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Simple Summary: The whitebacked planthopper (WBPH), Sogatella furcifera (Horváth), is one of the
most destructive pests that seriously threatens the high-quality and safe production of rice. Overuse
of chemical insecticides has led to varying levels of resistance to insecticides in the field population
of S. furcifera. In this study, we measured the susceptibility of 18 populations to 10 insecticides by
the rice-seedling dip method. Enzyme assays were performed to measure the levels of esterase
(EST), glutathione S- transferase (GST) and cytochrome P450 monooxygenase (P450). A risk of
cross-resistance between some insecticides were found by pairwise correlation, and EST may be
contributed to the resistance to nitenpyram, thiamethoxam and clothianidin in S. furcifera. Overall,
our findings will help inform the effective insecticide resistance management strategies to delay the
development of insecticide resistance in S. furcifera.

Abstract: Monitoring is an important component of insecticide resistance management. In this study,
resistance monitoring was conducted on 18 field populations in China. The results showed that
S. furcifera developed high levels of resistance to chlorpyrifos and buprofezin, and S. furcifera showed
low to moderate levels of resistance to imidacloprid, thiamethoxam, dinotefuran, clothianidin,
sulfoxaflor, isoprocarb and ethofenprox. Sogatella furcifera remained susceptible or low levels of
resistance to nitenpyram. LC50 values of nitenpyram and dinotefuran, imidacloprid, thiamethoxam,
clothianidin and chlorpyrifos exhibited significant correlations, as did those between dinotefuran
and thiamethoxam, clothianidin, sulfoxaflor, imidacloprid, isoprocarb and buprofezin. Similarly,
significant correlations were observed between thiamethoxam and clothianidin, sulfoxaflor and
imidacloprid. In addition, the activity of EST in field populations of S. furcifera were significantly
correlated with the LC50 values of nitenpyram, thiamethoxam and clothianidin. These results will
help inform effective insecticide resistance management strategies to delay the development of
insecticide resistance in S. furcifera.

Keywords: Sogatella furcifera; insecticide; insecticide resistance; detoxification enzymes; correlation analysis

1. Introduction

The whitebacked planthopper (WBPH), Sogatella furcifera (Horváth: Delphacidae, So-
gatella), is one of the most destructive pests of rice crops and is widely distributed in Asian
countries [1,2], causing serious damage to rice mainly by sucking at the base of rice stems
and spreading viral diseases [3,4]. Chemical insecticides have a long history of controlling
the WBPH, and they are still the primary measure of prevention and management [2,5,6].
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However, due to long-term use of synthetic insecticides, various populations of WBPH
have developed resistance to 15 compounds worldwide, including organophosphates,
pyrethroids, carbamates, insect growth regulators and neonicotinoids [7–9]. Consequently,
it is important to determine the resistance level of the field population of WBPH to fre-
quently used insecticides, which are crucial for the successful management of the WBPH.

Previous studies have demonstrated an altered target site and enhanced detoxification
(metabolism) as the main mechanisms of resistance to insecticides [10–12]. In S. furcifera,
metabolic resistance due to overexpression of cytochrome P450 (monooxygenase) has
contributed to neonicotinoid, insect growth regulator and organophosphate resistance,
and an elevated level of GST has also been involved in resistance to neonicotinoids and
insect growth regulator resistance [13,14]. In addition, increasing activities of EST have
contributed to insect growth regulator resistance in S. furcifera [15].

The WBPH has become increasingly damaging in rice producing areas in the Yangtze
River region, which is the main paddy field in China [8]. In our study, we assessed the
resistance situation of S. furcifera to 10 insecticides (including carbamates, pyrethroids,
neonicotinoids, organophosphates and insect growth regulators) from 18 areas of six
provinces in China, and analyzed the potential cross-resistance patterns of these insecticides
in all collected field populations of S. furcifera. We also determined the correlation between
the activity of detoxification enzymes and the susceptibilities of S. furcifera field populations.
The findings of this study not only provide directions for the sustainable control of this
important pest in rice producing areas, but also provide useful data for the insecticide
resistance management and integrated pest management (IPM).

2. Materials and Methods
2.1. Insect Populations

Eighteen field populations of WBPH were collected from rice paddy fields in six
provinces in China (Table 1). Insects were reared under the following conditions: tempera-
ture of 27 ± 1 ◦C, relative humidity (RH) of 70–80% and photoperiod of 16:8 h light/dark.
The field-collected WBPH was mass mated and maintained in the laboratory for 1–2 gener-
ations, and the progeny were used for the susceptibility bioassay and enzyme assays.

2.2. Insecticides

The 10 insecticides were sourced and tested: nitenpyram (Hubei Kangbaotai Fine-
Chemicals Co., Ltd., Wuhan, China, 95.8%), dinotefuran (Hubei Kangbaotai Fine-Chemicals
Co., Ltd., 91.0%), thiamethoxam (Hubei Kangbaotai Fine-Chemicals Co., Ltd., 95%), cloth-
ianidin (Hubei Kangbaotai Fine-Chemicals Co., Ltd., Wuhan, China, 96.0%), sulfoxaflor
(Dow AgroSciences Inc., Shanghai, China, 97.9%), imidacloprid (Hubei Kangbaotai Fine-
Chemicals Co., Ltd., Wuhan, China, 95.8%), chlorpyrifos (Hebei VeYong Bio-Chemical
Co., Ltd., Shijiazhuang, China, 98.0%), isoprocarb (Jiangsu Changlong Chemicals Co., Ltd.,
Changzhou, China, 97.9%), ethofenprox (Suzhou ATL Chemical Co., Ltd., Suzhou, China,
95.0%) and buprofezin (Jiangsu Anpon Electrochemical Co., Ltd., Huai’an, China, 97.4%).
The modes of action included nitenpyram, dinotefuran, thiamethoxam, clothianidin, sul-
foxaflor and imidacloprid via nicotinic acetylcholine receptor (nAChR) competitive modu-
lators; chlorpyrifos and isoprocarb via acetylcholinesterase (AChE) inhibitors; ethofenprox
and buprofezin via sodium channel modulators and inhibitors of chitin biosynthesis,
respectively [16].

2.3. Bioassays

Bioassays were performed with third-instar nymphs of S. furcifera using a rice-seedling
dip method that has been described previously [17]. Briefly, fifteen rice seedlings were
combined, immersed in a concentration of insecticide dilutions (Table S1) for 30 s and then
air-dried at 25 ◦C for more than 30 min. The roots of rice seedlings were wrapped with
cotton moistened with water, and placed in a 500-mL plastic cup. Each replicate contained
fifteen third-instar nymphs. Three replicates of each concentration and six replicates of
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each insecticide were carried out, with rice seedlings dipped in water containing 0.1%
Triton X-100 (Sigma–Aldrich, St. Louis, MO, USA). Triton X-100 was used as a control.
Mortality was counted after exposure to isoprocarb, chlorpyrifos, and ethofenprox for 72 h,
imidacloprid, thiamethoxam, dinotefuran, clothianidin, sulfoxaflor, and nitenpyram for
96 h, and buprofezin for 120 h.

Table 1. Information of S. furcifera collected from rice paddy fields of China.

Populations Sampling Sites Collection Date Site Insect Stage Number

HBCB-2019 Chibi, Hubei 15 July 2019 29◦31′ N, 113◦42′ E Nymph and adult 1206
HBWX-2019 Wuxue, Hubei 6 September 2019 29◦57′ N, 115◦36′ E Nymph and adult 1374
HBJM-2019 Jingmen, Hubei 5 September 2019 30◦32′ N, 112◦18′ E Nymph and adult 1453
HNNX-2019 Ningxiang, Hunan 20 June 2019 28◦10′ N, 112◦33′ E Nymph and adult 1069
JXNC-2019 Nanchang, Jiangxi 12 June 2019 28◦32′ N, 115◦58′ E Nymph and adult 1146
AHLA-2019 Luan, Anhui 10 July 2019 31◦32′ N, 116◦18′ E Nymph and adult 1073
HNXY-2019 Xinyang, Henan 14 July 2019 31◦58′ N, 115◦24′ E Nymph and adult 1421
HBDY-2020 Dangyang, Hubei 19 July 2020 30◦59′ N, 111◦52′ E Nymph and adult 1306
HBCB-2020 Chibi, Hubei 21 July 2020 29◦31′ N, 113◦42′ E Nymph and adult 1154
HBWX-2020 Wuxue, Hubei 8 August 2020 30◦07′ N, 115◦36′ E Nymph and adult 1073
HBJL-2020 Jianli, Hubei 25 July 2020 29◦49′ N, 112◦54′ E Nymph and adult 1209
HBJM-2020 Jingmen, Hubei 14 July 2020 30◦54′ N, 112◦14′ E Nymph and adult 1043
HBXZ-2020 Xinzhou, Hubei 14 July 2020 30◦51′ N, 114◦37′ E Nymph and adult 1194
HNNX-2020 Ningxiang, Hunan 3 August 2020 28◦10′ N, 112◦33′ E Nymph and adult 1206
JXNC-2020 Nanchang, Jiangxi 25 July 2020 28◦32′ N, 115◦58′ E Nymph and adult 1311
AHHF-2020 Luan, Anhui 12 August 2020 31◦31′ N, 116◦37′ E Nymph and adult 1248
HNXY-2020 Xinyang, Henan 15 August 2020 31◦58′ N, 115◦24′ E Nymph and adult 1076
GZQN-2020 Qiannan, Guizhou 15 August 2020 25◦59′ N, 106◦35′ E Nymph and adult 1108

2.4. Enzyme Assays

EST activity was determined using the method described previously [7]. Approx-
imately 0.02 g of third-instar nymphs for each repetition was homogenized in 1 mL of
ice-cold sodium phosphate buffer (0.04 M, pH 7.0) and centrifuged at 4 ◦C and 14,000 rpm
for 10 min. The homogenized supernatant was then carefully transported to a new Eppen-
dorf tube and used as the enzyme source. A total of 1.2 mL of substrate solution (containing
1 mL 3× 10−4 M α-NA and 0.2 mL of the enzyme source) was added and then incubated at
37 ◦C for 15 min. The reaction was terminated by the addition of 0.2 mL of the dye reagent.
An NP80 nanophotometer (IMPLEN, Munich, Germany) was used to measure the optical
density at 600 nm.

GST activity was assayed as previously described [7]. The enzyme solution was
prepared as it was in the EST assay. For each reaction, 740 µL of sodium phosphate buffer
(0.1 M, pH 6.5), and 30 µL of 30 mM 1-chloro-2,4-dinitrobenzene (CDNB), 100 µL of enzyme
solution, 30 µL of 30 mM GSH were mixed. The absorbance was recorded using an NP80
NanoPhotometer (IMPLEN, Munich, Germany) at 340 nm for 2 min.

The 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 was determined as
described previously with slight modification [18]. Approximately 0.2 g of the third-
instar nymphs was homogenized in 1.0 mL of 0.1 M sodium phosphate buffer containing
1 mM ethylenediaminetetraacetic acid EDTA (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China) 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT)
and 10% glycerol, and then centrifuged at 4 ◦C 14,000 rpm for 15 min. The supernatant
was centrifuged at 4 ◦C 14,000 rpm for 30 min again. For the reaction, 125 µL of crude
homogenate was mixed with 365 µL of 0.1 M sodium phosphate buffer (pH 7.5), 10 µL
of 10 mM aqueous NADPH and 5 µL of 40 mM 7-ECOD and then incubated at 30 ◦C
for 15 min. The reaction was terminated by adding 150 µL of 15% trichloroacetic acid
(TCA). Then, the mixture was centrifuged, and 1.6 mM glycine-NaOH buffer (pH 10.5) was
added. A Spark 10 M Multimode Microplate Reader (Tecan, Männedorf, Switzerland) was
used for measuring the fluorescence intensity with an excitation wavelength of 358 nm
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and an emission wavelength of 465 nm. The protein content of the enzyme solutions
was determined using Quick Start™ Bradford 1*Dye Reagent (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA).

2.5. Data Analyses

Abbott’s formula was used to control mortality for the mortality data obtained [19].
The slopes with standard errors (SE), and LC50 values with 95% confidence intervals, were
calculated by probit analysis. The LC50 of the most susceptible population was confirmed
in previous studies in our lab [7]. The classification standard of resistance level was based
on the “Technological rules for monitoring insecticide resistance in rice white-backed
planthopper, Sogatella furcifera” (NY/T 3159-2017), Agricultural industry standard of the
people’s Republic of China. The resistance ratio (RR): RR ≤ 5, 5 < RR ≤ 10, 10 < RR ≤
100 and RR > 100 were classified as susceptible, low level of resistance, moderate level of
resistance, and high level of resistance, respectively. The LC50 values of the susceptibility
baseline and minimum recommended dose of registered insecticides to S. furcifera are
listed in Table 2. Spearman correlations between the LC50 values of different insecticides
were calculated using the WGCNA package (version 1.69) and visualized using corrplot
(version 0.1.3). The relative enzyme activities and differences in mortality were analyzed
using unpaired Student’s t-tests with at least three repeats. The standard of statistically
significant differences was p < 0.05.

Table 2. The susceptibility baseline of S. furcifera to insecticides.

Group Insecticide LC50 (95%CI a) (mg/L) Reference

neonicotinoids

imidacloprid 0.11 (0.06–0.17) Su et al., 2013
thiamethoxam 0.18 (0.11–0.23) Su et al., 2013

nitenpyram 0.27 (0.19–0.36) Zhang et al., 2017
dinotefuran 0.20 (0.16–0.25) Li et al., 2020
clothianidin 0.15 (0.09–0.21) Zhang et al., 2017

Sulfoximines sulfoxaflor 0.50 (0.33–0.66) Li et al., 2020
Insect growth regulators buprofezin 0.04 (0.03–0.06) Li et al., 2020

Carbamates isoprocarb 9.42 (6.97–11.80) Li et al., 2020
Pyrethroids ethofenprox 34.61 (20.28–52.76) Li et al., 2020

Organophosphates chlorpyrifos 0.24 (0.17–0.31) Li et al., 2020
a CI, confidence interval.

3. Results
3.1. Insecticide Resistance

To determine the resistance level of S. furcifera in rice paddy fields in China, we
measured the susceptibility of 18 populations to 10 insecticides by the rice-seedling
dip method. The results indicated that S. furcifera had moderate to high levels of re-
sistance to chlorpyrifos (RR = 47.75–304.17-fold) and buprofezin (RR = 81.25–331.50-
fold). Furthermore, S. furcifera developed low to moderate resistance levels to dinotefuran
(RR = 1.35–51.45-fold), thiamethoxam (RR = 1.33–16.61-fold), clothianidin (RR = 1.80–17.33-
fold), sulfoxaflor (RR = 4.70–32.26-fold), imidacloprid (RR = 2.09–62.55-fold), isoprocarb
(RR = 2.78–22.85-fold) and ethofenprox (RR = 6.06–19.62-fold). In addition, the resistance
level of S. furcifera to nitenpyram (RR = 0.67–9.67-fold) remained susceptible to low levels
(Table 3, Figure 1).
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Table 3. Resistance levels of S. furcifera field populations to insecticides, including (A) imidacloprid and thiamethoxam, (B) nitenpyram and dinotefuran, (C) clothianidin and sulfoxaflor,
(D) buprofezin and chlorpyrifos, (E) isoprocarb and ethofenprox.

A

Population
Imidacloprid Thiamethoxam

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBCB-2019 270 2.00 (0.27) 0.72 (0.49–0.94) 0.67 (3) 0.88 6.55 270 1.53 (0.23) 1.31 (0.99–1.90) 5.62 (3) 0.13 7.28
HBWX-2019 270 1.88 (0.25) 0.23 (0.17–0.30) 0.89 (3) 0.83 2.09 270 1.64 (0.23) 0.24 (0.17–0.32) 3.08 (3) 0.38 1.33
HBJM-2019 270 2.32 (0.27) 1.43 (1.14–1.74) 1.11 (3) 0.77 13.00 270 1.67 (0.23) 0.98 (0.77–1.30) 0.69 (3) 0.88 5.44
HNNX-2019 270 1.72 (0.24) 1.63 (1.11–2.14) 0.82 (3) 0.84 14.82 270 2.02 (0.25) 1.51 (1.21–1.87) 4.37 (3) 0.22 8.39
JXNC-2019 270 1.90 (0.28) 2.28 (1.66–3.82) 1.63 (3) 0.65 20.73 270 1.62 (0.25) 2.08 (1.50–3.50) 1.84 (3) 0.61 11.56
AHLA-2019 270 2.48 (0.28) 2.67 (2.19–3.21) 2.16 (3) 0.54 24.27 270 1.70 (0.24) 2.99 (2.29–4.35) 4.08 (3) 0.25 16.61
HNXY-2019 270 1.65 (0.23) 1.46 (1.08–1.88) 2.04 (3) 0.56 13.27 270 1.54 (0.24) 1.96 (1.41–3.29) 1.17 (3) 0.11 10.88
HBDY-2020 270 1.68 (0.23) 1.19 (0.92–1.63) 1.78 (3) 0.58 10.82 270 1.81 (0.24) 1.07 (0.79–1.35) 0.95 (3) 0.81 5.94
HBCB-2020 270 1.30 (0.22) 1.88 (1.37–2.66) 2.28 (3) 0.19 17.09 270 1.30 (0.22) 1.17 (0.86–1.75) 3.61 (3) 0.31 6.50
HBWX-2020 270 0.82 (0.21) 1.40 (0.77–6.04) 3.20 (3) 0.86 12.73 270 1.17 (0.21) 0.42 (0.30–0.61) 2.29 (3) 0.51 2.33
HBJL-2020 270 1.17 (0.21) 2.94 (2.09–4.61) 3.72 (3) 0.84 26.73 270 1.84 (0.26) 1.56 (1.17–2.33) 3.54 (2) 0.17 8.67
HBJM-2020 270 2.33 (0.27) 2.38 (1.97–2.94) 2.45 (3) 0.87 21.64 270 1.86 (0.25) 2.53 (2.00–3.43) 1.31 (3) 0.73 14.06
HBXZ-2020 270 1.32 (0.22) 2.28 (1.68–3.20) 0.79 (3) 0.42 20.73 270 1.27 (0.22) 3.22 (2.29–5.46) 3.73 (3) 0.29 17.89
HNNX-2020 270 1.43 (0.22) 3.25 (2.43–4.82) 2.44 (3) 0.40 29.55 270 2.08 (0.25) 1.50 (1.21–1.85) 3.06 (3) 0.38 8.33
JXNC-2020 270 2.13 (0.25) 2.02 (1.64–2.49) 0.57 (3) 0.61 18.36 270 2.10 (0.25) 1.79 (1.45–2.22) 3.09 (3) 0.38 9.94
AHHF-2020 270 1.58 (0.26) 6.88 (4.64–13.67) 2.18 (3) 0.80 62.55 270 2.20 (0.26) 2.13 (1.74–2.69) 0.31 (3) 0.96 11.83
HNXY-2020 270 2.58 (0.31) 2.21 (1.68–2.71) 1.59 (3) 0.29 20.09 270 1.84 (0.26) 0.90 (0.60–1.19) 2.09 (3) 0.55 5.00
GZQN-2020 270 2.35 (0.29) 3.86 (3.09–5.24) 3.83 (3) 0.21 35.09 270 1.70 (0.28) 3.01 (2.01–6.19) 1.88 (3) 0.60 16.72

B

Population
Nitenpyram Dinotefuran

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBCB-2019 270 1.56 (0.23) 0.67 (0.51–0.96) 3.34 (3) 0.34 2.48 270 2.12 (0.25) 1.92 (1.55–2.36) 0.57 (3) 0.90 9.60
HBWX-2019 270 1.88 (0.24) 0.27 (0.20–0.34) 3.51 (3) 0.32 1.00 270 2.25 (0.27) 0.27 (0.21–0.33) 1.31 (3) 0.73 1.35
HBJM-2019 270 1.56 (0.26) 0.12 (0.06–0.17) 2.47 (3) 0.48 0.67 270 2.14 (0.28) 1.00 (0.71–1.27) 0.32 (3) 0.96 5.00
HNNX-2019 270 2.79 (0.30) 1.44 (1.20–1.70) 2.02 (3) 0.57 5.33 270 2.76 (0.31) 2.70 (2.27–3.30) 0.31 (3) 0.96 13.50
JXNC-2019 270 2.35 (0.27) 1.05 (0.87–1.32) 0.04 (3) 0.99 3.89 270 1.69 (0.25) 4.75 (3.50–7.56) 1.14 (3) 0.77 23.75
AHLA-2019 270 1.85 (0.24) 1.79 (1.42–2.28) 2.00 (3) 0.57 6.63 270 2.03 (0.25) 2.13 (1.62–2.65) 1.05 (3) 0.79 10.65
HNXY-2019 270 1.70 (0.24) 2.61 (2.02–3.64) 4.10 (3) 0.25 9.67 270 2.72 (0.37) 1.28 (0.87–1.65) 1.59 (3) 0.66 6.40
HBDY-2020 270 2.00 (0.33) 0.41 (0.20–0.61) 1.78 (3) 0.62 1.52 270 2.10 (0.25) 1.93 (1.56–2.38) 3.33 (3) 0.34 9.65
HBCB-2020 270 2.03 (0.25) 1.08 (0.83–1.35) 2.28 (3) 0.52 4.00 270 2.12 (0.28) 1.76 (1.20–2.29) 5.24 (3) 0.16 8.80
HBWX-2020 270 2.75 (0.31) 0.59 (0.49–0.74) 3.20 (3) 0.36 2.19 270 1.58 (0.25) 1.16 (0.81–2.09) 2.42 (3) 0.49 5.80
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Table 3. Cont.

B

Population
Nitenpyram Dinotefuran

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBJL-2020 270 1.73 (0.24) 1.48 (1.14–2.13) 3.72 (3) 0.29 5.48 270 2.06 (0.26) 6.30 (5.06–8.32) 3.82 (3) 0.28 31.50
HBJM-2020 270 1.91 (0.24) 1.44 (1.13–1.80) 2.45 (3) 0.48 5.33 270 1.77 (0.24) 3.25 (2.54–4.49) 0.62 (3) 0.89 16.25
HBXZ-2020 270 1.73 (0.23) 2.25 (1.76–3.02) 0.79 (3) 0.85 8.33 270 2.61 (0.32) 3.72 (3.02–4.92) 2.99 (3) 0.39 18.60
HNNX-2020 270 2.16 (0.25) 1.67 (1.36–2.06) 2.44 (3) 0.49 6.19 270 1.44 (0.23) 3.52 (2.62–5.33) 2.10 (3) 0.55 17.60
JXNC-2020 270 2.03 (0.26) 0.98 (0.73–1.23) 0.57 (3) 0.90 3.63 270 1.62 (0.22) 2.10 (1.62–2.74) 1.18 (3) 0.76 10.50
AHHF-2020 270 2.34 (0.27) 1.57 (1.29–1.91) 2.18 (3) 0.53 5.81 270 1.57 (0.24) 3.28 (2.48–4.78) 0.90 (3) 0.83 16.40
HNXY-2020 270 2.02 (0.25) 1.14 (0.88–1.42) 1.59 (3) 0.67 4.22 270 1.77 (0.25) 2.12 (1.47–2.76) 2.56 (3) 0.47 10.60
GZQN-2020 270 2.33 (0.27) 1.02 (0.84–1.27) 3.83 (3) 0.28 3.78 270 2.15 (0.30) 10.29 (7.76–15.90) 1.80 (3) 0.62 51.45

C

Population
Clothianidin Sulfoxaflor

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBCB-2019 270 2.10 (0.26) 1.17 (0.92–1.45) 0.91 (3) 0.82 7.80 270 2.49 (0.32) 3.31 (2.32–4.22) 1.36 (3) 0.82 6.62
HBWX-2019 270 2.42 (0.28) 0.27 (0.21–0.33) 0.63 (3) 0.89 1.80 270 2.31 (0.28) 2.47 (1.90–3.03) 3.10 (3) 0.38 4.94
HBJM-2019 270 2.64 (0.32) 0.83 (0.62–1.03) 1.80 (3) 0.61 5.53 270 2.86 (0.32) 2.86(2.33–3.39) 2.50 (3) 0.48 5.72
HNNX-2019 270 2.32 (0.27) 1.26 (1.01–1.52) 0.99 (3) 0.80 8.40 270 2.22 (0.26) 8.08 (6.61–10.21) 0.73 (3) 0.86 16.16
JXNC-2019 270 1.65 (0.26) 2.53 (1.75–4.69) 1.76 (3) 0.62 16.87 270 1.73 (0.23) 7.51 (5.91–9.89) 8.31 (3) 0.04 15.02
AHLA-2019 270 1.66 (0.23) 1.49 (1.15–1.92) 2.39 (3) 0.50 9.93 270 1.88 (0.24) 8.14 (6.50–10.54) 0.67 (3) 0.88 16.28
HNXY-2019 270 1.52 (0.24) 1.72 (1.26–2.75) 5.95 (3) 0.11 11.47 270 2.51 (0.29) 2.81 (2.33–3.50) 0.21 (3) 0.98 5.62
HBDY-2020 270 2.06 (0.27) 0.77 (0.54–0.99) 3.70 (3) 0.30 5.13 270 3.28 (0.23) 3.46 (2.45–4.33) 1.45 (3) 0.70 6.92
HBCB-2020 270 2.25 (0.27) 1.05 (0.82–1.29) 4.99 (3) 0.17 7.00 270 1.89 (0.24) 3.17 (2.46–3.96) 2.19 (3) 0.53 6.34
HBWX-2020 270 2.53 (0.28) 0.44 (0.37–0.54) 4.47 (3) 0.22 2.93 270 1.55 (0.23) 7.08 (5.34–10.45) 1.32 (3) 0.73 14.16
HBJL-2020 270 1.69 (0.25) 1.89 (1.40–3.01) 2.92 (3) 0.40 12.60 270 1.88 (0.25) 7.01 (5.50–9.71) 3.16 (3) 0.37 14.02
HBJM-2020 270 2.51 (0.28) 1.29 (1.06–1.55) 1.90 (3) 0.59 8.60 270 4.08 (0.46) 6.39 (5.44–7.34) 3.09 (3) 0.38 12.78
HBXZ-2020 270 1.96 (0.25) 2.28 (1.83–2.99) 3.46 (3) 0.33 15.20 270 2.09 (0.25) 8.44 (6.84–10.47) 2.36 (3) 0.50 16.88
HNNX-2020 270 2.02 (0.25) 1.19 (0.92–1.47) 2.37 (3) 0.50 7.93 270 2.32 (0.27) 5.92 (4.72–7.19) 2.83 (3) 0.42 11.84
JXNC-2020 270 2.12 (0.25) 1.97 (1.60–2.47) 2.17 (3) 0.54 13.13 270 1.81 (0.24) 6.52 (5.02–8.22) 1.72 (3) 0.63 13.04
AHHF-2020 270 1.94 (0.25) 2.07 (1.66–2.66) 1.65 (3) 0.65 13.80 270 2.25 (0.27) 5.79 (4.57–7.06) 2.03 (3) 0.57 11.58
HNXY-2020 270 1.74 (0.23) 1.79 (1.38–2.28) 2.64 (3) 0.45 11.93 270 2.47 (0.29) 2.35 (1.80–2.87) 3.13 (3) 0.37 4.70
GZQN-2020 270 1.39 (0.24) 2.60 (1.73–5.35) 1.63 (3) 0.65 17.33 270 1.77 (0.25) 16.13 (12.30–23.74) 0.77 (3) 0.86 32.26
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Table 3. Cont.

D

Population
Buprofezin Chlorpyrifos

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBCB-2019 270 1.89 (0.24) 3.90 (3.09–4.90) 0.86 (3) 0.84 97.50 270 2.44 (0.28) 30.72 (25.28–39.14) 1.80 (3) 0.83 128.00
HBWX-2019 270 1.72 (0.23) 3.71 (2.87–4.74) 4.39 (3) 0.22 92.75 270 1.74 (0.23) 20.40 (15.96–26.16) 3.27 (3) 0.35 85.00
HBJM-2019 270 1.93 (0.24) 3.42 (2.69–4.26) 1.01 (3) 0.80 85.50 270 3.09 (0.33) 20.67 (17.60–24.35) 7.13 (3) 0.07 86.13
HNNX-2019 270 1.95 (0.26) 3.25 (2.33–4.14) 1.01 (3) 0.80 81.25 270 3.57 (0.40) 54.07 (46.52–64.75) 5.00 (3) 0.17 225.29
JXNC-2019 270 1.43 (0.23) 13.26 (9.55–21.97) 4.70 (3) 0.20 331.50 270 2.39 (0.27) 32.51 (26.36–39.23) 4.72 (3) 0.19 135.46
AHLA-2019 270 1.57 (0.23) 6.80 (5.22–9.03) 1.19 (3) 0.75 170.00 270 2.02 (0.26) 73.00 (57.61–100.50) 0.81 (3) 0.85 304.17
HNXY-2019 270 1.99 (0.25) 5.01 (4.04–6.39) 6.49 (3) 0.09 125.25 270 1.96 (0.24) 46.58 (37.47–59.03) 6.34 (3) 0.10 194.08
HBDY-2020 270 1.89 (0.24) 4.64 (3.58–5.80) 1.71 (3) 0.64 105.45 270 2.92 (0.32) 39.04 (32.97–46.13) 0.38 (3) 0.94 162.67
HBCB-2020 270 1.65 (0.23) 5.20 (4.05–6.96) 1.30 (3) 0.73 118.18 270 2.68 (0.29) 15.33 (12.81–18.27) 2.37 (3) 0.50 63.88
HBWX-2020 270 1.48 (0.22) 5.70 (4.32–8.04) 2.25 (3) 0.52 129.55 270 2.14 (0.27) 11.46 (8.53–14.32) 1.50 (3) 0.68 47.75
HBJL-2020 270 2.33 (0.28) 7.13 (5.75–9.48) 1.45 (3) 0.69 162.05 270 3.07 (0.34) 26.34 (21.29–31.22) 2.14 (3) 0.54 109.75
HBJM-2020 270 1.70 (0.23) 5.05 (3.96–6.68) 3.74 (3) 0.29 114.77 270 3.00 (0.32) 21.34 (18.14–25.25) 4.24 (3) 0.24 88.92
HBXZ-2020 270 1.45 (0.23) 6.60 (4.94–9.77) 0.34 (3) 0.95 150.00 270 2.36 (0.31) 43.69 (34.31–61.90) 1.74 (3) 0.63 182.04
HNNX-2020 270 1.57 (0.23) 4.43 (3.23–5.76) 3.57 (3) 0.31 100.68 270 3.20 (0.34) 39.65 (33.81–46.46) 2.47 (3) 0.48 165.21
JXNC-2020 270 1.59 (0.23) 5.51 (4.18–7.16) 0.69 (3) 0.87 137.75 270 2.06 (0.25) 22.88 (18.55–28.69) 1.34 (3) 0.72 95.33
AHHF-2020 270 1.58 (0.23) 3.88 (2.76–5.07) 2.49 (3) 0.48 88.18 270 2.27 (0.26) 45.34 (37.32–55.83) 0.30 (3) 0.96 188.92
HNXY-2020 270 1.51 (0.22) 4.30 (3.27–5.73) 1.37 (3) 0.71 97.73 270 1.68 (0.24) 39.41 (29.88–58.46) 1.49 (3) 0.69 164.21
GZQN-2020 270 1.98 (0.27) 8.82 (6.76–13.01) 3.18 (3) 0.36 200.45 270 2.45 (0.28) 18.54 (15.289–22.31) 1.46 (3) 0.69 77.25

E

Population
Isoprocarb Ethofenprox

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBCB-2019 270 2.63 (0.29) 97.84 (81.69–116.95) 0.88 (3) 0.83 10.39 270 1.25 (0.22) 435.50 (304.77–770.96) 0.53 (3) 0.91 12.58
HBWX-2019 270 2.16 (0.26) 91.57 (73.98–112.21) 2.52 (3) 0.47 9.72 270 1.86 (0.24) 252.99 (201.67–327.75) 5.73 (3) 0.13 7.31
HBJM-2019 270 2.53 (0.28) 124.26 (103.72–152.18) 2.79 (3) 0.43 13.20 270 2.13 (0.26) 327.97(263.69–434.08) 1.99 (3) 0.57 9.47
HNNX-2019 270 2.64 (0.30) 86.96 (73.33–104.62) 4.89 (3) 0.18 9.23 270 1.62 (0.25) 575.55 (420.53–933.75) 1.91 (3) 0.59 16.63
JXNC-2019 270 1.43 (0.24) 215.22 (150.02–390.68) 0.04 (3) 0.99 22.85 270 1.38(0.22) 209.86 (154.59–322.82) 2.46 (3) 0.48 6.06
AHLA-2019 270 1.65 (0.23) 75.78 (58.24–97.76) 1.52 (3) 0.68 8.04 270 1.61 (0.24) 275.60 (202.47–440.60) 0.53 (3) 0.91 7.96
HNXY-2019 270 1.88 (0.24) 26.14 (20.86–33.95) 4.80 (3) 0.19 2.78 270 2.14 (0.26) 256.60 (209.20–324.06) 0.63 (3) 0.89 7.41
HBDY-2020 270 1.70 (0.24) 134.86 (104.16–190.17) 2.07 (3) 0.56 14.32 270 1.27 (0.22) 301.41 (219.77–458.33) 0.73 (3) 0.87 8.71
HBCB-2020 270 2.23 (0.26) 68.42 (55.22–83.31) 0.64 (3) 0.89 7.26 270 2.26 (0.26) 232.67 (191.46–287.45) 2.46 (3) 0.48 6.72
HBWX-2020 270 2.32 (0.27) 116.69 (96.33–143.72) 2.00 (3) 0.57 12.39 270 1.33 (0.22) 311.79 (229.35–470.59) 2.85 (3) 0.41 9.01
HBJL-2020 270 2.04 (0.25) 140.85 (113.65–182.22) 2.57 (3) 0.46 14.95 270 1.60 (0.26) 679.15 (459.97–1333.14) 3.75 (3) 0.29 19.62
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Table 3. Cont.

E

Population
Isoprocarb Ethofenprox

No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c No. Slope (SE a) LC50 (95% CI b; mg/L) χ2 (df) p Value RR c

HBJM-2020 270 2.61 (0.29) 101.95 (85.21–122.22) 6.32 (3) 0.10 10.82 270 2.08 (0.26) 303.41 (244.62–396.48) 4.52 (3) 0.21 8.77
HBXZ-2020 270 2.25 (0.28) 171.83 (138.58–227.68) 6.35 (3) 0.10 18.24 270 1.17 (0.21) 268.36 (191.17–410.57) 5.27 (3) 0.15 7.75
HNNX-2020 270 1.89 (0.25) 120.27 (95.57–160.13) 1.06 (3) 0.79 12.77 270 1.10 (0.22) 561.88 (362.20–1273.63) 0.51 (3) 0.92 16.23
JXNC-2020 270 1.97 (0.25) 101.17 (81.44–129.51) 3.98 (3) 0.26 10.74 270 1.54 (0.23) 232.41 (173.47–353.93) 2.45 (3) 0.49 6.72
AHHF-2020 270 2.13 (0.26) 60.14 (47.36–73.85) 1.34 (3) 0.72 6.38 270 1.34 (0.22) 226.23 (167.47–330.85) 0.64 (3) 0.89 6.54
HNXY-2020 270 2.00 (0.26) 79.05 (61.69–111.69) 4.31 (3) 0.23 8.39 270 1.59 (0.23) 304.42 (233.94–426.32) 3.59 (3) 0.31 8.80
GZQN-2020 270 1.98 (0.26) 183.31 (144.14–253.85) 1.42 (3) 0.70 19.46 270 1.71 (0.27) 665.53 (458.41–1255.03) 2.62 (3) 0.45 19.23

a SE, standard error; b 95% CI, confidence interval; df, degrees of freedom; c RR, resistance ratio.



Insects 2021, 12, 1078 9 of 15Insects 2021, 12, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 1. Resistance levels of field populations of S. furcifera to frequently used insecticides. Red horizontal lines across 
the scatter diagram represent the mean values of the resistance ratio of the different populations. 

3.2. Enzyme Activity 
To determine the role of detoxification enzymes in the insecticide resistance of S. fur-

cifera, enzyme assays were performed to measure the levels of EST, GST and P450 (Figure 
2AB). The results showed that the EST activities from the populations of HNXY-2019 and 
HBCB-2019 exhibited a 3.75-fold difference in 2019, while the maximum difference in 2020 
was between the HBXZ-2020 population and the HBDY-2020 population, and there was a 
3.30-fold difference. The GST activities from the populations of JXNC-2019 and HBCB-
2019 resulted in 2.38-fold variation, while the GST activities of the population from 
AHHF-2020 were 1.60-fold higher than those of the HNNX-2020 population. The P450 
activities resulted in a 2.60-fold variation between the populations from JXNC-2019 and 
HNXY-2019 in 2019 and a 3.53-fold variation between the populations from HNNX-2020 
and HNXY-2020 in 2020. 

Figure 1. Resistance levels of field populations of S. furcifera to frequently used insecticides. Red horizontal lines across the
scatter diagram represent the mean values of the resistance ratio of the different populations.

3.2. Enzyme Activity

To determine the role of detoxification enzymes in the insecticide resistance of S. furcifera,
enzyme assays were performed to measure the levels of EST, GST and P450 (Figure 2A,B).
The results showed that the EST activities from the populations of HNXY-2019 and HBCB-
2019 exhibited a 3.75-fold difference in 2019, while the maximum difference in 2020 was
between the HBXZ-2020 population and the HBDY-2020 population, and there was a 3.30-fold
difference. The GST activities from the populations of JXNC-2019 and HBCB-2019 resulted in
2.38-fold variation, while the GST activities of the population from AHHF-2020 were 1.60-fold
higher than those of the HNNX-2020 population. The P450 activities resulted in a 2.60-fold
variation between the populations from JXNC-2019 and HNXY-2019 in 2019 and a 3.53-fold
variation between the populations from HNNX-2020 and HNXY-2020 in 2020.

3.3. Pairwise Correlation Analysis

To determine whether there were similar insecticidal patterns between insecticides,
the logarithmic values of the LC50 measurements of the two insecticides were compared by
pairwise correlation coefficients (Figure 3). Resistance to imidacloprid was significantly
correlated with neonicotinoid insecticides, such as dinotefuran, thiamethoxam, clothiani-
din, nitenpyram and sulfoximine insecticide sulfoxaflor. Similarly, there were significant
positive correlations between resistance to the insect growth regulator insecticides bupro-
fezin and dinotefuran, thiamethoxam, clothianidin, sulfoxaflor, and isoprocarb. Moreover,
significant correlations were found between isoprocarb and dinotefuran, sulfoxaflor and
buprofezin.

In addition, we analyzed the correlation between the activity of three primary detoxi-
fication enzymes and the susceptibilities of S. furcifera to each insecticide (Figure 3). There
were positive correlations between the LC50 values of nitenpyram, thiamethoxam and
clothianidin and the activity of EST. In contrast, no significant correlations were found
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between the activities of glutathione S-transferase and the LC50 values of the insecticides,
which was also the result for P450 activity.
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negative (red) or positive (blue). Only significant correlations with p < 0.05 are shown.

4. Discussion

Chemical insecticides remain the rational and primary tool for controlling pests [16,20–22].
Insecticide resistance monitoring is an important task for effective pest control and under-
standing insect resistance levels and biochemical resistance mechanisms to insecticides is the
basis of integrated pest management (IPM) [23]. This study clarified the current status of the
resistance of S. furcifera to 10 insecticides in six provinces of China from 2019 to 2020, which
was of great value for the resistance monitoring and management of the pest.

Neonicotinoid insecticides are the most important chemical insecticides and are
widely used to control various sucking pests [24,25]. Previous studies have suggested that
S. furcifera has developed low to moderate resistance to neonicotinoid insecticides such as
imidacloprid, nitenpyram, clothianidin, thiamethoxam and dinotefuran [26,27]. At present,
the field population of S. furcifera still maintains low to moderate resistance to this type
of insecticide, while the resistance level to some neonicotinoid insecticides showed an in-
creasing trend in the period from 2019–2020. For instance, the resistance level of S. furcifera
to imidacloprid in the AHHF-2020 population (RR = 62.55) nearly tripled compared with
AHLA-2019 (RR = 24.27). The dramatic difference in imidacloprid resistance between these
two fields suggests that resistance development to a compound can be area specific [7,16].
For other neonicotinoid insecticides, such as thiamethoxam, nitenpyram, dinotefuran and
clothianidin, the resistance level of S. furcifera also increased slightly. However, the resis-
tance of S. furcifera to nitenpyram and thiamethoxam was still maintained at low levels,
indicating that it could be used interchangeably with other neonicotinoid insecticides. The
above results indicated that neonicotinoid insecticides were still an important measure for
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farmers to control the whitebacked planthoppers. We recommend using compounds with
different modes of action to delay the resistance to neonicotinoid insecticides.

Buprofezin, isoprocarb, ethofenprox and chlorpyrifos have been used to control
S. furcifera with a long history in most rice-growing areas of southern Vietnam, China,
Thailand and Malaysia [28–31]. Previous studies have suggested that S. furcifera has
developed a high level of resistance to chlorpyrifos and buprofezin [2,32,33]. Similar to
the results of previous studies, our results showed that S. furcifera still had a high level
of resistance to chlorpyrifos and buprofezin [7]. We speculated that the long-distance
migratory behavior of S. furcifera may be one of the reasons for this phenomenon. In
addition, the resistance ratio of S. furcifera to isoprocarb and ethofenprox remained low,
which may be due to the low frequency of use of the two insecticides in the monitored
areas. Sulfoxaflor is a new type of sulfoximine insecticide that has high control efficacy
on rice planthoppers [34–36]. Similar to the results in our previous study, S. furcifera
developed moderate resistance levels to sulfoxaflor [7]. Studies have shown that resistance
to sulfoxaflor was significantly correlated with neonicotinoid insecticides in N. lugens;
therefore, we recommended that sulfoxaflor be used cautiously to control S. furcifera [37].

Enzyme activities can play a key role in understanding the patterns of resistance and
insect susceptibility to chemicals [38]. Many previous reports found that P450, EST and
GST were commonly the primary detoxification enzymes that help insect pests degrade a
different type of xenobiotic [39–41]. Our results indicated that significant differences existed
in the activity of detoxification enzymes between different populations. For instance, the
EST activities were significantly different between the populations of JXNC-2019 and
HNXY-2019, AHLA-2019, HNNX-2019, HBJM-2019 and HBCB-2019, which suggested
that EST may be involved in the resistance of these populations to insecticides. Similarly,
the P450 activities of AHHF-2020 and HNNX-2020 were higher than those of HBXZ-2020,
HBJL-2020, HBDY-2020, HNXY-2020, JXNC-2020, HBJM-2020, HBWX-2020 and HBCB-2020,
while enhancing P450 activity has been confirmed to be an important mechanism for the
detoxification and metabolism of pests [42–44].

To delay or prevent the evolution of resistance, the most frequently used strategy is to
alternate/rotate/mix pesticides [45]. Therefore, the cross-resistance between insecticides is
worthy of attention. Previous studies have shown that significant cross-resistance exists
between neonicotinoid insecticides in some pests. For instance, our results indicated that
resistance to imidacloprid in S. furcifera was significantly associated with thiamethoxam,
nitenpyram, dinotefuran, clothianidin and sulfoxaflor, which also occurred in small plan-
thoppers, brown planthoppers, potato beetles, cotton aphids and peach aphids [37,46–49].
In addition, no risk of cross-resistance occurred between ethofenprox and neonicotinoid
insecticides; therefore, it could be used as an important alternative insecticide for the
control of whitebacked planthoppers. In our study, we found that the activity of EST was
significantly correlated with nitenpyram, thiamethoxam clothianidin. Previous studies
have shown that EST activities are related to the susceptibility of brown planthoppers to
sulfoxaflor and nitenpyram [37,39,49]. Moreover, positively significant correlations were
demonstrated between the activity of EST and clothianidin, nitenpyram and triflumezopy-
rim in field populations of S. furcifera [7]. These results suggested that EST might play an
important role in the resistance of S. furcifera to nitenpyram, dinotefuran, clothianidin and
imidacloprid.

5. Conclusions

Our findings revealed that field populations of whitebacked planthoppers have devel-
oped high levels of resistance to chlorpyrifos and buprofezin; therefore, we suggest that the
use of chlorpyrifos and buprofezin should be suspended to control this pest. Additionally,
although neonicotinoid insecticides are highly effective, the risk of cross-resistance should
be given special attention. We recommend alternating the use of compounds with different
modes of action that are more selectively compatible with natural enemies to slow down
the resistance development of S. furcifera. Overall, this study provided useful data for the
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controlling of whitebacked planthoppers in the field, including the rational use of chemical
insecticide, reducing the risk of control failure and input costs, which is in line with the
definition of IPM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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