methods of PL-EVs, including exosomes derived from platelets (PL-
EXOs), and their involvement in the pathology of diseases. Evidence that shows how PL-EVs can
be used as a novel tool in medicine, particularly in therapeutic and regenerative medicine, is also
discussed in this review.

Keywords: platelet; platelet-rich plasma; platelet-derived extracellular vesicles; platelet-derived
exosomes; therapeutic application

1. Introduction

Blood is composed of different cellular, sub-cellular and molecular components that
are involved in essential stages of wound healing [1,2] and regenerative processes [3,4].
Autologous blood products are subfractions of whole blood of a patient and are produced
for direct application in ambulatory treatment. Notably, platelet-rich plasma (PRP) rep-
resents a well-known autologous derivative of whole blood with favourable immune,
haemostatic and regenerative effects [5] and is characterized by a higher than baseline
concentration of platelets prepared by centrifugal separation. It has been used in various
medical fields, mainly including orthopaedics [6–8] as well as sport medicine [9,10], soft
tissue injuries [11,12], dentistry [13,14], dermatology [15,16] and pain management [6].

Platelets, also named thrombocytes, are disc-shaped irregular components of blood
and are essential for central physiological processes. Although platelets are classified as the
smallest cells of blood without a nucleus, they exhibit active RNA metabolism during their
relatively short life (~7-day half-life) [17]. They are derived from large megakaryocytes
in bone marrow during thrombopoiesis. Although the primary function of platelets is
haemostasis, they also contain and transport molecules implicated in numerous physiolog-
ical and regenerative processes, mainly including wound healing [18], cell activation and
proliferation [19,20], angiogenesis [21], immune cell recruitment and inflammation [22],
bone regeneration [23] and cartilage repair [8]. It is believed that activated platelets secrete
high amounts of growth factors (GFs), immunoglobulins, cytokines and molecules that ac-
tively contribute to the tissue-repairing process and support key functions of PRP. The most
important natural growth factors—platelet-derived growth factor (PDGF), transforming
growth factor (TGF), epidermal growth factor (EGF), insulin-like growth factor (IGF), basic
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fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF)—found in the
α-granules of platelets stimulate cell proliferation, migration, chemotaxis, differentiation
and angiogenesis, and promote the formation of extracellular matrix. Although PRP has
broad prospects for therapeutic use, its specific molecular mechanism is still unclear. Beside
growth factors, blood products contain a heterogeneous group of cell-derived membrane
vesicles, called extracellular vesicles (EVs), which may be the main contributors to PRP
effects. Plasma-derived EVs may originate from different cell types, such as leucocytes,
erythrocytes, dendritic cells (DCs), platelets, mast cells, epithelial cells, endothelial cells and
neurons. In fact, the majority (about 25%) of blood-derived EVs are thought to originate
from the megakaryocytes, i.e., either from circulating platelets or directly from platelet
precursor cells, which reside in the bone marrow [24,25]. EVs released from activated
platelets can be distinguished from those generated from megakaryocytes the by expres-
sion of typical activation markers, such as P-selectin (CD62P). In 1967, platelet-derived EVs
(PL-EVs) were observed for the first time by Wolf with the help of electron microscopy [26].
He named these lipid-rich particles “platelet dust” with procoagulant activity. Based on
these observations, Warren et al. further demonstrated that PL-EVs were released during
the adhesion of platelets to the subendothelial layer of coronary arteries in men [27].

It has been found that upon activation, blood platelets are able to release two main
types of EVs into the bloodstream, i.e., microparticles (MPs) and exosomes (EXOs) [28], which
can be recognised by different target cells such as endothelial cells and monocytes [29,30].
A recent study by McArthur et al. demonstrated that platelets may also release apoptotic
bodies (1000–3000 nm) due to them undergoing apoptosis [31]. Platelet-derived micropar-
ticles (PL-MPs) are plasma membrane-derived larger vesicles (100 nm–1 µm) released
from cells during stress conditions, including activation and apoptosis, with a typical im-
munophenotype of platelets and megakaryocytes [32]. PL-MPs are more likely to contain
protein cargo of the mother cell and they express and transfer functional receptors from
platelet membranes to other cell types [33,34]. Platelet-derived exosomes (PL-EXOs) with
sub-micrometre diameters (30–100 nm) come from multivesicular bodies and α-granules
by the endocytic pathway and have been shown to be highly modulated by the environ-
mental conditions. Therefore, the exosome composition is more variable and seems to
reflect the physiological status of the secretory cell. PL-EXOs include proteins, mRNAs
and miRNAs [35]. An overlap of both subtypes of PL-EVs is apparent and is affected
mainly by the isolation protocol and detection technique, and often leads to the inability to
distinguish between them. Nevertheless, PL-MPs often expose phosphatidylserine [36],
whereas the marker of platelet origin, CD41, [37,38] and higher amounts of CD63 were
found in PL-EXOs [28].

PL-EVs were mainly studied for their role in blood coagulation and have proven
their thrombogenic properties [39,40]. Recent evidence shows that PL-EVs act as a cargo
of several functional molecules, including signalling mediators, growth factors, lipids,
proteins, nucleic acids (e.g., circRNA, lncRNA, miRNA) which mediate cell-to-cell coopera-
tion, immune reaction, inflammatory response, and reparation [41,42]. In addition, only
a few studies have examined the functions and roles of exosomes derived from platelets.
Janiszewski et al. successfully isolated exosomes from platelets and demonstrated their
relation to the pathophysiology of sepsis [43]. In 2014, Torreggiani et al. isolated exosomes
from PRP as novel effectors in human platelet activity [44]. They firstly discussed the use of
PL-EXOs for bone tissue regeneration. Recent studies further underlie the beneficial effect
of PL-EXOs from PRP in preventing osteonecrosis [45] and promoting the reepithelization
of chronic wounds [37]. Based on these findings, it is relevant that PL-EXOs carry some of
the most important GFs of platelet origin to protect them from destruction before arriving
to the target cells. Moreover, PL-EVs can be easily isolated from activated PRP or platelet
lysates principally by ultracentrifugation and ultrafiltration. Due to the composition of
the surrounding membrane, their biological cargo is protected from rapid catabolism and
processing by macrophages [46]. PL-EVs are free to move with body fluids, so they can
also be regarded as nano-delivery treatments [47,48]. However, the number and final
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cargo of PL-EVs is mainly affected by the activation process with agonists or mediators,
hemodynamic stress, ageing and inflammatory pathologies [49].

Recently, there has been great interest in the use of EVs from various cell types as
therapeutic tools in human and veterinary medicine [50–53]. As concentrated platelets
by means of PRP possess reparative and healing machinery, it is expected that PL-EVs
might exhibit similar beneficial therapeutic properties under normal conditions due to
their molecular cargo. They might have therapeutic potential as they can support coagula-
tion, angiogenesis, regulate immunity and accelerate tissue repair. PL-EVs derived from
resting platelets versus thrombin-activated platelets demonstrate mild or strong haemo-
static properties, respectively [54,55]. Moreover, exosomal PL-EVs have been beneficial in
the treatment of chronic injuries and trauma [56,57], alleviating knee osteoarthritis [58],
promoting wound healing [37] or modulating the progression of osteonecrosis [45].

2. Platelet-Rich Plasma

In order to increase the chances of cure in the context of regenerative medicine tech-
niques, the next approach based on platelet derivatives, such as PRP, has attracted the
attention of researchers and clinicians. On the other hand, the lack of reproducibility—
mainly due to non-standardized separation methods, platelet content, donor variability,
storage conditions and activation protocol—impact the cell profile and secretory compo-
nent of the final product and therefore hinder its subsequent clinical use. At least more
than 20 different PRP production devices are currently available and are applied without
standardization [59]. Studies also often report limited characterization of the content of
PRP [60].

PRP is defined as a higher concentration of autologous human platelets exceeding
physiological concentration in a small volume of plasma. There are many ways to prepare
PRP with several procedural variables, such as the centrifugation parameter (speed, number
of speeds), the volume and method of drawing blood and the type of anticoagulants which
may affect platelet yield. Generally, PRP is obtained from whole blood supplemented with
an anti-clotting agent after cycles of centrifugation. As it was described in our previous
clinical study [61], our manual preparation of PRP (Figure 1) starts with a whole blood
centrifugation, called “hard centrifugation”, in order to separate the blood into three layers:
a lower layer with red blood cells (RBCs), buffy coat rich in white blood cells (WBCs) and
platelets in an upper layer with plasma. Plasma in combination with buffy coat is collected
and submitted to a further centrifugation, called “soft spin”, to separate WBCs. The third
“hard centrifugation” is performed to obtain a fraction poor in platelets (upper layer) and a
fraction rich in platelets (inferior layer). To take effect, PRP has to be activated to induce
platelet degranulation, which releases more than 30 types of proteins from α-granules
(e.g., TGF-β, PDGF, bFGF, EGF, VEGF, connective tissue growth factor—CTGF, IGF, IL-1,
PF4). These proteins were found to promote the formation of extracellular matrix, cellular
replication, angiogenesis, cell proliferation and differentiation [62]. Upon intra-articular
injection of non-activated PRP into a defect, PRP can be activated by contact with local
tissue factor [63,64].

Currently, numerous publications show that PRP is effective in the treatment of
several disorders, including musculoskeletal pathologies, such as chronic sports-related
injuries of the muscles and tendons, and degenerative joint diseases. In the context of
orthopaedics, a series of previous studies on PRP treatment revealed its positive effect
in patients with osteoarthritis compared with hyaluronic acid injection and placebo [65].
Various in vitro [66–68] and animal studies [69–72] also used PRP to demonstrate the
beneficial effect of PRP on cell proliferation, structural modulation and inflammation status
in the knee joint.

Despite their wide clinical use, the requirement for autologous platelets presents a lim-
itation in its safety application, and the mechanism by which PRP produces improvements
in the field of repair and regeneration remains subject to debate. Given that effective factors
secreted by PRP can be encapsulated and enriched in PL-EVs, there is an assumption
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that these particles (MVs and EXOs) have a similar biological action to platelets and that
the direct application of these PL-EVs has no side effect even with allogeneic application.
Based on these findings, the important immune and inflammatory roles of platelets can
be in part substituted and the regenerative properties can be improved by using PL-EVs
instead of living platelets.
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3. Platelet-Derived Extracellular Vesicles

To manage and control all their tasks, platelets release—in addition to cytokines,
chemokines and proteins—EVs into the bloodstream, which make up more than 25% of
all EVs in the circulating plasma [40]. Therefore, the functional relevance of EVs in blood
plasma and their considerable role in the biological function of activated platelets have
become an important new focus of the current research.

Extracellular vesicles were originally identified in platelet-free plasma and were
shown to be rich in negatively charged phospholipids and to support coagulation [26].
Circulating PL-EVs in healthy individuals are released from activated platelets or from
megakaryocytes; however, the latter ones have less contribution to inflammation and
complement activation, so therefore are currently less of a focus in investigations [73].
Megakaryocyte-derived EVs are constitutively released from megakaryocytes in the bone
marrow into the blood and are dominant in healthy individuals, while PL-EVs increase
in conditions with enhanced platelet activation. Common detection markers for EVs
contain numerous platelet-specific molecules, such as adhesion proteins (e.g., CD41, CD42a,
CD31, fibrinogen, thrombospondin), platelet-specific glycoprotein (GP) IIb-IIIa, or proteins
involved in coagulation (e.g., FVa, FVIII, TF) and growth factors (e.g., VEGF, PDGF, TGF-
β1). PL-EVs generally express the platelet activation markers P-selectin (CD62P) and
lysosome-associated membrane glycoprotein 1 (LAMP-1 or CD107a), while megakaryocyte-
derived EVs do not [74]. Membranes of PL-EVs are enriched in free cholesterol and
phospholipids. Both megakaryocytes and platelets release EVs that express tissue factor
(TF) and phosphatidylserine (PS) [75,76]. Both PS and TF are able to initiate the extrinsic
coagulation pathway involving active Factor VII. On the other hand, one study noted that
many PL-EVs do not bind annexin V (suggesting they are phosphatidylserine negative)
and have a higher expression of glycoprotein Ib [77]. In vitro study showed that PL-MVs
can bind the anticoagulant protein S and support the activation of protein C that led to the
anticoagulant effect [78].

EVs derived from activated platelets can mainly be divided into two populations.
The first population is composed of larger vesicles (100 nm–1 µm) as microparticles (PL-
MPs) generated by plasmatic membrane gemmation. The second population, named
PL-EXOs, is composed of small vesicles (<100 nm) which are of endosomal origin and
are released during the fusion of multivesicular bodies to the plasma membrane by the
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endocytic pathway. The basic characteristics of these two subtypes are summarized in
Table 1. EVs are identified based on their size, density [24,79] and on the biochemical
composition, including proteins, lipids, metabolites, and nucleic acids. Their proteomic
profile is dynamic and the variation in EVs subtypes is likely to depend on the isolation
and activation procedures. Markers that uniquely identify EV subtypes are almost lacking
to date. Therefore, is difficult to distinguish between PL-MPs and PL-EXOs.

Table 1. Characteristics of main platelet-derived extracellular vesicles.

PL-EXOs PL-MPs

Size of diameter 30–100 nm 100–1000 nm
Density 1.13–1.19 g/mL 1.25–1.30 g/mL

Sedimentation 100,000 g 10,000 g
Morphology Cup-shaped, homogenous Irregular shape, heterogeneous
Cell origin multivesicular bodies plasma membrane

Production mechanism ESCRT–dependent,
ESCRT–independent

direct budding from the plasma
membrane

Lipids Lipidic molecules from the parental
cells (including BMP)

lipid content primarily derived from
plasma membrane and resemble the

parental cells (without BMP)
Surface markers CD9, CD63, TSG101, ALIX Flotilin

Platelet-specific
proteins

CD31, CD41, CD42a, CD62P, PF4,
GPIIb/IIIa, GPIb, GPV, CXCL7,

HMGB1

Factor X, prothrombin, GPIb, TF, CD31,
CD36, CD62P, CD61, CD40L, vWF,

fibrinogen, thrombospondin

miRNA miR126-3p, mi-R21, mi-223, miR-339,
miR-328, miR-22, miR-185, miR-320b

Abbreviations: ESCRT, endosomal sorting complex required for transport; BMP, bone morphogenetic protein;
TSG101, tumour susceptibility gene 101; TF, tissue factor; PF4, platelet factor 4; HMGB1, high-mobility group box
1; vWF, von Willebrand factor; GP, glycoprotein.

Usually, EVs contain markers which indicate their origin, e.g., CD41 for platelets [38],
but the composition of surface markers of EVs may differ from parental cells because
of differences in activation and formation. The endosomal sorting complex required for
the transport (ESCRT) pathway is considered to be the most important mechanism of
exosome formation [80,81], but sorting of exosomal cargo can also occur via an ESCRT-
independent mechanism [82]. PL-MPs are produced mainly by budding of the plasma
membrane [36]. The most frequently identified proteins of EVs recognized as exosomal
markers are tetraspanins (e.g., CD9, CD63), tumour susceptibility gene 101 (TSG101), and
programmed cell death 6–interacting protein (PDCD6IP or ALIX) [83]. The selective enrich-
ment of CD63 in PL-EXOs may provide a clue for their possible extracellular function [28].
The study by Israels et al. has also shown that CD9 is associated with b3-integrins in
both resting and stimulated platelets [84]. PL-EXOs contain various platelet plasma mem-
brane markers that allow the identification of vesicles [28], such as membranous GPs that
mainly include the platelet activation factors GPIIb/IIIa and GPIb/IX, adhesion molecules
and integral proteins, among others [85]. Results of proteomic analyses also revealed the
presence of HSP70, GPIb, GPV and WNT glycoproteins in PL-EXOs, which have a role
in regulation of WNT signalling in monocytes and endothelial cells [30]. An increased
amount of chemokines PF4 (CXCL4), pro-platelet basic protein (CXCL7) and cytoplas-
mic high-mobility group box 1 (HMGB1) protein was detected in exosomes after platelet
activation with thrombin and collagen [86]. PL-MPs contain prothrombinase complex
and the α-granule-derived factor V and X [87], suggesting their role in the coagulation
process. Furthermore, PL-MPs express proteins including the fibrinogen receptor αIIb/β3,
the von Willebrand factor, GPIb, P-selectin (CD62P) and platelet endothelial cell adhesion
molecule-1 (PECAM-1 or CD31) [88,89]. The lipid raft protein, flotillin, is a frequently used
marker of MPs [90]. In addition, two subtypes of PL-EVs can be distinguished for their
RNA content in terms of RNA types and RNA amount. PL-EXOs are enriched in specific
miRNAs, including miR126-3p, mi-R21, mi-223, miR-339, miR-328, miR-22, miR-185 and
miR-320b, which may influence the behaviour of targeted cells and are associated with
numerous human diseases [29,91–94].
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After activation, the outer membrane of microvesicles is invaded and released out of
platelets through extracellular secretion. The dynamic content of PL-EVs including proteins
from the platelet membrane, cytosol, organelles, adhesion receptors, coagulation factors,
transcription factors, growth factors, active enzymes, cytokines, chemokines and their
receptors is mainly dependent on the mechanism of platelet activation, the agonist used
and the time of stimulation. Previous knowledge includes the formation of PL-EVs during
the process of platelet activation by soluble agonists, activators of second messengers (such
as calcium ionophores and phorbol esters), physiological agonists (pathogens, high shear
stress, contact with surfaces, low temperature and storage) or during platelet senescence
and apoptosis, thrombus degradation and during megakaryocytosis (Figure 2) [95,96].
Soluble agonists include collagen, von Willebrand factor, adenosine diphosphate (ADP),
thrombin, fibrinogen, fibronectin, serotonin and platelet-activating factor [97,98].
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Different processes of platelet activation may lead to the formation of heterogeneous
PL-EV populations with different surface marker expression and protein profiles, which
may affect their role in intercellular communication [99]. Several comparative studies have
been performed, which compared the effect of different activators on platelet activation
and the subsequent release of exosomes [49,95,100,101]. For example, EVs from platelets
activated in vitro with ADP contain different protein cargo in comparison with those
activated by collagen or collagen and thrombin [99], implying that these EVs could also
have different functions.

Isolation of Platelet-Derived Extracellular Vesicles

To date, there is no standardized method to isolate PL-EVs and there is no single
detection technique with high sensitivity to detect all EVs from platelets or other biofluids.
It is often impossible to compare the results of studies, as various isolation methods produce
EVs with different yields and purities, and detection techniques mainly characterize a
certain fraction of the total EV population. Therefore, the standardization of protocols
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is recommended to reduce variability in phenotyping, sizing and enumerating PL-EVs.
The isolation process of EVs from plasma is complicated by the fact that plasma contains
mitochondria and other non-EV particles beside platelets with similar sizes and densities
(such as lipoproteins) and that plasma is of high viscosity.

The first protocols for blood collection and plasma preparation for studies of EVs
were published in 2013 [102]. Later studies have shown that PL-EVs can be obtained
through a four-step method: (1) PRP is prepared from whole blood; (2) platelets are further
isolated from PRP; (3) platelets are activated to induce the release of EVs; (4) EVs are
isolated by differential centrifugation [33]. However, because these steps are unwieldy,
the agonists cannot be widely used in clinical practice and platelets may be prematurely
activated to release exosomes during the separation and purification steps. Therefore,
before clinical application, there is a need to standardize a rapid method for releasing high
yield of pure exosomes after PRP activation by the use of common drugs (thrombin or
calcium gluconate).

In addition, the concentration of PL-EVs and their cargo can be affected by many pre-
analytical and postanalytical factors, including mainly blood collection, handling, timing
and storage [103,104]. The choice of anticoagulant is important for PL-EV characterization
and quantification with an emphasis on minimizing in vitro platelet activation and con-
sequent PL-EVs release. The most used anticoagulant that meets these criteria is sodium
citrate [105]. It has been shown that other, frequently used anticoagulants, such as ethylene-
diaminetetraacetic acid (EDTA) or heparin, affect EV quantification. However, EDTA [106]
is suitable when focusing on RNA analysis. Citrate–dextrose solution (ACD) alone is used
when EVs derived from washed platelets are studied in vitro [107]. The combination of
ACD and EDTA is an alternative anticoagulant for the quantification of circulating PL-EVs
in plasma samples [108].

Another important consideration for the optimization of PL-EV quantity and quality
is the storage of whole blood or platelet concentrates. Wisgrill et al. [109] confirmed that
numbers of PL-EVs and their functionality are stable in sodium citrate for 8 h at room
temperature. Additionally, PL-EV counts were stable for 48 h at room temperature in EDTA.
Ex vivo resting platelets undergo platelet storage lesion, and they are subjected to necrotic
or apoptotic changes, as well as to activation. Concentrations of PL-EVs are increasing
in platelet concentrates during storage, suggesting that platelet aging is associated with
the apoptotic release of EVs [110]. Freezing–thawing of platelet samples also leads to an
increase in PL-EV numbers in samples, while long-term (>20 months) storage of samples
at −80 ◦C has been reported to result in decreased PL-EV levels [111,112]. The mechanism
underlying the release of EVs is likely to differ between the aging platelets and those
activated by an agonist [113]. Since liquid PRP preparations only have a short half-life
(~5 days) and are required to be kept at room temperature, frozen PL-EV preparations could
be an attractive alternative [114,115]. Up to now, there is no optimum storage condition for
isolated PL-EVs and their shelf-life, and the majority of published articles did not report
any specific storage conditions. The most common way to store PL-EVs is at −80 ◦C [116].
In any case, it is necessary to determine storage conditions for both blood and PL-EVs to
compare different approaches and evaluate the stability and functionality over time before
their therapeutic use [117].

The most frequently used methods to isolate PL-EVs are based on ultracentrifugation,
which is in fact a concentration method, and on size-exclusion chromatography (SEC).
Ultracentrifugation can lead to the co-isolation of non-EV components such as protein
aggregates and lipoproteins, leading to the disruption of EVs and resulting in variable
recovery rates. On the other hand, SEC results in the purest EV fraction, with EVs >60 nm in
diameter and separated from the bulk of high-density lipoproteins, cellular debris, protein
aggregates, soluble proteins and very large proteins such as von Willebrand factor [116]. It
has been shown that SEC does not result in aggregation and preserves the integrity and
functionality of EVs better than ultracentrifugation [118], but we must not forget that SEC
isolate all plasma EVs, including those derived from leukocytes and/or residual platelets,
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which may affect downstream analyses. In the absence of a common marker expressed by
all EVs, it is impossible to isolate the total EV population. Based on the chosen antibody,
immunocapture techniques with monoclonal antibodies and magnetic beads can be used
to specifically isolate subpopulations of EVs on the basis of their immunophenotype.
However, this technique may lead to nonspecific binding due to the cross-reactivity of the
antibodies, interference with other ligands in plasma and difficulties in elution.

4. Therapeutic Use of Platelet-Derived Extracellular Vesicles

EVs from various cell types, mainly including mesenchymal stem cells (MSCs), are
currently being explored as “cell-free” therapeutic tools and have been extensively studied
for their role in stimulating tissue regeneration by conferring proangiogenic, proliferative,
anti-apoptotic and anti-inflammatory actions thorough transport of their protein cargo and
RNAs [119,120]. The growing number of recent studies also suggests that the regenerative
potential of the MSC treatments is mediated by EVs or conditioned medium rather than by
cells [121–124].

With the increased knowledge of cell-derived EVs, the potential of PL-EVs has also
attracted increased attention in past years, as they represent the largest type of EVs in
circulation. Due to the capacity of EVs to transfer proteins, lipids, metabolites and nucleic
acids, PL-EVs may influence various important physiological and pathological functions
via intracellular communication, including coagulation [125,126], immune response and
inflammation [127,128], angiogenesis, wound healing [37,129,130] and carcinogenesis [131].
In view of these findings, PL-EVs might be not only an effective and safe alternative to PRP,
but they may be useful for developing prospective therapeutic applications in haemostasis,
tissue regeneration, immunomodulation and as drug-delivery vehicles.

The following in vitro and animal studies highlight the use of therapeutic PL-EVs
that could become part of future strategies used for tissue healing. It is known that the
main fraction of short RNAs is localized in PL-EVs, which protect them from degradation
in circulation. Thus, these vesicles can be considered as biological nanovectors able to
transfer specific signals and modulate gene expression in recipient cells and may determine
vascular and tissue response in disease conditions associated with platelet activation. High
levels of miR-142-3p detected in PL-EVs from activated platelets enhanced the endothelial
cell proliferation/dysfunction via Bcl-2-associated transcription factor (BCLAF1) [132].
Another short RNA, miR223 derived from thrombin activated PL-EVs, can regulate the
endothelial expression of two of its mRNA targets, FBXW7 and EFNA1 [133]. It has been
established that miR223 is highly expressed in platelets and has a cardioprotective and
anti-inflammatory role [134]. Gidlöf et al. revealed active packaging of miR-22 into EVs
and its active depletion from platelets with increased activation and indicated a possible
paracrine role of released platelet miR-320b on endothelial cell ICAM-1 expression [29].
The results of the study by Li et al. suggested that thrombin-activated PL-EXOs inhibit
ICAM-1 expression during inflammation and this process is mediated by miRNA223 via
the regulation of the NF-κB and MAPK pathways [135]. It is not surprising that PL-EVs
play an important role in endothelial phenotype and function, as platelets themselves
have an unambiguous role in modulating endothelial cell function in the context of the
inflammatory response as well as in ischemia/reperfusion, sepsis and early atherosclerosis.
Gambim et al. reported that PL-EVs collected from patients with septic shock directly
induced the apoptosis of rabbit endothelial cells [136]. Their results also confirmed that
in sepsis, the increased generation of NO and the presence of bacterial elements can
trigger the release of PL-EXOs. In addition, a study by Jiao et al. [137] demonstrated that
PL-EXOs are major mediators that induce neutrophil extracellular trap (NET) formation
in septic shock. PL-EXOs containing HMGB1 and/or miRNA-induced NET formation
through the modulation of the Akt/mTOR-related autophagy pathway. Targeting PL-
EXOs as mediators of key features of sepsis may present a novel therapeutic strategy for
septic shock. As a kind of immune cell, PL-EVs has an inherent affinity for inflammation
sites, including atherosclerotic plaque sites, so they could be used for the delivery of anti-
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inflammatory agents. Recently, Ma et al. [138] showed that nano-sized MCC950-loaded
PL-EVs could selectively bind multiple cell types such as macrophages and epithelial cells
and have an efficient anti-inflammatory effect on atherosclerotic plaque after intravenous
administration in an ApoE-KO mice model of atherosclerosis.

Due to the presence of negatively charged PS on the surface of PL-EVs, which promotes
the aggregation of prothrombin complexes during coagulation, they may represent an
alternative to widely used platelet concentrates in treating trauma patients with critical
bleeding. Phosphatidylserine can activate coagulation factors II and X, hence triggering the
coagulation cascade. In a rat model of uncontrolled bleeding, PL-EVs from non-activated
washed platelets enhanced hemodynamic stability in comparison with fresh platelets by
mitigating the development of ischemia and metabolic acidosis [55]. Their results also
demonstrated in in vitro and in vivo mice models that PL-EVs have potent therapeutic
effects on vascular permeability and haemostasis.

Based on available data, PL-EVs may play a dual role in inflammation, stimulating ei-
ther pro- or anti-inflammatory effects depending on the expression of surface markers and
microenvironment-affected cargo. However, studies demonstrating their pro-inflammatory
properties are predominant. It was found that they contain proinflammatory cytokines
such as interleukin IL-1, IL-6 and tumour necrosis factor alpha (TNF-α), and can in-
duce leukocytes to release inflammatory cytokines such as interleukin IL-1β, IL-6, IL-17,
interferon-gamma, TNF-α, monocyte chemoattractant protein-1 and matrix metallopro-
teinase MMP-6 and MMP-9, which promote endothelial inflammation, worsening vascular
integrity and endothelial dysfunction [139]. It was demonstrated that platelets are capable
of propagating their vesicles through joint-draining lymph in rheumatoid arthritis as a
result of inflammation [140]. Recent findings also suggested that PL-EVs may infiltrate the
bone marrow during inflammations and induce haematopoiesis by interaction with bone
marrow cells and their functional reprogramming. Other data indicated that PL-EVs exert
strong immunomodulatory activity on vascular smooth muscle cells, which is manifested
by cytokine IL-6 production and leads to the stimulation of vascular remodelling [141]. Up
to now, only a few studies have demonstrated that PL-EVs might suppress inflammation
primarily by inhibiting cytokine release. For example, PL-EVs released by stored platelets
modify macrophage and dendritic cell differentiation toward less reactive states [142].
Studies have shown differences among PL-EVs populations in the capacity to aggregate
monocytes and induce neutrophil extracellular traps [143]. The ability of PL-EVs to reg-
ulate adaptive immunity was also described by inducing anti-inflammatory signalling
in plasmacytoid dendritic cells [144] and inhibiting the differentiation of regulatory T
cells into proinflammatory cells through a mechanism involving P-selectin [127]. Phago-
cytic function induced by PL-MPs demonstrated in several studies might be beneficial
for the maintenance of blood quality and influence blood vessel function. These studies
observed that MPs released from platelets polarized monocytes into the resident M2 subset
macrophages with an increase in phagocytosis capacity [128,145].

It has been found that lipid components of PL-EVs are important in the mediation of
enhanced proliferation, migration and tube formation capacity of human umbilical vein
endothelial cells (HUVECs) treated with these microparticles [146]. Brill et al. showed that
PL-EVs induce angiogenesis both in vitro and in vivo in a rat model and the injection of
PL-EVs into the ischemic myocardium may improve the process of revascularization after
chronic ischemia [147]. It was demonstrated that PL-EVs may be utilized for treatment
following brain injury according to previous results describing their positive role in neu-
ronal cell proliferation, survival and differentiation to form glia and neurons [148]. The
administration of PL-EVs following stroke in a rat model led to increasing neural growth
at the site of injury and to significantly improved behavioural deficits [57].

In a diabetic rat model, the presence of growth factors, mainly bFGF, PDGF-BB and
TGF-β encapsulated in PL-EXOs, increased re-epithelialization and collagen synthesis,
which led to faster wound closure compared to untreated wounds. Additionally, PRP-EXOs
increased the proliferation and migration of human microvascular endothelial cells (HMEC-



Int. J. Mol. Sci. 2021, 22, 9701 10 of 17

1) and fibroblasts to a greater extent than PRP [37]. Subsequently, Tao et al. demonstrated
that PRP-EXOs successfully promote the re-epithelization of chronic cutaneous wounds
via the activation of Yes-associated protein (YAP) in a diabetic rat model [45]. According to
recent results by Iyer et al., the use of PRP-EXOs to facilitate soft tissue healing appears
promising [56]. In this study, the effect of PRP-EXOs and bone marrow-derived MSC-EXOs
was compared in a rat model of muscle injury. Both tested cell-free products facilitate
recovery after a muscle strain injury due to the modulation of inflammation, fibrosis
and myogenesis.

The application of PL-EVs might be an important step forward in the progress of
osteoarthritis (OA) therapy. In the recent study by Liu et al., it was demonstrated that
PRP-EXOs had a better effect in promoting chondrocyte proliferation and migration and at-
tenuating apoptosis than PRP in a rabbit model in vitro and in vivo [58]. Their preliminary
results also suggest that PRP-EXOs probably ameliorate OA via the Wnt/β-catenin sig-
nalling pathway, but it needs further research to illuminate the precise mechanism by which
PRP-EXOs are involved in treating OA. In another work, the treatment of chondrocytes
in vitro with PL-EVs enhanced the expression of anabolic markers such as type II collagen,
SRY-box transcription factor 9 (SOX9) and aggrecan while preventing proinflammatory
cytokine release compared to treatment with full blood product [149].

PL-EVs positively modulate the growth, migration and differentiation potential of
stem cells from different sources. The enhanced potency of stem cell populations resident
in tissues is important in preventing degenerative diseases. The first described role of EXOS
derived from PRP in tissue regeneration was published in 2014 by Torreggiani et al. [44].
They demonstrated the potential effect of PRP-EXOs on the proliferation and migration of
MSCs. In addition to bone marrow MSCs, PL-EVs increased the gene expression of human
telomerase reverse transcriptase (hTERT) in umbilical cord-derived MSCs in vitro [150].
These results suggest that PL-EVs could potentially prolong the lifespan of MSCs, but this
statement needs to be definitively verified in vivo.

Currently, three clinical trials involving PL-EVs or PL-EXOs are registered on www.
clinicaltrials.gov (22 July 2021). One of these studies has been completed and two of them
are recruiting/about to open to accrual. The trial NCT04281901 with results evaluated
the efficacy of the autologous blood-derived product called platelet- and extracellular
vesicle-rich plasma (PVRP) for the treatment of chronically inflamed post-surgical temporal
bone cavities with 25 participants. The same group of researchers is currently monitoring
the effect of PVRP for the treatment of chronic tympanic membrane perforations in chronic
middle ear infections on 100 participants in clinical trial NCT04761562. Another trial,
NCT04849429, is focused on the establishment of controlled, randomized and double-blind
clinical trial to compare the safety and efficacy of PRP with exosomes in chronic lower back
pain.

The lack of generally accepted standard methods for the determination, isolation,
storage and quantification of the PL-EVs limits our efforts in understanding their biological
role in the pathogenesis and therapeutic use of several diseases [116,151,152]. An ignorance
of preanalytical factors, inefficient preparation or inadequate storage of platelets may lead
to improper interpretations in further studies. Taking into account current knowledge
about the diverse and sometimes contradictory functions of PL-EVs, achieving their full
therapeutic potential will depend on the clear separation of PL-EVs subtypes and the careful
development of best-practice standard protocols for PL-EVs generation and isolation.

5. Summary

The results of pre-clinical research are encouraging, as PL-EVs might be both the key
part of the mechanism in tissue regeneration induced by blood derived products, especially
PRP, and a potential alternative option instead of them. PRP has long been known to be
effective in accelerating tissue repair, but the underlying mechanism is still not fully under-
stood. The discovery and increased interest of PL-EVs has led to a more comprehensive
and profound understanding. Although PL-EVs were identified as procoagulant particles
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released by activated platelets, today, it is known that these extracellular particles from
anuclear platelets are capable of regulating the transcription, RNA stability, translation
and metabolism of their target cells. There are numerous advantages in terms of biological
importance, cost and efforts by substituting stem-cell-derived EVs by PL-EVs. In the case of
PL-EVs, there is no requirement for a GMP facility for ex vivo cell expansion and there is no
danger in concerns related to possible teratogenic risks. PL-EVs can be directly produced
from collected platelet concentrates, in contrast to MSCs that require a step of isolation
and ex vivo expansion with potential contamination by EVs from fetal bovine serum.
Clinical-grade allogenic platelets are now easily accessible in many countries as a source
of platelet lysate, therefore providing readily available resources for EV isolation. PL-EVs
offer several advantages over the traditional platelet transfusion approach or therapeutic
PRP, as they retain their functionality after undergoing freeze–thaw cycles, thus potentially
eliminating the current limitations of storing, transporting and using fresh platelets within
their short shelf-life.

Although the effects and underlying molecular mechanisms of PL-EVs in regeneration
have not yet been elucidated, PL-EVs exhibit the capacity to act as an alternative option or
even as an upgraded product of PRP. Identifying key molecular players and understanding
the mechanisms of action will allow the rapid progression of PL-EVs to clinical develop-
ment. Reaching their full therapeutic potential will depend on careful development of the
best-practice protocols for their generation and isolation and clear standard separation of
PL-EVs subtypes.
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