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Abstract

Coronavirus disease‐2019 (COVID‐19) is a global pandemic and caused by severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which has resulted in

millions of deaths worldwide. Reports denote SARS‐CoV‐2 uses angiotensin‐
converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) as its

primary entry point into the host cell. However, understanding the biology behind

this viral replication, disease mechanism and drug discovery efforts are limited due

to the lack of a suitable experimental model. Here, we used single‐cell RNA se-

quencing data of human organoids to analyze expressions of ACE2 and TMPRSS2, in

addition to an array of RNA receptors to examine their role in SARS‐CoV‐2 pa-

thogenesis. ACE2 is abundant in all organoids, except the prostate and brain, and

TMPRSS2 is omnipresent. Innate immune pathways are upregulated in ACE2(+)

cells of all organoids, except the lungs. Besides this, the expression of low‐density
lipoprotein receptor is highly enriched in ACE2(+) cells in intestinal, lung, and retinal

organoids, with the highest expression in lung organoids. Collectively, this study

demonstrates that the organoids can be used as an experimental platform to ex-

plore this novel virus disease mechanism and for drug development.
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1 | INTRODUCTION

An important obstacle in the development of therapies against severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the lack of

viable in vivo models of disease that are needed to recapitulate the

infectivity and clinical features of coronavirus disease 2019 (COVID‐19),
the disease manifestation of SARS‐CoV‐2. A recent review has outlined

the current animal models utilized in SARS‐CoV‐2 research (Cleary et al.,

2020). At present, there are limited rodent models that replicate features

of COVID‐19. The only experimental models available involve the

mouse‐adapted SARS‐Co‐V virus strain that replicates features of SARS

and is highly lethal (Day et al., 2009), and transgenic mice expressing the

human angiotensin‐converting enzyme 2 (ACE2) that can be infected

successfully with SARS‐CoV‐2 (Bao et al., 2020). However, the use of

both models requires BSL‐3 or BSL‐4 animal husbandry environments,

which are not readily available in many animal facilities. This underscores

the need to develop novel approaches for drug testing/discovery in

SARS‐CoV‐2.
Organoids are artificially developed three‐dimensional (3D)

cultured structures or miniature organs (derived from stem cells or

organ progenitors) encompassing several cells of specific organ sys-

tems (Eiraku et al., 2008; Sasai, 2013; Takahashi, 2019; Trinkaus &

Groves, 1955). Organoids provide two distinct advantages over

other experimental models, they develop and expand in their des-

tined lineage, thereby mimicking the in vivo niche (Lancaster &

Knoblich, 2014; Mahe et al., 2013), secondly, tissue‐derived human

organoids maintain their in vivo genetic and physiological char-

acteristics, without any significant alterations for many generations

(DiMarco et al., 2014; Grabinger et al., 2014). Recently, the use of

multi‐cell type, organoid coculture models with stromal and immune

cells have been developed to recapitulate the complex in vivo niche

for developing disease models, preclinical testing, and biomarker

discoveries (Shamir & Ewald, 2014; Tsai et al., 2018). Indeed, orga-

noids have outplayed conventional animal models and cell culture

systems as experimental models (Jensen & Teng, 2020; Mead & Karp,

2019) and can serve greatly in the current COVID‐19 pandemic, as

efficient experimental models for SARS‐CoV‐2 drugs. Moreover,

organoids as experimental models will also serve to gain better in-

sights into the molecular mechanisms and/or role of cellular targets

like receptors or transporters by which the pathogenesis of life‐
threatening SARS‐CoV‐2 is mediated (Clevers, 2020; Monteil

et al., 2020).

The co‐morbid conditions of COVID‐19, including cardiac, renal,

central nervous system (CNS), prostate, and gastrointestinal dys-

functions cause significant mortality globally (Zaim, Chong,

Sankaranarayanan, & Harky, 2020). Amid the lack of effective pre-

ventive and remedial measures against the impending threat of

COVID‐19; studies on its pathogenic mechanisms and drug target

identification are greatly warranted (Harrison, 2020; Shi et al., 2020).

SARS‐CoV‐2 uses angiotensin‐converting enzyme 2 (ACE2) receptor

for host cell entry and the transmembrane serine protease 2

(TMPRSS2) for S protein priming (Hoffmann et al., 2020). In this

study, we have analyzed the single‐cell RNA (scRNA) sequencing

data to show the differential expression patterns of ACE2 and

TMPRSS2 receptors in specific tissue organoids including the intes-

tine, prostate, kidney, brain, retina, and lung, the major sites of

COVID‐19 pathogenesis (Fujii et al., 2018; McCray, Moline,

Baumann, Vander Griend, & Nonn, 2019; Miller et al., 2020; Sridhar

et al., 2020; Velasco et al., 2019; Wu et al., 2018). We believe that

the results obtained from the scRNA sequencing of various orga-

noids will aid in understanding the spatiotemporal effect of new

SARS‐CoV‐2 antiviral drugs (using organoids as experimental mod-

els) in regulating disease pathogenesis.

2 | METHODS

2.1 | Data sets

All the gene expression data either in the normalized count or raw

counts were downloaded from the Gene expression Omnibus or

Array Express database. There were eight organoids data sets used

in this study: intestine conventional and improved condition

(GSE119969), kidney Morizane and Takasato methods (GSE118184),

prostate (GSE130318), lung (E‐MTAB‐8221), retina (GSM4231315),

and brain (GSE129519).

2.2 | Data analysis

The gene expression matrix or raw count matrix was analyzed using

Seurat v3.0 (Stuart et al., 2019). The following criteria were used for

filtering the cells for the clustering analysis of each sample sepa-

rately; genes that were seen in at least three cells, cells should ex-

press 100 genes and the mitochondrial gene expression less than

20%. The normalized data function was used for the normalization

with the default parameter. The variation across the cells was re-

gressed out using the ScaleData function with default settings. For

clustering analysis, 2000 highly variable genes were selected using

the FindVariableGenes function and the expression matrix was

centered and scaled. Next, the principal component analysis was

applied to generate 100 principal components (PCs) and the Jack-

Straw function was used to select the significant PCs to be used for

further clustering and dimensionality reduction. To identify clusters

of transcriptionally similar cells, unsupervised clustering was em-

ployed using the FindClusters function with the k. param set to 10

and the resolution set to 0.5. For dimensionality reduction, we used a

Uniform Manifold Approximation and Projection (UMAP) method

employed in Seurat. To identify the differential expression analysis

between ACE2(+) and negative cells, the cells were grouped based

on the expression of ACE2 and labeled as ACE2(+) cells when the

read counts were greater than 0, similarly, the counts were equal to

0 and labeled as ACE2(−) cells. Then, differential expression analysis

was performed in Seurat using a Wilcoxon test and Bonferroni

p‐value correction. There were no ACE2 cells were observed in the

prostate and brain organoids data set. The cell types in clustering for
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each sample were identified based on known and reported markers

(Figure S1).

2.3 | Enrichment analysis

The upregulation genes from ACE2(+) cells compared to the ACE2(−)

cells were used as the input in the Enrichr (Chen et al., 2013) server

for the enrichment analysis. From the gene ontology (GO) biological

process, significant immune and viral related pathways were selected

and plotted. For the Lung data set, there were no immune and viral

related pathways observed.

3 | RESULTS

3.1 | Identification of cell types in various
organoids

The scRNA sequencing raw count data or normalized gene expression

data of intestine (conventional and improved methods), Kidney

(Morizane and Takasato methods), prostate, lung, retina, and brain were

analyzed by clustering and dimension reduction using the Seurat

package. There were 71 cell clusters identified from these organoids

and these cell clusters were annotated based on the respective pub-

lished articles (Figure S1; Fujii et al., 2018; McCray et al., 2019; Miller

et al., 2020; Sridhar et al., 2020; Velasco et al., 2019; Wu et al., 2018). In

the intestinal organoid, five cell types were identified in the conven-

tional organoid (goblet, transamplifying 1, enterocyte, stem cell, and

transamplifying 2) while seven cell types were identified in the intestine

organoid improved (stem cell, transamplifying 1, enterocyte, goblet,

enteroendocrine, M, and transamplifying 2). Prostate organoids are

androgen‐sensitive, and they possess basal and luminal cells arranged as

a pseudostratified epithelium in their organ system. In the prostate

organoid, we have identified six cell types (luminal, basal, dividing cells,

arrested cells, stem cells, and unidentified cells). In the Morizane kidney

organoid, we have identified 13 cell types (mesenchyme 1, proximal

tubule 1, podocyte 1, mesenchyme 2, podocyte 2, podocyte 3, proximal

tubule 2, mesenchyme 3, neural 1, neural 3, neural 2, muscle cells, and

endothelial cells). In the Takasato kidney organoid, 13 cell types were

identified including (proximal tubule 1, neural cells 3, mesenchyme 3,

proximal tubule 3, mesenchyme 1, proximal tubule 2, neural

F IGURE 1 The expression profiles of ACE2 and TMPRSS2 in various organoids. The violin plot shows the ACE2 and TMPRSS2 expression in
intestine, prostate, kidney, brain, retinal, and lung organoids. There is no ACE2 transcript observed in prostate and brain organoids. ACE2,
angiotensin‐converting enzyme 2; TMPRSS2, transmembrane serine protease 2
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F IGURE 2 The expression profile of curated scRNA receptors in ACE2(+) and ACE2(−) negative cells in various organoids. The dot plot
shows the expression of multiple scRNA receptors transcript in the intestine, kidney, lung, and retinal organoids. ACE2, angiotensin‐converting
enzyme 2; TMPRSS2, transmembrane serine protease 2
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progenitors, podocytes, neural 1, melanocytes (Me), mesenchyme 2,

neural 2, and endothelial cells), and in the lung organoid, eight cell types

(bud tip progenitor cells, bud tip adjacent cells, basal cells, multiciliated

cells, secretory progenitor cells, neuroendocrine cells, submucosal gland

basal cells) were identified. In the brain organoid, we have identified 9

cell types (immature PNs, corticofugal peripheral neurons [PNs], im-

mature colossal PNs, and outer radial glia, callosal PNs, Radial glia,

immature corticofugal PNs, IPCs /immature PNs, cycling progenitors).

In the retinal organoid, we have identified 10 cell types (cone, T3,

retinal ganglion, progenitor/mature glial cells, Müller glial cells, Ama-

crine cells, rod cells, bipolar cells [BP], progenitors, and horizontal

cells [HCs]).

3.2 | Expression pattern of ACE2 and TMPRSS2 in
eight human organoids

The viral spike protein from SARS‐CoV‐2 binds to ACE2 as a host cell

receptor for entry and it is triggered by TMPRSS2. Hence, we ana-

lyzed the expression patterns of ACE2 and TMPRSS2 in these or-

ganoids (Figure 1). In the intestinal organoid (conventional and

improved), ACE2 expression is specifically enriched in the en-

terocytes, and to some extent, in the goblet and stem cells, whereas

TMPRSS2 expression is observed in almost all the cell types. In the

kidney organoids (Morizane and Takasato), both ACE2 and TMPRSS2

were observed specifically in the proximal tubule cells. In the retina,

ACE2 expression is limited to very few cells of progenitor glia and

rod; TMPRSS2 was seen in muller glia, rod, progenitor glia, pro-

genitors, T3, cone, and bipolar cell clusters. In the lung organoids, a

few cells of bud tip progenitor cells, multiciliated cells, and secretory

progenitor cells showed the expression of ACE2 and almost all the

clusters except submucosal gland basal cells showed TMPRSS2 ex-

pression. In the prostate and brain organoids, there was no ACE2

expression seen, and TMPRSS2 expression was observed in almost

all the cell types. The expression of genes in scRNA sequencing is

influenced by the organoid growing methods, cell dissociation, se-

quencing method, and sequencing depth. Therefore, the lack of ACE2

expression in the brain and prostate may be due to any one or a

combination of those factors. A recent study reported on the role of

TMPRSS4 in virus entry into the host cells (Zang et al., 2020),

therefore we checked the expression profile of TMPRSS4 across

organoids (Figure S2). All the ACE2 and TMPRSS2 positive cell types

showed the expression of TMPRSS4 except the retinal organoid,

where there was no expression observed.

3.3 | The expression profile of curated
single‐stranded RNA receptors (scRNA) in ACE2(+)
positive and ACE2(−) negative cells in various
organoids

A recent study showed that ACE2 expression is correlated with

other scRNA receptors such as ANPEP, ENPEP, and DPP4 (Qi, Qian,

Zhang, & Zhang, 2020). Therefore, we checked the curated scRNA

receptors expression pattern from ACE2(+) positive and ACE2(−)

negative cells in various organoids (Figure 2). The ACE2(+) cells of

conventional and improved intestine organoids showed the expres-

sion of CXADR, PVR, CD55, ITGB6, EGFR, OCLN, LDLR, CEACAM1,

ANPEP, and TFRC along with the ACE2. Similarly, in the kidney or-

ganoids (Morizane and Takasato), the expression of PHB, CXCADR,

ITGB3, CD46, CLDN1, MERTK, ANPEP, DPP4, and AXL showed

consistent expression along with ACE2. In the lung organoid,

ACE2(+) cells showed the expression of PHB, NCAM1, CDHR3,

ITGB8, ITGA5, ITGB1, CD55, ICAM1, SCARB2, ITGB6, EFNB2,

EGFR, ITGAV, OCLN, LDLR, CD81, CEACAM1, LAMP1, TYRO3, and

DAG1. The ACE2(+) cells of the retinal organoid showed the ex-

pression of PHB, VCAM1, ITGB1, SCARB2, ITGB6, EFNB2, ANXA5,

LDLR, CD81, and LAMP1. The receptor LDLR is consistently ex-

pressed along with ACE2 in all the organoids except the kidney,

suggesting that LDLR may also play a significant role in COVID‐19
transmission.

3.4 | Immune specific enrichment profile for
ACE2(+) and ACE2(−) cells in various organoids

To further characterize the ACE2(+) cells, differential gene expres-

sion analysis was performed between ACE2(+) and ACE2(−) cells,

and the pathway enrichment profiles specific to immune‐related
pathways were identified for the ACE2(+) cell upregulated genes

(Figure 3). Except for lung organoids, all showed that the cytokine

and neutrophil related pathways are enriched in ACE2(+) cells, which

suggests that these cells from organoids can trigger a strong immune

response after the virus entry. The recent analysis of the RNA‐seq
data from COVID‐19 patients showed the expression of neutrophil

and cytokine/chemokines genes (Didangelos, 2020). Furthermore,

the pathway analysis indicated neutrophil response and inflamma-

tion response are enriched. These suggest that the neutrophils could

play a role in COVID‐19 inflammation.

4 | DISCUSSION

Given the fact that SARS‐CoV‐2 mediates multiorgan dysfunc-

tion, the underlying pathogenic mechanisms might be orchestrated

via diverse in‐cell mediators specific for each organ. In such in-

stances, the requirement for experimental models exhibiting key

features as in in vivo is crucial in understanding the pathogenic

mechanism and developing suitable/personalized drug candidates.

Organoids exhibiting key features of the tissue of origin, will greatly

serve to delineate in‐cell mediators of SARS‐CoV‐2 pathologies, and

testing efficacy of SARS‐CoV‐2 drugs (Maenhoudt et al., 2020),

thereby enabling rapid translation research and clinical applications

(Clevers, 2016). In this study, we analyzed the expression of ACE2,

TMPRSS2, and other scRNA receptors in ACE2(+) and ACE2(−) cells

in eight different organoids. To the best of our knowledge, this is the
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first study investigating ACE2 expression across a wide variety of

organoids. Although there are several studies (Peng et al., 2020; Tai

et al., 2020; Zhang et al., 2020) reporting about COVID‐19 virus

transmission, tissue tropism, and pathogenic mechanism, many

questions cannot be answered due to the lack of suitable research

models. The organoids are a suitable model to explore the study of

host‐microbe interaction (Dutta & Clevers, 2017) because they re-

tain the biology of individual tissues. The 3D organoid structures can

be developed from either induced pluripotent stem cells or multi-

potent adult stem cells (Lancaster & Knoblich, 2014). The advantage

of organoid models is that they resemble the organ through self‐
organizing multiple differentiated cell types that reflect the true

morphology of the tissues. Our clustering results (Figure S1) indicate

that the eight different organoids captured the respective tissue cell

types including stem cells or basal cells.

The organoids have been shown before as a suitable system to

explore virus replication (Ettayebi et al., 2016) as well as the me-

chanism of pathogenesis (Platt & Miner, 2017; Tang et al., 2016). The

outbreak of COVID‐19 is causing significant mortality and morbidity

across the globe. The virus transmits from person to person causing

influenza‐like symptoms, mid to severe lung damage, affecting mul-

tiple organs including the gut, kidney, brain, eye, and liver (Huang

et al., 2020; Wang et al., 2020; Zhu et al., 2020). Therefore, it is

necessary to find the best model to study virus infection and me-

chanism. As the organoids resemble real tissue and organs in vitro,

scientists have started to use this organoid model to examine the

effect of the virus. Monteil et al. (2020) showed that the virus can

infect kidney organoids derived from induced pluripotent stem cells,

and another study (Lamers et al., 2020) has used the human adult

stem cell‐derived intestinal organoids to study virus infection and

replication. Furthermore, Lamers et al showed that the infection of

SARS‐CoV‐2 triggered the broad expression of cytokines and

interferon‐stimulated genes related to type I and III interferon re-

sponses. In our enrichment analysis, immune‐related genes are al-

ready present in the ACE2(+) cells in the organoids, which can be

further triggered after the infection.

Here, we have demonstrated that the expression of ACE2 is

seen in the enterocytes cell population in both conventional and

improved intestine organoids, and in the proximal tubule cells in the

kidney organoids. The other organoids such as retina and lung also

show the expression of ACE2, suggesting the suitability of these

organoids to study the virus infection. However, prostate and brain

organoids do not show the expression of the ACE2. There are several

scRNA receptors showing expression along with ACE2 in the orga-

noids. Interestingly, the receptor LDLR shows consistent expression

in ACE2(+) cells of all the organoids except the kidney, which

suggests that LDLR may play a role in virus transmission and

infection.

The organoids are developed by different methods, and it is

important to ensure that those organoids depict multiple cell types of

respective tissue. It is also necessary to examine the transcriptome

profile to understand the suitability of these organoids for SARS‐CoV‐2
infection study. The organoids can be also used to identify the potential

drug molecules, which may be used for COVID‐19 therapies. A recent

study demonstrated that intestine (Krüger et al., 2020) and lung or-

ganoids (Suzuki et al., 2020) are suitable to explore the viral life cycle

as well as the efficacy of antiviral drugs. This opens a new door for

COVID‐19 drug discovery.

F IGURE 3 Immune specific enrichment profile for ACE2(+) and ACE2(−) negative cells in various organoids. The upregulation genes in the
ACE2(+) cells are used for GO biological process enrichment analysis with specific immune‐related pathways in the intestine, kidney, and
retinal organoids. ACE2, angiotensin‐converting enzyme 2; GO, gene ontology
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Despite the presence of multi‐factorial etiologies and an array of

receptor involvements in SARS‐CoV‐2 pathologies, the requirement

of personalized therapy might be warranted for protecting specific

organ systems in SARS‐CoV‐2 patients. Hence, the need for efficient

and rapid experimental models against diverse cellular targets in

specific organ systems is highly warranted. Recently, organoid ex-

perimental models have been widely utilized in conditions like re-

generative medicine, cancer personalized therapy in renal diseases

(Grassi et al., 2019), in ovarian cancer preclinical models (Maenhoudt

et al., 2020) and in host‐pathogen interaction studies (Duque‐Correa,
Maizels, Grencis, & Berriman, 2020). There are several high‐
throughput methods developed to screen the drug in the organoids

such as organ‐on‐a‐chip (Domansky et al., 2010), cancer‐on‐a‐chip
(Zervantonakis et al., 2012) and 3D gut‐liver chip (Lee, Ha, Choi, &

Sung, 2017). These technologies have advanced the usage of the

organoids for drug development. Similar technology or modified

methods can be adapted as an in vitro platform to screen either the

existing FDA approved drugs or new molecules to effectively kill the

virus. To conclude, we believe that organoids can be the best suitable

experimental model in pursuit of the rapid requirement to study viral

replication, disease mechanisms, and personalized drugs to each

organ affected in SARS‐CoV‐2 patients.
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