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Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accu-
mulation of immature myeloid progenitor cells in the bone marrow, compromising of 
normal blood cell production and ultimately resulting in bone marrow failure. With a 
20% overall survival rate at 5 years and 50% in the 18- to 65-year-old age group, new 
medicines are needed. It is proposed that development of repurposed drugs may be 
a part of the new therapy needed. AML is subdivided into recurrent molecular entities 
based on molecular genetics increasingly accessible for precision medicine. Novel ther-
apy developments form a basis for novel multimodality therapy and include liposomal 
daunorubicin/cytarabine, broad or FLT3-specific tyrosine kinase inhibitors, Bcl-2 family 
inhibitors, selective inhibitors of nuclear export, metabolic inhibitors, and demethylating 
agents. The use of non-transplant immunotherapy is in early development in AML with 
the exceptional re-approval of a toxin-conjugated anti-CD33. However, the full potential 
of small molecule inhibitors and modalities like immunological checkpoint inhibitors, 
immunostimulatory small molecules, and CAR-T cell therapy is unknown. Some novel 
therapeutics will certainly benefit AML patient subgroups; however, due to high cost, 
more affordable alternatives are needed globally. Also the heterogeneity of AML will likely 
demand a broader repertoire of therapeutic molecules. Drug repurposing or reposition-
ing represent a source for potential therapeutics with well-known toxicity profiles and 
reasonable prices. This implies that biomarkers of response need to accompany the 
development of antileukemic therapies for sharply defined patient subgroups. We will 
illustrate repurposing in AML with selected examples and discuss some experimental 
and regulatory limitations that may obstruct this development.
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iNTRODUCTiON

Repurposing is a recognized strategy in drug discovery and development where an already approved 
drug is used for diseases other than originally indicated (Figure 1) [for reviews, see Ref. (1–4)]. 
The development of a novel drug takes between 13 and 15 years from bench-to-bedside, where the 
estimated cost from research to a marketing approval is between 2 and 3 billion US dollars (5).  
In addition, drug development is associated with a high failure rate and most drugs never reach a 
final Food and Drug Administration (FDA) approval. This is highly illustrated by comparing the 
number of FDA approved drugs in 1976 and 2014, being 26 and 41, respectively. However, the 
cost of drug discovery has increased more than 15-fold since 1975 (5). From a global perspective, 
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FigURe 1 | Repurposing drugs to anticancer therapy. The different phases indicated. The term “financial orphan” has been coined for repurposing registrated 
off-patent molecules for new diseases. Clinical trials represent a substantial cost, mainly because of regulatory precursions and careful validation of data. Figure 
modified from Ref. (12).
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a successfully developed drug will be priced high and conse-
quently becomes inaffordable for the majority of the patients 
in need. The timeframe of repurposing an already approved 
drug has been estimated to be approximately 6  years, because 
initial drug development have already been performed and have 
a cost of 300 million US dollars, in the end, resulting in much 
more affordable drugs for the patients (5). Repurposing is often 
associated with discovery of a new mechanism of action and elu-
cidation of a novel molecular target (6–8). Screening techniques 
directed toward new diseases and mechanisms are central to a 
repurposing strategy together with systems biology approaches 
that have rejuvenated the field (9). Recent development in 
advanced disease models ex vivo and in  vivo may be essential 
for successful development. Additionally, in cancer prevention, 
there are several examples of repurposing (10, 11). However, 
developments both in prevention therapy and direct therapy are 
moving slowly. Tumor heterogeneity and cancer subtypes are 
suggested as important reasons for limited overall benefit.

why Repurposing Drugs?
Repurposing is fruitful because we already know the spectrum 
of side effects, and how these drugs are administered and dis-
tributed in the organism (3, 4). We now understand that most 
small molecule substances may have more than one molecular 
target. Evaluation assays of new therapeutic targets are essential 
for success. The drug concentration required to achieve a desired 
pharmacological effect could vary greatly. Consequently, if a 
substantially higher drug concentration is required for a new 
pharmacological effect, a new preclinical evaluation regarding 
absorption, distribution, metabolism, and excretion will be 
necessary. Clinical evaluation of toxicity and side effects would 
also have to be re-evaluated.

A Job to Be Done: The Need of New 
Medicines in Cancer Therapy
The major challenge of cancer therapy today is the therapeutic 
effect in metastatic cancer or surgically non-resectable tumors. 
Five years mortality above 90% in severe metastatic cancer 

and particular aggressive cancers like pancreatic cancer and 
cytogenetically defined high-risk acute myeloid leukemia (AML) 
underscores an urgent need for new drugs in cancer treatment. 
Likewise, refractory or relapsing disease is therapeutically chal-
lenging and demands new drugs. These new drugs should reflect 
the emerging knowledge of genetics, molecular characterization 
of tumors, and various tumor–host interactions (13). A strik-
ing trend in cancer diagnostics is the subdivision of particular 
diseases, from morphological and anatomical–pathological 
classification to disease subsets characterized by recurrent muta-
tions (14). To some degree, mutations in similar genes in different 
cancers can be treated with the same therapy, for example, TKIs 
in BCR-ABL1-positive AML (15), acute lymphocytic leukemia 
(ALL) (16), and chronic myeloid leukemia (17, 18). A similar 
trend in TP53 mutated cancers could be plausible through small 
molecules proposed to activate the mutated p53 protein (19).  
A deeper understanding of tumor cell clonality and clonal 
evolution has followed increasing understanding of disease het-
erogeneity (9). Clonal plasticity is frequently present both during 
both disease development and during cancer therapy. The clonal 
repertoire in one patient may, therefore, need a wider selection of 
molecules able to target various cellular mechanisms driving the 
tumor cells. Finally, the tumor–host interaction maybe essential 
to obtain disease control and to provide control of clonal evolu-
tion (20).

Surprisingly, among the approximately 1,600 FDA-approved 
drugs and drugs in late clinical development, the number of 
druggable molecules in a cell or organ is estimated to be 670 of 
the 21,000 genes and 1.5 million proteins and isoforms expressed 
(21). If these approved drugs could be exploited across diseases 
and particularly in cancer therapy, the therapeutic toolbox would 
be significantly expanded.

We will present selected examples of repurposing in AML 
and aspects of the process that may be of importance for further 
development in this aggressive blood cancer (Figure 2).

Repurposing and repositioning are often used synonymous in 
drug development. We suggest using the term repositioning for 
approved and established chemotherapeutics further developed 
for use in AML, either added to intensive induction therapy or 
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FigURe 2 | Hallmark of repurposing in acute myeloid leukemia. Main classes of mechanism are presented with selected examples. Both repositioning of 
chemotherapy (top of figure) and repurposing of non-cytotoxic medicines (sides and bottom) need identification of biomarkers that identify patients who respond to 
therapy. For more examples on repurposing in blood cancer, see Ref. (22). The mechanism of action of most therapeutic molecules is incompletely understood in 
the context of tumor–host interaction, both for stromal interaction and immune responses. The tumor–host interaction illustrated in the inner circle is modified from 
Centre of Cancer Biomarkers (www.ccbio.no). Figure modified from Ref. (4) and inspired by Hallmark of Cancer, by Hanahan and Weinberg (13).
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in a new therapy combination or sequence. Repurposing will 
be used to describe agents used in non-cancer diseases, like 
infectious, cardiovascular, metabolic, or convulsive diseases, and 
how these agents further could be developed into antileukemic 
medicines. We will present a selection of repurposing examples 
that completed the translation from bench to bedside and some 
examples that are in development. Possible hindrances and how 
these may be dealt with will also be discussed (Figure 1).

AML—Treatment and Survival
Acute myeloid leukemia is an aggressive blood cancer derived 
from myeloid hematopoietic stem-like cells where recurrent 
mutations and cytogenetic features predict therapy response 
and risk for relapse (14). Cytogenetic aberrancies with multiple 

monosomies indicate less than 5% 5-year survival in AML patients 
between 18 and 65 years of age (23), while special chromosomal 
translocations such as the 15;17 in the acute promyelocytic 
leukemia (APL; AML M3), involving the retinoic acid receptor, 
suggest more than 90% 50 months survival and may be treated 
chemotherapy-free with all-trans retinoic acid and arsenic triox-
ide (24). The history of therapy development in APL is unique 
due to its close ties to Chinese traditional medicine, where both 
all-trans retinoic acid and arsenic trioxide have their origin (25). 
The recurrent mutations in receptor tyrosine kinase FLT3 and 
nucleophosmin 1 (NPM1) can be used together in patients with-
out cytogenetic aberrations and thereby stratify 5 years survival 
between 9% (FLT3-ITD mutated, NPM1 wild type) and 61% 
(NPM1 mutation, FLT3 wild type) (14). This guides the choice 
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of allogeneic stem cell transplantation as consolidation therapy. 
However, stem cell transplantation has up to 20% treatment-
related mortality and about 20% of the patients may not be 
offered this therapy due to comorbidity (26). Paradoxically, the 
immediate choice of therapy at diagnosis is not translated into 
clinical practice per 2017 except for the approximately 10% of 
patients with translocation 15;17 treated with retinoic acid. The 
high risk nature for early death in APL (27) has led to interna-
tional guidelines advising immediate medication with all-trans 
retinoic acid based on immediate suspicion by blood and bone 
marrow cytology. In the remaining AML subsets, new drugs 
are slowly emerging (14). New effective drugs targeting FLT3 
signaling, metabolism (IDH1/2), and cell death (Bcl-2) are cur-
rently approved or will likely be approved based on recent phase 
III clinical trials addressing molecular stratification in therapy 
guidance (28).

RePOSiTiONiNg OF CHeMOTHeRAPY 
FOR AML

Repositioning of chemotherapy to AML may have a significant 
potential if we precisely were capable of selecting responders 
and avoiding non-responders (Figure  2). The combination 
of cytarabine and anthracyclines has been the gold standard 
treatment of AML patients for decades (14, 28). There are 
partially historical reasons for certain chemotherapeutics being 
excluded from use in AML. Several agents have been introduced 
in extensive therapy development programs, however, unfortu-
nately, because of lack of effect or only weak beneficial effect 
in subgroups of patients, their final position in AML is not 
determined. Many of the antimetabolites appear to have striking 
efficacies in up to 30% of the patients (29). If accurate biomark-
ers of response were available, our toolbox would immediately 
be filled with easy-to-use low-cost agents. We could speculate 
that repositioning in the near future will be catalyzed by next-
generation AML disease profiling using novel immune mapping, 
ultra-deep sequencing, epigenetic characterization, or sensitive 
quantitative proteomics. Determining the complete responders 
upfront of low-dose chemotherapy may be invaluable for elderly 
unfit AML patients.

Cladribine
Cladribine (2-chloro-2′-deoxyadenosine; Leustatin) is a synthetic 
purine nucleoside antimetabolite that is highly effective treatment 
for the B-cell disease hairy cell leukemia; curing more than half 
of patients treated. Cladribine is an analog of deoxyadenosine, 
resistant to deaminase, and first synthesized in the beginning of 
the 1980s for investigation of antileukemic and antilymphocytic 
activity (30, 31). This was based on the observations that patients 
with a genetic defect of adenosine deaminase essential for the 
conversion of lymphotoxic deoxyadenosine to non-toxic deoxyi-
nosine showed lymphopenia and severe immunodeficiency (32). 
Recently, it has been tested in combination with anthracycline 
and cytarabine in fit patients with de novo AML (33). This triplet 
combination is one of the few enhancement of intensive AML 
therapy that improves overall survival. We speculate that cost is 
why cladribine is not used routinely in most of the Western world. 

Poland has reasonable priced production of cladribine, while 
most Western European countries have highly priced supplies. 
This exemplifies that off-patent drugs not necessarily are cheap 
but could experience significant cost increases (34), e.g., a price 
dictated by production limitations. Therefore, it is not likely that 
agents like cladribine will be included in international guidelines 
in combination with intensive chemotherapy. Approval of FLT3-
targeting midostaurine and fast-track development programs 
of drugs targeting IDH1/IDH2 will most likely be added to the 
current intensive therapy, possible with enhanced effect and less 
adverse events.

Clofarabine
Clofarabine (2-chloro-2′-fluoro-2′-deoxyarabinosyladenine) is a 
second-generation analog of 2′-deoxyadenosine, synthesized in 
1992 and approved in 2004 for treatment of children with refrac-
tory or relapsed ALL (35). It was evident early on that clofarbine 
was effective against AML (36). Recently, the HOVON/SAKK 
Group reported that clofarabine did not provide a benefit in over-
all survival of newly diagnosed AML patients in the age group 
of 18–65  years (37). However, in the intermediary risk group, 
a clinical benefit was observed. This underscores the potential 
benefit in certain AML subsets and that the search for molecular 
markers of response should be intensified.

Cladribine and clofarabine belong to a large family of nucleo-
side and nucleobase antimetabolites with great importance in 
treatment of cancer and infections (38). Many of these mol-
ecules inhibit ribonucleotide reductase (39), likely an important 
component of the antileukemic effect. Fludarbine is per orally 
formulated and registered for combination use in AML (16, 40), 
but both cladribine and clofarabine may well have similar or even 
better therapeutic effect. Our understanding is that until feasible 
biomarkers are available, the justified position of cladribine and 
clofarabine will not be clarified in AML.

Actinomycin D
Actinomycin D (dactinomycin, Cosmegen) was described in 
1940 as the first antibiotic demonstrating anticancer effect (41). 
It interacts directly with DNA and blocks RNA synthesis by 
inhibiting RNA polymerase I, II, and III; specifically inhibiting 
RNA polymerase I activity only at low concentrations (42, 43).  
Actinomycin D has been approved for use in rare cancers 
such as Wilms tumor, rhabdomyosarcoma, Ewing’s sarcoma, 
trophoblastic neoplasm, testicular cancer, and certain types of 
ovarian cancer (44, 45). Recently, actinomycin D at low doses was 
reported effective when treating unfit AML with NPM1 muta-
tions (46). This is intriguing because of its limited toxicity and 
the fact that one-third of all AML patients have a NPM1 mutation 
(47). Mechanistically, actinomycin D has been shown to affect 
ribosomal biogenesis and thereby altering pre-mRNA splicing of 
tumor suppressor p53 (48). Mutations in the pre-mRNA splicing 
machinery is a feature associated with AML, and NPM1 itself play 
an important role in ribosomal biogenesis. Interestingly, AML 
with mutated NPM1 appear to have relative increase in the p53 
spliced isoforms beta and gamma (49). Finally, the myeloid AML 
blasts have a high level synthesis of ribosomes and may, therefore, 
be particular susceptible to actinomycin D (50).
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Melphalan
Melphalan is an alkylating agent used in a wide dose span, from 
treatment of unfit multiple myeloma to bone marrow eradication 
in autologous stem cell transplantation. Low-dose melphalan 
has repeatedly been described to benefit selected patients with 
myelodysplasia and AML. An early report described that 2 mg 
daily orally administrated melphalan-induced remission in 
myelodysplasia refractory anemia with excess blasts and in trans-
formation to AML (51). A single arm clinical study of 21 patients 
with AML indicated 30% complete responses and 10% partial 
responses when treated for 4–6  weeks (29). Responses lasted 
12–55 weeks, and relapses responded to rechallenge with melpha-
lan. Interestingly, patients with normal karyotype and low bone 
marrow cellularity were the most frequent responders. Two cases 
describing relapses on melphalan demonstrated clonal evolution 
with appearance of the high-risk loss of 17p including the TP53 
gene (52). Both of these patients were resistant to cytarabine, the 
standard drug used extensively in AML. Based on the knowledge 
that melphalan induces DNA damage, melphalan is not ideal 
for treatment of younger patients. Melphalan-induced genomic 
instability in particularly susceptible patients may be the reason 
for secondary hematological malignancies, found in a subset of 
melphalan-treated myeloma patients (53, 54). Understanding 
better, the genomic susceptibility to melphalan and other anti-
metabolites may facilitate safer usage of these agents.

Hydroxyurea
Hydroxyurea is authorized as a drug to decrease the level of white 
blood cells in AML, but it has never been shown to improve 
survival compared to best supportive therapy (55). Hydroxyurea 
is regarded as a safe agent not inducing DNA damage through 
its extensive use in younger patients with hemoglobinopathies 
(56, 57). Interestingly, hydroxyurea provides antileukemic effects 
in novel combinations. We have preclinically tested hydroxyurea 
in combination with valproic acid and experienced effects on 
DNA repair unique for the combination (58). This combination 
is apparently well tolerated in unfit AML patients (59), but data 
from controlled trials are lacking.

Arsenic Trioxide Repositioned  
for Non-APL
Arsenic trioxide combined with all-trans retinoic acid is close 
to a standard therapy for patients with t(15;17) M3 AML (60). 
However, for AML (non-APL), arsenic trioxide in combination 
with low-dose cytarabine or standard induction therapy have not 
been successful (61–64). These clinical observations are disap-
pointing in light of a wide range of preclinical studies that indicate 
potential combinations with specific mechanisms of action.

RePURPOSiNg NON-CHeMOTHeRAPY 
AgeNTS FOR AML

The delineation of chemotherapeutics and many non- 
chemotherapeutics could be artificial. If doses are increased, most 
therapeutic molecules will induce cytotoxicity. However, we will 
discuss agents that are regarded non-toxic when used at approved 

doses. Lessons learned from all-trans retinoic acid in APL (AML 
M3), as well as new molecules with strong pro-differentiating 
effects, indicate just how cells are brought out of their prolif-
erative state matters for therapy response. Furthermore, several 
agents appear to show low toxicity by themselves, but alter the 
threshold for undergoing cell death when exposed to additional 
antileukemic therapy. A general concept of non-chemotherapy 
agents, including all-trans retinoic acid in APL, seems to be that 
monotherapy usage is not feasible.

glucocorticoids in AML
Glucocorticoids in AML, so far, play no therapeutic antileukemic 
role, and its use is actually discouraged due to an immunosuppres-
sive effect. However, two reports suggest that glucucorticoids may 
be beneficial in AML subsets. Patients resistant to cytarabine and 
with wild-type FLT3 may respond to glucocorticoids (65). More 
specifically, an entity of AML patients with loss-of-function muta-
tions in the RUNX1 gene is proposed to have particular benefit of 
glucocorticoids apparently in a RUNX1 dose-dependent way (66). 
A biomarker for glucocorticoid use may be implemented quickly 
in routine therapy of AML, particularly since glucocorticoids are 
already routinely used in the treatment of ALL.

Per Oral Antidiabetics
Per oral antidiabetics are proposed to have a role in AML 
therapy, particularly based on awareness of metabolism as an 
important mechanism in AML cells. The oral hypoglycemic 
metformin activates the adenosine monophosphate-activated 
protein kinase pathway dependent on the tumor suppressor 
LKB1. The LKB1/AMPK pathway is negatively activated by 
ERK in AML cells (67), and ERK is activated in the 50% of 
AML cases with mutations in intracellular signal transduction 
pathways (68, 69). Particularly, FLT3-ITD mutated AML cases 
may be susceptible for metformin and maybe with enhanced 
efficiency when combined with the kinase inhibitor sorafenib 
or the experimental drug 6-benzoylthioinosine (70, 71). 
Experiments in animal model xenografts of colon cancer and 
prostate cancer have demonstrated tumor suppressive effects of 
metformin (72, 73). Further, registry studies of diabetic patients 
on metformin have indicated reduced risk of pancreatic cancer 
(74). Based on this and other experimental evidence, a clinical 
trial in relapsed/refractory AML has been proposed combining 
metformin and cytarabine (https://ClinicalTrials.gov Identifier: 
NCT01849276).

Statins, HMg-CoA Reductase inhibitors
Statins, HMG-CoA reductase inhibitors, have been explored as 
antileukemic agents in AML. Statins tested as monotherapy in 
clinical trials have not shown convincing results. Statins may 
exemplify the limited potential of monotherapy of a repurposed 
drug in an aggressive blood cancer like AML. Current under-
standing of the dosing of statins is not complete (75, 76) and 
likely needs careful modeling for optimal effects of statins in 
AML. Two reports suggest that pravastatin may be beneficial in 
combination with idarubicin and cytarabin in relapsed AML, 
while de novo AML did not benefit from this combination  
(75, 76). These clinical trials combining statins with other 
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agents have demonstrated encouraging results. Interestingly, 
experimental evidence indicates immunomodulatory proper-
ties, including increased tumor infiltration of effector CD8 
T-cells and M2-like tumor-associated macrophages (77). These 
and novel combinations need to be further developed.

The Benzimidazole Family
The benzimidazole family of antihelmintic drugs have been evalu-
ated for antileukemic effects. The benzimidazoles are suggested to 
inhibit amino peptidase activity and glutamate catabolism, reduce 
glucose uptake, increase intracellular calcium levels, and inhibit 
microtubule formation [for references, see Ref. (78)]. The antileu-
kemic activity of mebendazole was discovered in an in vitro drug 
screen of AML cells with genetic alterations in Mixed Lineage 
Leukemia (79). Leukemia cell lines in the NCI-60 panel includ-
ing HL-60, K562, and CEM were sensitive to mebendazol in vitro 
(80). More in-depth characterization of the antileukemic effect 
of flubendazole demonstrates altered microtubule function and 
mitotic catastrophe with a binding site on tubulin that differed 
from Vinca alkaloids tubulin inhibitors (78). The synergism of 
flubendazole with Vinca alkaloid vinblastine in the cell line OCI-
AML2 and in a leukemia xenograft animal model may reflect the 
different tubulin-binding sites of flubendazole and vinblastine.  
To this date, no clinical trials in AML have been initiated using 
these antihelmintic agents.

Thalidomide: Development of a New Class 
of Targeted Molecules against Blood 
Cancer
Thalidomide was developed as a sedative and antiemetic in the late 
1950s, and its use by pregnant women resulted in a catastrophic 
occurrence of birth defects and stillborn. Thalidomide was with-
drawn, but its efficiency in severe inflammatory skin disorders 
and in Hansen’s disease (erythema nodosum leprosum) justified 
a limited use. Promoted by patient advocacy groups; thalidomide 
was tested in the plasma cell malignancy multiple myeloma 
nearly 50  years after its withdrawal, identifying responders 
in up to 20% of the patients (81). In AML and myelodysplasia 
syndromes (MDS), thalidomide induced a clinical response of 25 
and 56%, respectively (82, 83). Recently, the combination of tha-
lidomide and azacitidine was demonstrated tolerable in a phase 
II clinical trial in patients with clinically advanced MDS, chronic 
myelomonocytic leukemia, and low-blast count AML (84). But it 
took more than 60 years before a more complete understanding 
of the molecular mechanism emerged (7). Explaining both the 
teratogenicity and its antitumor response, the inhibitory action 
on the E3 ubiquitin ligase cereblon was discovered. Several more 
efficient thalidomide analogs were already in development based 
on the clinical effect. One such analog, lenalidomide, has shown 
to be particular effective in myelodysplasia lacking one copy of 
the 5q chromosome. Among several genes affected, 5q deletion 
results in haploinsufficency of casein kinase 1, and lenalidomide 
targeting of cereblon results in devastating low level of casein 
kinase 1 and subsequently tumor cell death (85). Myelodysplasia 
with 5q minus and response to lenalidomide is an example of 
synthetic lethality that could be necessary in order to make 

repurposing feasible for patients. It is likely that development of 
more molecules targeting the E3 ubiquitin ligase cereblon and its 
related pathways may provide us with efficient therapeutic targets.

valproic Acid: From Anticonvulsant to 
Antileukemic
Valproic acid (n-dipropylacetic acid, 2-propylvaleric acid, or 
2-propylpentanoic acid) derived from valeric acid naturally pro-
duced by the flowering plant valarian (valeriana officinalis) was 
first synthesized by Beverly S. Burton in 1882 (86). This branched 
short-chain fatty acid was used as a physiologically inert solvent 
for organic compounds for nearly a century before the 1963 
discovery that valproic acid had an anticonvulsant activity on its 
own (87). Clinically, valproic acid (Orfiril, Deprakine, Depakote, 
Convulex, Epilim, Stavzor) is used today as an long-term treat-
ment of anticonvulsant in epilepsy and mood stabilizing drug 
for bipolar disorder (88). Valproic acid is administered orally 
with available routine measurements of serum levels and has a 
low toxicity profile. In 2001, valproic acid was rediscovered for 
its anticancer activity as a histone deacetylase (HDAC) inhibi-
tor and importantly also found to induce differentiation and/
or apoptosis of transformed hematopoietic stem cells and AML 
cells from patients (89–91). DNA hypoacetylation of histone-
associated proteins leads to tight chromatin packaging resulting 
in repression of genes involved in differentiation, proliferation, 
and apoptosis. HDACs are often overexpressed in cancer cells, 
also in AML cells (92). Preclinical studies showed enhanced dif-
ferentiation and apoptosis in AML cells when combining valproic 
acid with other drugs (59, 93–95).

Valproic acid is currently involved in many different anticancer 
clinical trials (88). Furthermore, valproic acid often enhance or 
synergize with a numerous of drugs (96). Recently, valproic acid was 
combined with standard induction therapy in elderly AML patients, 
and although not resulting in an overall improved clinical outcome, 
the 5-year relapse-free survival was significantly increased for the 
patients additionally treated with valproic acid (97). Interestingly, 
the AML patients that particularly benefited from the additional 
valproic acid treatment were NPM1-mutated (97).

We examined this antileukemic effect of valproic acid in AML 
in combination with all-trans retinoic acid and theophylline, 
aiming for a combined epigenetic, transcriptional, and signaling 
transduction effect that resulted in increased differentiation and 
programmed cell death of tumor cells (98, 99). Our and others 
low-dose combination approach indicate 8–20% responders, 
with beneficial effect on low platelet levels. Several combinations 
of valproic acid with new and old drugs appear attractive, like the 
well-tested antimetabolite hydroxyurea and the new class MDM2 
inhibitor nutlin-3 (58, 95). Novel low-toxic combinations with 
valproic acid are in development and may be feasible to test in 
patients. However, the ability to perform substantial clinical trials 
with valproic acid that secure indication in cancer is challenging.

Quinacrine (Mepacrine, Atabrine)
Quinacrine (mepacrine, Atabrine) is an acridine dye developed 
in the US as an antimalarial agent at the beginning of the Second 
World War and used by millions of military personnel. This 
allowed for extensive registration of side effects and toxicity of 
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three million soldiers taking quinacrine for up to four years. (100). 
The toxicology profile is well known, dominated by gastrointes-
tinal symptoms, dizziness and nausea, exanthema, and at doses, 
above 500 mg daily reversible psychosis may occur. Quinacrine 
is currently used off-label for diseases such as therapy refractory 
giardiasis and as therapy enhancer in systemic lupus erythema-
tosus (100). The mechanisms of action for quinacrine have been 
extensively explored together with other acridine molecules. The 
DNA intercalating property of quinacrine is not associated with 
DNA damage, in contrast to the anthracycline chemotherapeutics, 
but has been used to stain chromosomes for G-banding where pla-
cental transfer of leukemic cells from fetus to mother was demon-
strated. Early works also indicated that quinacrine accumulates in 
tumor tissue in mouse and rat models, including leukemic spleen 
(100). Mechanisms of action include inhibition of the NF-κB 
signal transduction pathway and activation of tumor suppressor 
protein p53 (6, 101). Quinacrine was recently selected as the num-
ber one hit in a drug screen searching for compounds with high 
antileukemic activity and low toxicity toward healthy peripheral 
mononuclear cells where ribosome biogenesis was found to be the 
target of quinacrine (102). Thus, ribosome biogenesis inhibition 
will result in the release of ribosomal proteins binding to the E3 
ubiquitin ligase MDM2, thereby blocking p53 ubiquitination. The 
result implies that quinacrine indirectly inhibit MDM2, thereby 
stabilizing p53 protein that induces p53-dependent gene expression 
(6). AML is a disease where 90% of the patients have non-mutated 
TP53, and the effect of quinacrine on MDM2 is strongest in these 
patients. Increased activation of the NF-κB pathway is known in 
AML (103, 104) and is suggested to induce antiapoptotic Bcl-2 
in the leukemic cells, causing a higher threshold for undergoing 
chemotherapy induced cell death.

Novel Mechanisms with Therapeutic 
implications
Quizartinib is a promising FLT3-targeted kinase inhibitor in late 
development for AML (105). The role of FLT3 and the FLT3 ligand 
is known in some detail, e.g., in aplasia, the FLT3 ligand is highly 
increased in blood and bone marrow. A novel use of quizartinib 
is suggested through the use for preventing chemotherapeutic 
myelosuppression (106). Myelosuppression is regarded as a 
natural and unsuspendable process in intensive AML therapy. 
An interesting feature about mutated FLT3-ITD signaling is 
based on the subcellular localization of the mutated FLT3 to the 
endoplasmic reticulum, not typical for wild-type FLT3 signal-
ing (107–109). Based on this difference in signaling between 
wild-type and FLT3-ITD, normal and leukemic stem cells may 
respond differently to FLT3 inhibitor treatment. By protecting 
normal hematopoietic stem cells from FLT3 ligand signaling, the 
myeloablasive phase could be significantly shortened.

Bromocriptine is a dopamine receptor agonist/antagonist used 
to treat Parkinson’s disease, acromegaly, galactorrhea, hyper-
prolactinemia, and lately repositioned for diabetes mellitus. 
Bromocriptine was recently identified in a screen of FDA-approved 
drugs searching for drugs with potential of differentiation of AML 
cells (110). Serotonin receptor agonists are frequently used in the 
treatment of depression and migraines. Interestingly, the seroto-
nin receptor type 1 (HTR1) was demonstrated expressed on AML 

cells and addition of HTR1 antagonist induced differentiation, 
increased cell death, and impaired clonogenic capacity (111).

Leukemic stem cells play a central role in relapsed and 
refractory AML and, therefore, developments of low-toxicity 
compounds targeting these cells are needed. Ongoing research is 
studying several compounds derived from natural sources such as 
plant extract from parthenolides with efficacy toward AML stem 
cells (112). We have recently reported antileukemic effects of the 
natural product avrainvillamide in AML with a strong antipro-
liferative activity and enhanced potency toward AML cells with 
NPM1 and FLT3 mutations (113, 114).

Leukemic progenitor cells are known to hide in stem cell 
niches of the bone marrow. In this situation, the leukemic cells 
are protected by stromal cells that directly or indirectly provide 
survival and protective factors that blunt the effect of chemo-
therapy (115). Inspired by the observation that antibody blockage 
of certain homing factors to the bone marrow niche, like CXCR4, 
may provide mobilization of hematopoietic stem cells, these 
blockers of niche homing have been proposed to mobilize leuke-
mic cells before chemotherapeutic therapy (116). Several clinical 
trials currently address this concept (https://ClinicalTrials.gov 
IdentifierNCT01236144), and we are looking forward to data 
emerging from these trials on the effect on minimal residual 
disease and finally overall survival in AML.

CHALLeNgeS FOR RePURPOSiNg

Obviously, the experimental backbone of repurposing drugs in 
cancer therapy is challenging, followed by demanding clinical 
trials that need a sophisticated biomarker program for identifying 
therapy responders (Figure  1). If successful, the data obtained 
should solve the obstacle related to the approval mechanisms and 
regulations by medicines agencies. These hurdles could be solved 
if the development program has financial muscles, which is not 
very likely in projects emerging from smaller laboratories and 
academic institutions. The approval allows marketing at a specific 
indication listed on the drug’s label, and documentation includ-
ing clinical trials that should lead to such approval is economi-
cally challenging. Furthermore, if the sale on a particular label or 
indication is limited, the producer may withdraw the marketing 
approval. In extreme examples, a drug (alemtuzumab, anti-CD52 
against relapsed B-cell chronic lymphatic leukemia; CLL) was 
withdrawn from the initial cancer indication and reapproved for 
a larger market in multiple sclerosis (117, 118). At the same time, 
the company introduced the Campath Distribution Program 
(www.campathproviderportal.com) in the US to secure that 
eligible CLL patients got access to the drug free of charge. This 
exemption of anti-CD52 therapy illustrates that reimbursement 
of the drug by the patient’s governmental or private insurance 
agency will be based on the approval, and use of off-label therapy 
will be economically challenging.

eMeRgiNg TeCHNOLOgieS THAT 
SUPPORT RePURPOSiNg

System biology approaches has recently been used in a drug 
sensitivity test of AML cells from patients (9). Initiatives for 
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advanced collections coupled with drug response mapping, e.g., 
gene expression and proteomics, will make development more 
rational and predictable (119). We have seen these developments 
be rewarding in orthotopic small animal models of AML, where 
collections of libraries of molecules coupled with advanced 
bioinformatics tools may improve the probability of discovering 
novel combinations of therapeutics authorized for other diseases 
than AML (120). More advanced in silico tools are on the brink 
to facilitate this development (121). Combination of miniaturiza-
tion, microfluidics, and bioinformatics with artificial intelligence 
may represent the novel tools needed to answer the overdue 
question in chemotherapy repositioning: which patients will be 
optimal responders.

FiNAL CONCLUSiON

At one end of the drug development spectrum, repurposing 
has the potential to bring old drugs rapidly into use for new 
diseases. At the other end, repurposing could serve to identify 
lead compounds being chemically modified in order to increase 

target affinity and reduce necessary dosing and toxicity. Novel 
formulations may add more dimensions to drug delivery and 
tissue targeting that make repurposing of medicines highly 
attractive. Widespread use of repurposing in therapy develop-
ment may need regulatory steps to move forward, securing 
approved indications, safety data, and allowing insurance 
reimbursement. This needs international regulations that take 
into consideration the global need for cancer therapy. Cancer 
therapy needs a larger therapy toolbox and effective repurpos-
ing may be one important tool that increases the number of 
therapy responders in cancer.
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