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Linkages between oral commensal bacteria and atherosclerotic
plaques in coronary artery disease patients
Jyoti Chhibber-Goel1, Varsha Singhal1, Debaleena Bhowmik1, Rahul Vivek1, Neeraj Parakh2, Balram Bhargava2 and Amit Sharma1

Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque
formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and
coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification
and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary
artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the
presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies
covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually
or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or
similar procedures. Of these 23 bacteria, 5 (Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella
intermedia, Prevotella nigrescens) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs,
and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above
atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream.
We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a
resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated
oral commensal bacteria in human patient populations.

npj Biofilms and Microbiomes  (2016) 2:7 ; doi:10.1038/s41522-016-0009-7

BACKGROUND
Human microbiome is now recognized as a central player in
human health, and the oral microbiome is of increasing
significance in human biology. The oral cavity includes several
microbial habitats and is the central channel for entry of bacteria
into the human body. It constitutes the second most complex
ecological system in human body after the gut microbiome, with
over 700 species of bacteria and >5 billion bacteria.1 These gram-
positive or gram-negative bacteria colonize periodontal surfaces
and are part of the saliva. Further, depending on oxygenation
conditions, they may be aerobic (obligates or facultative)
or anaerobic (obligates or facultative). In healthy conditions, the
oral bacterial community of ~700 species is stable but remains
susceptible to alteration in its population structures due to
infections or other stresses (Human Oral Microbiome Database).
Increasing evidence on known molecular diversity of bacteria and
recent advances in culture-independent techniques has validated
the involvement of oral microbiome in several autoimmune and
metabolic events such as obesity, diabetes and cardiovascular
diseases.2–5

In 2012, an estimated 17.5 million people died from cardiovas-
cular diseases, of which 7.4 million deaths were due to coronary
artery disease (CAD) arising from atherosclerosis.6 CAD is a chronic
inflammatory disorder characterized by narrowing of the coronary
artery due to plaque formation, and results in blocking or reducing

oxygen-rich blood supply to the heart that may subsequently
cause myocardial infarction.7 The major content of an athero-
sclerotic plaque is atheroma that is composed of macrophages,
cholesterol, smooth muscles and dystrophic calcification.8 Inter-
estingly, with the development of targeted microbial techniques a
number of oral bacteria have been identified in atherosclerotic
plaque samples.
The link between dental disease and CAD was first established

~23 years ago when De Stefano et al. reported an increased
risk of atherosclerotic plaque formation in a group of patients with
periodontitis (25 % higher) based on 14 years of research on
9760 individuals aged between 25–74 years.9 More recent studies
have correlated oral microbial dysbiosis/infections with obesity as
well as diabetes, two known drivers of CAD.5 The oral route is a
key avenue for entry of bacteria into the human body, and the
prevailing hypothesis for the above-established link suggests that
there is a flow of bacterial toxins and/or bacterial components into
the bloodstream, leading to exaggerated release of inflammatory
mediators that can drive CAD.10 For example, it has been
demonstrated that lipopolysaccharide (LPS)-derived products
released during endotoxemia are contributors in the host–bacteria
dialog, whereas LPS increases serum cholesterol levels by
increasing low-density lipoprotein (LDL) thereby increasing the
risk of developing CAD.11 Similarly, other bacteria-derived
components such as DNA or membrane phospholipids from oral
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cavity may also reach the blood stream, and finally into adipose
and vascular tissues. Thus, the oral cavity may represent a
significant source of bacterial mediators (direct or indirect) that
may have an impact on CAD.
In order to assess the role of oral bacteria as inflammatory

stimuli, it is important to understand the contribution of human
immune system toward the formation of atherosclerotic plaque.
The process of plaque formation in coronary arteries is initiated by
the accumulation of LDL across the endothelium, leading to its
retention in intima.12, 13 Following this deposition, LDL undergoes
oxidative modification via enzymes secreted by endothelial cells.14

Oxidized LDL (OxLDL) trapped in the intima stimulates endothelial
cells to secrete pro-inflammatory molecules, chemotactic proteins
and growth factors that help in the recruitment of monocytes to
the arterial wall and promote their differentiation and proliferation
to macrophages.15 Macrophages then adhere to the endothelium
and phagocytose OxLDL, leading to the formation of foam cells.
The continued damage to endothelial cells leads to secretion
of growth-stimulating factors, which in turn stimulates the
proliferation of macrophages to function as foam cells.16 These
foam cells then rupture and accumulate on the arterial wall.
Following the deposition of lipids within the arterial wall, immune
cells such as monocytes, leukocytes, B-cells, T-cells, neutrophils,
dendritic cells (DC) and mast cells are recruited, which is the
hallmark of atherosclerotic plaque formation17–22 (Fig. 1).
Atherosclerotic plaque formation may also be initiated by oral

microbial dysbiosis/infection resulting in an inflammatory stimu-
lus. For example (1) chronic periodontitis, a well-studied oral
microbial disease with immunological implications, begins as an
inflammation localized to the soft tissues (gingivitis) caused by
resident biofilm that forms on tooth surfaces at the gingival
margin. If left untreated, this leads to damage of connective tissue,
periodontal ligament and bone.23, 24 (2) Gingival ulceration in
periodontitis results in bacteraemia and can provide an additional
inflammatory stimulus for atherosclerotic plaque formation.25, 26

The inflammatory cytokines produced and additional chemotactic
agents lead to changes in the endothelium, e.g. via upregulation
of adhesion molecules. These changes promote interactions with
leukocytes, further promoting their migration into the intimal

layer of the artery. Activation of the endothelium also results in
the release of chemotactic cytokines, further attracting monocytes
or other cells that form a vicious cycle leading to plaque
formation.8

The aims of our study were to (i) collate and analyze
associations between atherosclerotic plaque-associated bacteria
in CAD patients from numerous independent studies, (ii)
determine non-cardiac distribution of the oral bacteria in human
body, (iii) dissect probable entry routes of oral bacteria into the
coronary vasculature, (iv) highlight the plethora of proteins and
peptides that are secreted by these bacteria, and finally (v) analyze
the establishment of poly-bacterial communities within the
plaques (Table 1).

RESULTS
Distribution of oral bacteria in atherosclerotic plaques
Our literature search resulted in the selection of 63 studies and
the identification of 23 bacteria that individually or otherwise
co-existed in the studied human atherosclerotic plaque samples.
Techniques used for the identification of bacteria within the
atherosclerotic plaque samples included traditional methods like
(1) categorizing on the basis of morphological characteristics, (2)
culturing and isolation of colonies from samples. In addition, more
modern techniques like immunohistochemistry, immunofluores-
cence, real-time polymerase chain reaction (PCR), nested PCR, and
16S rRNA gene sequencing were also used to identify bacteria.
Among these techniques, 16S rRNA gene sequencing is the most
reliable, cost effective, and scalable method when studying a large
group of samples (Fig. 2). Our analyses show that 16S rRNA gene
sequencing was the dominant technique (used 48 times) over
traditional PCR methods (29 times) and other techniques like
immunofluorescence and immune-histochemistry (15 times).
Specifically, only 16S rRNA gene sequencing methodology
identified Streptococcus sp., Enterobacter hormaechei, Pseudomonas
aeruginosa, Pseudomonas luteola, Veillonella (Fig. 2a), and overall it
identified 16 of the 23 atherosclerotic plaque-associated bacteria
in CAD patients (Figs. 2b–d).

Fig. 1 Schematic representation of inflammatory mechanisms involved in pathogenesis of atherosclerosis and plaque formation. LDL is
retained in arterial intima via ionic interactions with endothelial cells, leading to the enzymatic oxidative modification of LDL into OxLDL. This
is followed by secretion of pro-inflammatory cytokines that leads to the differentiation of monocytes into macrophages. Macrophages secrete
more chemokines and mediate recruitment of neutrophils via scavenger receptors and further attract monocytes. Macrophages retained in
arterial intima get converted into foam cells leading to the formation of atherosclerotic plaques
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Table 1. Techniques used for identification of the 23 atherosclerotic plaque-associated bacteria

Atherosclerotic plaque-associated
bacteria

Detection
platform

Percentage of bacteria present in
atherosclerotic plaque samples

Reference

Aggregatibacter actinomycetecomitans PCR 71.4 % [5/7] 76

[Phylum: Proteobacteria] 16S rRNA 66.67 % [28/42] 77, 78

mAb 17% [5/29] 25, 79

16S rRNA 21.87 % [7/32] 80

16S rRNA 18% [9/50] 81

16S rRNA 25.9 % [7/27] 82

RT-PCR 46.2 % [18/39] 83, 84

16S rRNA 29.4 % [15/51] 85, 86

Chlamydiae pneumoniae mAb 20.6 % [6/29] 25, 79

[Phylum: Chlamydiae] 16s rRNA 35.4 % [11/31] 25, 80

16s rDNA 18% [9/50] 25, 81

ICC/PCR 48% [11/23] 87

16S rRNA 51.5 % [17/33] 88

MIF IgA 32.6 % [63/193] 89

MIF IgG 61.7 % [119/193] 89

16S rRNA 26% [12/46] 90

PCR 42% [102/241 sections (10 samples)] 91

PCR 69% [11/16] 92

Immunofluorescence 79% [71/90] 93

PCR 70% [42/60] 94

IgG antibody 61.7 % [50/81] 95

Campylobacter rectus 16S rRNA 9.52 % [4/42] 77, 78, 96

[Phylum: Proteobacteria] PCR 11.7 % [6/51] 83, 85

16S rRNA 21.51 % [11/51] 83, 85, 97

16S rRNA 15.7 % [8/51] 98

16S rRNA 21.51 % [11/51] 82

Enteroacter hormaechei 16S rRNA 50% [134/268] 4

[Phylum: Proteobacteria] 16S rRNA 40% [2/5] 99

Eikenella corrodens 16S rRNA 54.76 % [23/42] 77, 78

[Phylum: Proteobacteria] PCR 15.6 % [8/51] 96

16S rRNA 27.45 % [14/51] 98

Fusobacterium nucleatum 16S rRNA 50% [21/42] 77, 78

[Phylum: Fusobacteria] Monoclonal antibody 34% [10/29] 79, 25

PCR 21% [4/19] 100

Fusobacterium necrophorum – –
101–103

[Phylum: Fusobacteria]

Helicobacter pylori IgA 55.4 % [107/193] 89

[Phylum: Proteobacteria] IgM 44.6 % [86/193] 89

16S rRNA 37% [17/46] 90

IHC 57.8 % [22/38] 104

PCR 92.16 % [47/51] 105

IgG 67.9 % [55/81] 95

Mycoplasma pneumoniae Seropositivity 14 % [396] 106

[Phylum: Tenericutes] – –
107

Porphyromonas endodontalis – –
108

[Phylum: Bacteriodetes]

Porphyromonas gingivalis 16S rRNA 78.57 % [33/42] 77, 78

[Phylum: Bacteriodetes] PCR 71.43 % [5/7] 76

16S rRNA 67% [134] 4

mAb 52% [15/29] 79, 25

16S rRNA 22.27 % [6/22] 25, 80
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Table 1 continued

Atherosclerotic plaque-associated
bacteria

Detection
platform

Percentage of bacteria present in
atherosclerotic plaque samples

Reference

16S rRNA 26% [13/50] 81, 25

PCR 47.4 % [9/19] 100

PCR 51% [27/53] 109, 110

PCR 43.1 % [22/51] 96

16S rRNA 45.1 % [23/51] 83, 85

16S rRNA 21.6 % [11/51] 83, 85, 97

RT-PCR 53.8 % [21/39] 83, 84

16S rRNA 45.1 % [23/51] 98

16S rRNA 7.4 % [2/27] 82

Prevotella intermedia mAb 41% [12/29] 25, 79

[Phylum: Bacteriodetes] 16S rRNA 9.37 % [3/32] 25, 80

16S rRNA 14% [7/50] 25, 81

PCR 21% [4/19] 100

PCR 15% [8/53] 23, 110

PCR 19.6 % [10/51] 96

RT-PCR 79.3 % [23/29] 83, 84

PCR 71.43 % [5/7] 76

16S rRNA 3.7 % [1/27] 82

Prevotella nigrescens PCR 15.6 % [8/51] 96

[Phylum: Bacteriodetes] RT-PCR 17.9 % [7/39] 83, 84

Pseudomonas aeruginosa 16S rRNA 40% [6/15] 74

[Phylum: Proteobacteria]

Pseudomonas luteola 16S rRNA 100% [15/15] 111

[Phylum: Proteobacteria]

Streptococcus gordonii 16S rRNA 19.4 % [-] 82

Streptococcus mitis 16S rRNA 19.4 % [-]

Streptococcus mutans 16S rRNA 74.1 % [20/27]

Streptococcus oralis 16S rRNA 3.7 % [1/27]

Streptococcus sanguinis 16S rRNA 25.9 % [7/27]

[Phylum: Firmicutes]

Treponema denticola PCR 43% [23/53] 83, 109

[Phylum: Spirochaetes] 16S rRNA 44.4 % [12/27] 82

PCR 35.2 % [18/51] 96

16S rRNA 49.01 % [25/51] 83, 85

16S rRNA 27.4 % [14/51] 83, 85, 86

16S rRNA 23.1 % [6/26] 82, 86

16S rRNA 49.01 % [25/51] 98

Tannerella forsythia 16S rRNA 61.9 % [26/42] 77

[Phylum: Bacteriodetes] PCR 100% [7/7] 76

mAb 34% [10/29] 25, 79

16S rRNA 30% [15/50] 25, 81

PCR 10.5 % [2/19] 100

PCR 19.6 % [10/51] 96

16S rRNA 5.9 % [3/51] 78, 83, 85

RT-PCR 25.6 % [10/39] 83, 84

Veillonella 16S rRNA 10% [2/20] 112

[Phylum: Firmicutes] 16S rRNA 100% [13/13] 111
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Fig. 2 a Graphical representation of the techniques used to identify the atherosclerotic plaque-associated bacteria in CAD patients.
Y-axis represents the number of studies reporting the presence of bacteria in the plaque samples, while X-axis depicts the corresponding
bacteria. The cohort of 23 commensal bacteria is dominated by gram-negative bacteria with the exception of Streptococcus sp., which are
gram-positive. Of these 23 atherosclerotic plaque-associated bacteria, A. actinomycetemcomitans, C. rectus, E. corrodens, E. hormaechei,
S. gordonii, S. mitis, S. mutans, S. oralis, S. sanguinis, H. pylori, and P. aeruginosa are facultative anaerobes, while C. pneumoniae, F. necrophorum,
F. nucleatum, M. pneumoniae, P. endodontalis, P. gingivalis, P. intermedia, P. nigrescens, T. denticola, and T. forsythia are obligatory anaerobes. There
are two exceptions in P. luteola (aerobe) and Veillonella (anaerobe). IF immunofluorescence, IHC immunohistochemistry, mAb monoclonal
antibodies. b Atherosclerotic plaque-associated bacteria identified using 16S rRNA technique. X-axis represents the % of patients positive for
the bacteria identified using 16S rRNA gene sequencing, while Y-axis represents the corresponding bacteria. Total number of study subjects
vs. positive patients is mentioned on the top of graph. c Atherosclerotic plaque-associated bacteria identified using traditional PCR
techniques. X-axis represents the % of patients positive for the bacteria identified using traditional PCR techniques, while Y-axis represents the
corresponding bacteria. Total number of study subjects vs. positive patients is mentioned on the top of graph. d Atherosclerotic plaque-
associated bacteria identified using immunofluorescence, immuno-histochemistry, and antibody screening methods. X-axis represents the %
of patients positive for the bacteria identified using multiple techniques, while Y-axis represents the corresponding bacteria. Total number of
study subjects vs. positive patients is mentioned on the top of graph
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Fig. 3 The tissue localization of the 23 oral commensal bacteria associated with atherosclerotic plaque samples from CAD patients. Sixteen of
the 23 atherosclerotic plaque-associated bacteria were not unique to atherosclerotic plaque samples and are present in multiple non-cardiac
organs (gram-negative microbes are in red)

Table 2. Proteins and peptides secreted by atherosclerotic plaque-associated bacteria and their potential roles in disease aetiology

Microbes Secreted proteins Mol wt. (kDa) Function Reference

A. actinomycetemcomitans Leukotoxin (LtxA) 114 Targets leukocyte function antigen-1 on activated WBC
triggering lysosomal-mediated cell death.

113

Cytolethal distending toxin (Cdt) 31.5 Inhibits macrophage phagocytosis and subverts
cytokine production

114

C. pneumoniae (CPAF) chlamydial protease-like or
proteasome-like activity factor

70 Disrupts host MHC antigen presentation 115, 116

E. corrodens Corrodecin (bacteriocin) 23.6 Potential role at the periodontal site 117

Hydrolytic enzymes (includes
proline aminopeptidase, thiol-
dependent haemolysin and
esterase activities)

– Proposed to act against proline residues in collagen,
immunoglobulin and complement proteins

118

F. necrophorum Leukotoxin (LktA) 335.9 Virulence factor 49

F. nucleatum Fusolysin 115 –
119

H. pylori CagA oncoprotein 132.4 Virulence factor. Reprograms gastric epithelial cells 120

VacA exotoxin (Vacuolating
cytotoxin A)

88 Virulence factor 121

HP-NAP (neutrophil activating
protein)

204 Activates innate immunity 122

CagL Y58/E59 (amino acid
polymorphisms)

26.8 Increases hypochlorhydria; disrupts cell membrane
integrity

123

Hpn 7 Modulates cytokine secretion 46

Tip-α 19.6 Bacterial pathogenesis 124

H. pylori HP0175 34 Virulence factor 125

HcpE(HP0235) 39.4 Virulence factor 126

DupA (Duodenal ulcer producing) 20 Virulence factor 50

HtrA (high temperature
requirement—A) chaperones and
serine protease

48 Virulence factor 51

P. endodontalis 35,406 protease 88 Role in pathogenesis and nutrition of the microbe 127

P. gingivalis Arginine gingipain 81 Regulates IL-8; modulates microbiome population 44, 45

Lysine gingipain 60

SerB protein 45.9 Entry and survival of P. gingivalis in the epithelial cells 48

Fimbrilin A 43 Hemagglutinating activity 128
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Atherosclerotic plaque-associated bacteria in non-cardiac organs
On investigating the tissue distribution of 23 atherosclerotic
plaque-associated bacteria, we found that some of these were
found in several body organs (Fig. 3). The translocation of these
bacteria into the bloodstream and subsequently to multiple
organs may be triggered by tissue damage via periodontal
probing, scaling, and tooth extractions, and/or aided by the
proteins secreted by these bacteria. For example, Chlamydiae
pneumoniae can lead to chronic obstructive pulmonary disease,27

sexually acquired reactive arthritis,28 asthma,29 increase the risk of

developing lung cancer, and is present within brain regions of
Alzheimer patients.30 In addition, C. pneumoniae reinfection
accelerates the development of insulin resistance and diabetes
in obese C57BL/6 mice.31 Similarly, Aggregatibacter actinomyce-
temcomitans is responsible for brain abscess, infectious arthritis,32

rib destruction33 as well as infective endocarditis.34 Of the 23
bacteria, Fusobacterium nucleatum is associated with inflammatory
bowel disease,35 ulcerative colitis,36 and intestinal tumorigen-
esis.37, 38 The most studied of these are P. gingivalis and
Helicobacter pylori and their detailed associations are depicted

Table 2 continued

Microbes Secreted proteins Mol wt. (kDa) Function Reference

P. intermedia Interpain A 27 Potential virulence factor 52

P. aeruginosa Alkaline protease 50 Suggested role in pathogenesis 53

(AprA) 45.5

Elastase A (LasA) 53.7

Elastase B (LasB) 26

Protease IV

LepA (large exoprotease) 66.3 Activation of pro-inflammatory pathway

S. gordonii A soluble GAPDH (glyceraldehyde
3-phosphate dehydrogenase)

35.9 Virulence factor 129

S. mitis Mitilysin (cholesterol-dependant
cytolysin)

53 Cholesterol-dependent cytolysin 130

S. mutans CSP (competence-stimulating
peptide)

5.2 Inhibits Candida albicans morphological switch, found in
oral cavity

131

S. sanguinis FruA (exo-beta-D-fructosidase) 140 Multifunctional enzyme 132

CD-14 binding protein 190 Stimulate cytokine synthesis 47

T. forsythia Karilysin 52 Virulence factor 133

KLIKK protease – Host protein degradation and pathogenicity 134

T. denticola Dentipain (IdeT) cysteine protease 43 Virulence factor 135

Fig. 4 Multiple diseases caused by the atherosclerotic plaque-associated bacteria. Dot plot graph for cardiac and non-cardiac diseases caused
by the atherosclerotic plaque-associated oral bacteria divided into categories based on their tissue localization (prepared using GG plot)
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and categorized on the basis of tissue or organ system affected
(Fig. 4). These data together highlight the complex associative
underpinnings of oral commensals and human body organs.

Proteins/peptides predicted to be secreted by atherosclerotic
plaque-associated bacteria
We cataloged 36 predicted secretory proteins from 16 plaque-
associated bacteria (Table 2). These proteins likely have multiple
functions that include aiding in bacterial pathogenesis, increasing
the virulence of the bacteria, and/or regulating host immune
responses. Further, we analyzed these 36 secretory proteins in
context of the host immune system and categorized them on the
basis of their potential to influence oral cavity and immune system
that could lead to inflammation (Fig. 5a). Both H. pylori and
P. gingivalis have been studied extensively in context of their
involvement in various disease pathologies. Secretory proteins
such as gingipains from P. gingivalis and Hpn from H. pylori are
known to activate cytokine secretion (mainly IL-6 and IL-8).39–41

Similarly, the CD-14 binding protein of S. sanguinis also results in
secretion of host cytokines IL-6 and IL-8.42 Further, the protein
SerbB secreted by P. gingivalis modulates host cytoskeleton, thus

aiding microbes to enter host tissues.43 The leukotoxin (Lkt A)
secreted by Fusobacterium necrophorum,44 Dup A,45 HtrA46 of
H. pylori, and interpain A of P. intermedia47 all serve as virulence
factors for their respective bacteria, assisting them in infecting the
host cells. The elastase A (Las A) and elastase B (Las B) of
P. aeruginosa also have probable roles in bacterial pathogenesis.48

We present a model for possible access routes of bacteria into
the epithelial tissues (Fig. 5b). When in blood, commensal bacteria
can invade the endothelial layer of the blood vessels with
help of secretory proteins, and stimulate the production of pro-
inflammatory cytokines such as monocyte chemo-attractant
protein 1, IL-6, and IL-8.49, 50 These inflammatory cytokines can
result in recruitment of DC, which then phagocytose oral bacteria
and carry them through the blood stream until they are deposited
in the vascular sites.51 This thus provides a potential entry point
for the oral bacteria, and enables their migration from oral cavity
into the blood stream—and feasibly to the coronary arterial
system. In addition to the above, several proteins secreted by oral
bacteria (Table 2) are capable of degrading oral mucosal
membranes and periodontal pockets, again facilitating the entry
of bacteria into the blood stream. It remains unclear whether oral

Fig. 5 Proteins secreted by the atherosclerotic plaque-associated bacteria. a Histogram representing the number of secretory protein/
peptides and proteases from atherosclerotic plaque-associated bacteria. b The gingival crevice is a habitat to many oral microbes that secrete
proteins, peptides and proteases. (1) Secretory peptides and proteases are likely responsible for altering the host actin cytoskeleton in the
gingival epithelium leading to microbial entry into the system. (2) These secreted proteins can also activate the immune system causing
inflammation. Primarily, cytokine-mediated (IL-6 and IL-8) inflammation is associated with atherosclerotic plaque formation. Certain proteases
cause inflammatory response by activating the complement system
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bacteria nucleate atherosclerotic plaque formation or that they are
deposited in the plaque site once it has developed.

Poly-microbial community in atherosclerotic plaques
The survival strategies adopted by commensal bacteria are
of interest as they allow formation of a poly-microbial environ-
ment.52 With the exception of aerobe P. luteola, the other
22 atherosclerotic plaque-associated bacteria are either facultative
or obligatory anaerobes. Under aerobic conditions, anaerobic
bacteria have been shown to form biofilm structures, thus
establishing an intricate and genetically varied microenvironment
to survive.53 The process of biofilm formation in the oral cavity is
initiated with the aggregation of early colonizers like Actinomy-
cetes, Streptococcus and Veillonella. The Actinomycetes and
Streptococcus sp. are present in almost equal ratio during the
initial stages of biofilm formation in oral cavity.54–56 The
Streptococcus and Actinomyces interact such that cell wall
polysaccharide of Streptococcus binds with Type II fimbriae of
Actinomyces resulting in first step towards biofilm formation.57

Further, the metabolic products of Streptococcus sp. such as lactic
and pyruvic acid are exploited by Actinomycetes and Veillonella to
support their own growth. Contrary to this, Streptococcus sp.
convert excess lactic acid to hydrogen peroxide, thus preventing
the attachment and growth of other periodontal pathogens.58 In
the next phase of biofilm formation, F. nucleatum acts as a middle
colonizer—a bridge between early and late colonizers59—and
facilitates the adhesion of early colonizer Streptococcus sp. via an
adhesion protein called RadD.60 Simultaneously, F. nucleatum
provides its serotype and lecitin-carbohydrate-specific adhesins to
the late colonizers—P. ginigvalis, A. actinomycetemcomitans
and Treponema denticola.61, 62 Similar to early colonizers, the
late colonizers also show co-adherence among themselves. For
example, T. denticola secretes chymotrypsin-like proteinases
that aid in adhering to the existing late colonizers in order to

form polymicrobial community.63 Further, succinate formed by
T. denticola is exploited by P. ginigvalis, which in turn promotes the
growth of T. denticola by providing isobutyric acid52 (Fig. 6).
In addition to the above-listed resident colonizers, both

commensal and pathogenic bacteria have been shown to form
biofilm structures. For instance, P. intermedia is a commensal to
the healthy gingival crevices,64 while P. gingivalis is responsible for
its invasion, resulting in the periodontal disease.65 Once within the
gingival crevices, P. gingivalis aids P. intermedia to form biofilm
structures with the help of virulence factors like arginine (Rgp) and
lysine-specific cysteine proteases (Kgp).66 Simultaneously, Porphyr-
omonas ginigvalis acts to detach A. actinomycetemcomitans from
within the biofilms with the help of Kgp.67 Thus, bacteria can
invade healthy gingival crevices by detaching and distorting the
already existing oral biofilm. This can damage connective tissue,
periodontal ligament, and bone with the help of bacterially
secreted peptides and proteases, thereby allowing the bug access
to bloodstream. Upon gaining entry into the coronary vasculature,
these migratory bacteria can form biofilm structures within
atherosclerotic plaques. For example, F. nucleatum and Strepto-
coccus sp. forms a corncorb-like structure within the human
atherosclerotic plaque.68, 69 Thus, these atherosclerotic plaque-
associated bacteria may form mutually beneficial poly-microbial
communities.70

DISCUSSION
The oral cavity is a complex part of the human system and a
number of factors work in synergy to maintain its homoeostasis.
The oral system serves as a major route for the entry of bacteria to
populate and establish a microenvironment within the human
system. In this respect, the oral commensal bacterial species not
only maintain harmony within themselves via formation of
biofilms and polymicrobial communities, but also with the host

Fig. 6 Atherosclerotic plaque-associated bacteria form biofilm structures within the atherosclerotic plaque samples. During initial phase
of biofilm formation, early colonizers—Veillonella, Streptococcus, and Actinomyces—interact to establish an initial microenvironment supporting
each other with the help of metabolic products. These bacteria act as a platform for the middle colonizer F. nucleatum, which then
completes the biofilm formation by providing an adhering platform for the late colonizers—T. forsythia, A. actinomycetemcomitans, T. denticola,
and P. gingivalis
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body by educating the immune system and contributing toward
health.71, 72 The compositions of saliva and commensal bacterial
populations in the oral cavity are inter-related, and over 700
bacterial species are housed.71, 72 For instance, the host
glycoprotein component of saliva provides nutrition to the oral
bacteria, whereas antimicrobials peptides secreted by the host
system present in saliva keep the oral microbial populations in-
check.73 Alternatively, the oral bacteria secrete proteins that
degrade host defense peptides (anti-microbial) in saliva to sustain
in the oral cavity.74, 75 Hence, the oral microbiome is increasingly
considered a very significant player in human health and disease.
In this study, we have shown the potential of the 23
atherosclerotic plaque-associated oral commensal bacteria in
disease pathology. The cohort of 23 atherosclerotic plaque-
associated bacteria is dominated by gram-negative bacteria with
the exception of Streptococcus sp. Full genomes of 19 of the 23
bacteria from this cohort are now available, except E. corrodens, E.
hormaechei, F. necrophorum, and P. nigrescens. Hence, a genomic
platform has been established to enable bacterial and molecular
profiling of factors that contribute to plaque formation. Further
investigations of these microbe–plaque axes are now required to
unravel the full extent of linkage between host microbiome with
atherosclerosis.

METHODS
Data collection
Data sets selected in this study were sourced from published material from
PUBMED, ATCC, and online web sources (Kenyon Microbe Wiki and Google
search). Using a cataloguing procedure described in Fig. 7, we annotated
all known bacteria that have been identified from atherosclerotic plaque
samples of CAD patients. In brief, all PUBMED titles and abstracts were
screened for eligibility. Any pre-clinical study was eligible for inclusion if it
reported data regarding the presence of certain bacteria in atherosclerotic
plaque within a coronary artery. These studies included randomized
controlled trials, prospective case series, and controlled studies. Single case
reports, conference proceedings, abstracts, and letters to the editor
were screened but excluded if essential methodological information was
missing. Additional articles from cross-references, which were missed due
to absence of the search terms in title or abstracts, were hence included.
Our literature search therefore resulted in selection of 63 studies, and
identification of 23 bacteria in the human atherosclerotic plaque samples.

Characterization on the basis of tissue localization and disease
caused
Data sets selected in this study were sourced from published material from
PUBMED, ATCC, and online web sources (Kenyon Microbe Wiki and Google
search). In brief, all PUBMED titles and abstracts were screened for tissue
localizations and diseases caused by the 23 atherosclerotic plaque-
associated bacteria. Using above data, a map showing the presence of
bacteria in various organ systems was generated. A GG plot of bacteria and
diseases caused by them was prepared in R programming language.

Identification of secretory proteins
The data pertinent in cataloguing secretory proteins/peptides from the
23 atherosclerotic plaque-associated bacteria were sourced from PUBMED.
The screening process included only those studies that incorporated
proper characterization of proteins/peptides secreted by any of the
microbes in focus here. This resulted in a total of 33 articles whose data
were added to this study.
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