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The implementation of cancer precision medicine requires biomarkers or signatures for predicting prognosis and therapeutic ben-
efits. Most of current efforts in this field are paying much more attention to predictive accuracy than to molecular mechanistic in-
terpretability. Mechanism-driven strategy has recently emerged, aiming to build signatures with both predictive power and ex-
planatory power. Driven by this strategy, we developed a robust gene dysregulation analysis framework with machine learning
algorithms, which is capable of exploring gene dysregulations underlying carcinogenesis from high-dimensional data with coop-
erativity and synergy between regulators and several other transcriptional regulation rules taken into consideration. We then ap-
plied the framework to a colorectal cancer (CRC) cohort from The Cancer Genome Atlas. The identified CRC-related dysregulations
significantly covered known carcinogenic processes and exhibited good prognostic effect. By choosing dysregulations with
greedy strategy, we built a four-dysregulation (4-DysReg) signature, which has the capability of predicting prognosis and adju-
vant chemotherapy benefit. 4-DysReg has the potential to explain carcinogenesis in terms of dysfunctional transcriptional regula-
tion. These results demonstrate that our gene dysregulation analysis framework could be used to develop predictive signature
with mechanistic interpretability for cancer precision medicine, and furthermore, elucidate the mechanisms of carcinogenesis.

Keywords: gene dysregulation analysis, mechanistic signature, cancer precision medicine, prognosis, chemotherapy bene-
fit, colorectal cancer

Introduction
Biomarkers or signatures for predicting prognosis and thera-

peutic benefits are an indispensable part for implementing can-
cer precision medicine (Walther et al., 2009; Vargas and Harris,
2016). The improvements of prognostic and therapeutic bene-
fits with the aid of signatures have been reported in colorectal
cancer (CRC), breast cancer, lung cancer, etc. (Chen et al.,

2007; Khambata-Ford et al., 2007; Salazar et al., 2011;
Sparano et al., 2019). Meta-analysis studies of clinical trials
demonstrate that response rate seen with targeted agents un-
der biomarker guidance has reached �30%, which is much
higher than that of chemotherapies (Schwaederle et al., 2015).
However, despite these promising outcomes, there remain ur-
gent needs for improving the performance of clinical
signatures.

The most widely adopted strategies for identifying predictive
signatures heavily depend on expression analysis of individual
genes involving identification of differentially expressed genes
(DEGs) (Khambata-Ford et al., 2007; Salazar et al., 2011) and
genes whose expression values are relevant to certain
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phenotype (Chen et al., 2007; Sparano et al., 2019). It is appar-
ent that they ignore gene interconnection implicated in tran-
scriptomic data, even though genes perform their functions in
coordination, instead of in isolation (Barzel and Barabasi,
2013). Therefore, the currently available predictive signatures
unavoidably tend to have limited mechanism explanatory
power, which has become a common concern in precision med-
icine (Robinson et al., 2013). There is a general consensus
among both clinicians and biologists about the need for signa-
tures with mechanistic interpretability as well as high predic-
tive accuracy for cancer precision medicine (Robinson et al.,
2013; Topalian et al., 2016; Lu et al., 2019). It could also be
expected that taking mechanistic interpretation into consider-
ation would further enhance the predictive accuracy and ro-
bustness of signatures in clinical application (Robinson et al.,
2013).

Attributed to the crucial roles of gene regulation in funda-
mental cell processes, to build signatures with mechanistic in-
terpretability requires studying relevant genes in the context of
regulatory networks, that is, identifying specific regulators and
their regulatory relationships that are dysfunctional in a given
disease state (Lee and Young, 2013). In the past >10 years,
quite a few investigations have aimed to elucidate dysfunc-
tional regulatory networks in disease, instead of solely focusing
on DEGs (de la Fuente, 2010; Ideker and Krogan, 2012). Among
them, differential coexpression analysis (DCA, also shortened
as ‘DCEA’ in literatures), which were developed to identify dif-
ferences in genes coexpression patterns between healthy and
disease samples, was regarded as the first steps toward differ-
ential regulation analysis or gene dysregulation analysis (de la
Fuente, 2010). Most of the existing DCA-based methodologies
construct coexpression networks and identify the alteration of
gene–gene identities (i.e. network topology) or gene–gene cor-
relation (i.e. edge weight) (Ideker and Krogan, 2012; Li et al.,
2016). Based on these strategies, differential modules or gene
sets related to certain phenotypes could be identified to build
signatures for predicting prognosis (Taylor et al., 2009) and
drug response (Zickenrott et al., 2016). However, most signa-
tures involve too many genes and include too much noise,
which greatly weaken their mechanism explanatory power. In
our early work, we applied our previously developed DCA-
based method to cancer and generated a series of
carcinogenesis-relevant biomarkers (Liu et al., 2010; Yu et al.,
2011; Yang et al., 2013; Wu et al., 2016; Li et al., 2017a; Dai
et al., 2018). Benefiting from the quantitative design of our
DCA-based algorithms and candidate gene screening by tran-
scriptional regulation relationships, the numbers of genes in
our biomarkers were decreased to a practical level and the
mechanistic interpretability of the identified biomarkers were
also elevated (Wu et al., 2016; Li et al., 2017a).

Since correlation analysis cannot distinguish direct associa-
tions from indirect associations (Barzel and Barabasi, 2013), it
has limited potential to directly provide clues into disease
mechanisms. Aiming to identify the alterations of gene regula-
tion relationships instead of expression correlations between

various phenotypes, updated versions of differential regulation
analysis have emerged as a follow-up effort toward elucidating
disease-related dysfunctional regulatory networks or differen-
tial regulation relationships (Cao et al., 2015; Li et al., 2017b).
Considering that transcriptional regulation requires sufficient
cooperativity and synergy of multiple regulators (Lambert et al.,
2018), however, it is still a huge challenge about how to ro-
bustly build a framework for dysregulation analysis based on
high-dimensional transcriptome data if taking cooperativity
and synergy of multiple regulators into consideration.

In this work, we first proposed a framework for gene dysregu-
lation analysis by using machine learning algorithms that are
able to consider the cooperativity and synergy between regula-
tors and robustly cope with high-dimensional data (Figure 1). A
reference gene regulation network (GRN) was constructed by
predicting the potential binding site of transcription factors
(TFs) among promoter regions (Figure 1A). Conditional GRNs
were then highlighted with a random forest-based feature se-
lection algorithm Boruta (Kursa and Rudnicki, 2010; Figure 1B),
and each link’s regulatory intensity and its confidential interval
were estimated with a de-biased least absolute shrinkage and
selection operator (LASSO) method (Javanmard and Montanari,
2014; Figure 1C). Gene dysregulations were subsequently iden-
tified by integrating three properties including differential regu-
lation, differential expression of target, and the consistency
between differential regulation and differential expression
(Figure 1C). We applied the framework to CRC, one of the most
incident malignancies and the leading causes of cancer death
around the world (Bray et al., 2018). The identified CRC-related
dysregulations significantly covered well-known carcinogenic
processes and exhibited good prognostic effect. Furthermore, a
signature was constructed based on the dysregulations, which
possessed not only predictive power for prognosis and adju-
vant chemotherapy (ADJC) benefit but also mechanism explana-
tory power in terms of dysfunctional gene regulation. We
provide our gene dysregulation analysis framework to the com-
munity and hope that this will help researchers generate mech-
anistic signatures with high predictive accuracy for cancer
prognosis and treatment and gain insights into carcinogenesis.

Results
Identification of gene dysregulations

First of all, conditional GRNs, i.e. normal GRN and cancer
GRN, were constructed by using Boruta algorithm (Kursa and
Rudnicki, 2010) based on candidate TF–target relationships
and mRNA expression data of 32 paired samples from The
Cancer Genome Atlas (TCGA) CRC dataset (Vivian et al., 2017).
A total of 30186 and 15665 regulations were eventually kept in
normal GRN and cancer GRN, respectively. The regulatory inten-
sities and their 95% confidence intervals (CIs) of every link in
conditional GRNs were quantified by de-biased LASSO
(Javanmard and Montanari, 2014; see Supplementary File for
validation of the quantifying method of regulatory intensity).
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Subsequently, 389 gene dysregulations were extracted accord-
ing to three factors including differential regulation, differential
expression of target, and the consistency between differential
regulation and differential expression (Supplementary Table
S1). Two examples of gene dysregulation, RUNX3!GPR15 and
KLF6!WNT2, were illustrated in Figure 2. For RUNX3!GPR15

(Figure 2A), the regulatory intensity was reduced from normal
to cancer with the intensity value being 0.441 (normal) and
�0.010 (cancer), and the expression level of the target, GPR15,
significantly decreased as shown. For KLF6!WNT2 (Figure 2B),
the regulatory intensity was increased from normal (�0.383) to
cancer (0.274), and accordingly, the expression level of the tar-
get, WNT2, was elevated. It was interesting that either the tar-
get set (341 genes) or the TF set (262 genes) involved in
dysregulations was able to correctly classify tumor and normal
samples with unsupervised hierarchical clustering method,
suggesting that the 389 gene dysregulations were potentially
relevant to carcinogenesis (Figure 2C; Supplementary Figure S1).

To globally understand the functions of the 389 dysregula-
tions, we implemented pathway over-representation analysis
and obtained numerous cancer-related pathways enriched for
the dysregulation genes (Figure 2D; Supplementary Table S2).
In order to explore the influences of dysregulation events on
carcinogenesis, we extracted the targets’ expression data and
checked the change of pathway activities with gene set enrich-
ment analysis (GSEA) (Subramanian et al., 2005). It was shown
that several biological processes including cell proliferation, cell

cycle, pathways in cancer, chromosome organization, and vascu-
lature development were more active in CRC samples (Figure 2E
for cell proliferation; Supplementary Figure S2 for all), while
some others including immune system process, cell death, and
cell–cell adhesion were inhibited in cancer (Figure 2F for immune
system process; Supplementary Figure S2 for all). These results
support that the identified 389 dysregulations essentially high-
light cancer-related crucial processes and thus could be taken as
functional seeds for building explanatory signature.

Prognostic effects of gene dysregulations
We first checked prognostic effects of the 389 gene dysre-

gulations for overall survival/recurrent-free survival (OS/RFS)
on TCGA CRC dataset. Following the procedures in Materials
and methods, we found that for all four types of cox models,
C-indexes of 389 models fitted with the 389 dysregulations
were significantly larger than those with 389 gene pairs ran-
domly selected through four gene selection strategies (see
Materials and methods for details), with the median P-value
of 100 times of Wilcox tests <0.05 (Figure 3A). We then
tested the prognostic effect of the 389 dysregulations in two
independent datasets, GSE39582 and GSE17538. In
GSE39582, similar trends were obtained excepting the OS
cox model fitted with expression data and clinical information
when the control setting involved DEGs (Figure 3B, compari-
son_2 and comparison_4 in ExpþClin_OS). In GSE17538,

Figure 1 The framework of gene dysregulation analysis. (A) Construction of reference GRN by predicting the binding sites of TFs within pro-
moter regions with TF motif data. (B) Construction of conditional GRNs with Boruta algorithm. (C) Identification of gene dysregulations by
integrating three standards that regulatory intensity changes significantly between conditions, the target is a differential expression gene,
and TF is a master regulator for target expression.
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similar trends were also observed apart from the RFS cox
model fitted with expression data alone (Figure 3C, Exp_RFS).
These results indicate that the 389 CRC-related dysregula-
tions have prognostic capability as a whole.

Construction of prognostic signature with dysregulations
Considering that our identified 389 dysregulations could

cover known carcinogenic processes (Figure 2) and exhibit
prognostic effect (Figure 3), we set out to construct a high-
accuracy prognostic model based on these dysregulations,

which was expected to provide both mechanism explanatory
power and predictive power. First of all, among the 389 OS cox
models fitted with expression data of 389 dysregulations adju-
vant with clinical information from TCGA CRC dataset
(Supplementary Table S3), the model for RUNX3!GPR15 dysre-
gulation stood out with the largest C-index, 0.763. RUNX3, a
member of the runt domain-containing family of TFs, has been
found to be essential for diverse processes including prolifera-
tion, differentiation, cell lineage specification, apoptosis, and
DNA repair (Ito et al., 2015; Bae et al., 2019). RUNX3 is taken

Figure 2 Summary of the identified gene dysregulations in CRC. (A and B) Examples of gene dysregulations. (A) RUNX3!GPR15.
(B) KLF6!WNT2. X-axis denotes TF expression level and y-axis denotes target expression level. One point corresponds to one sample, with
red representing normal and blue representing cancer. The regression lines and confidence interval shadows were calculated by single var-
iable regression and used to visualize gene regulation differences between conditions. (C) Heatmap of gene expression of identified dysre-
gulations. Upper, expression of targets; lower, expression of TFs. All the samples hold the same rank. Red represents normal samples,
while blue represents cancer samples. (D) Cancer-related pathways in over-representation analysis. (E and F) The pathways with changed
activity between normal and cancer exported by GSEA. (E) Cell proliferation. (F) Immune system process.
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as a tumor suppressor in CRC (Weisenberger et al., 2006;
Soong et al., 2009). GPR15, an orphan G-protein-linked recep-
tor, was reported to mediate T-cells localization to colon
(Habtezion et al., 2016), and very recently proposed to repre-
sent a therapeutic target for CRC (Namkoong et al., 2019).

Given that plasma membrane proteins show great potential
as drug targets and diagnostic objectives, we narrowed down
the 389 dysregulations to 126 plasma membrane protein-
relevant dysregulations to build a prognostic signature with ex-
planatory capability (Supplementary Table S3). Starting from
RUNX3!GPR15, a greedy strategy as described in Materials
and methods was used to select other dysregulations to boost

the signature’s performance. At last, a prognostic signature in-
volving four dysregulations (4-DysReg), RUNX3!GPR15,
RUNX3!P2RY8, SNAI3!TLR7, and ATOH1!SIGLEC1, was
built.

Based on the expression data of the seven genes involved in
4-DysReg (Supplementary Figure S3) and the clinical informa-
tion including age, gender, and pathological stage in TCGA CRC
dataset, we built an OS cox model on the entire samples from
TCGA CRC dataset. C-index of this model ran up to 0.79 (SE ¼
0.038). The risk scores for every sample were then calculated.
The OS time, survival status, and risk score were shown in
Figure 4A, indicating a high correlation between risk score and
survival status. Time-dependent receiver operating characteris-
tic (ROC) curves showed that this model represents high accu-
racy for OS prediction, with the area under ROC curve (AUC) at
1-, 3-, and 5-year survival reaching 0.82, 0.79, and 0.78

(Figure 4B). After that, median risk score was used to cut the
samples into high and low score groups, and patients with low
score displayed significantly better prognosis (hazard ratio
(HR) ¼ 0.134; 95% CI: 0.071–0.253; P-value ¼ 6.52e�10;
Figure 4C). Following the same analysis procedure as in TCGA
CRC dataset, the OS predictive power of 4-DysReg was also vali-
dated on independent datasets, GSE39582 and GSE17538

(Supplementary Figure S4). Besides, we checked the perfor-
mance of 4-DysReg in various clinical stratification subtypes
with regard to age, gender, primary site, pathological stage,
lymphatic invasion, and microsatellite status. The results
showed that low score group always had significantly longer
survival time than high score group in almost every subtype
(Figure 4D). It is noticed that patients in low score group
showed significantly better prognosis in both microsatellite in-
stability (MSI) subgroup (n¼107) and microsatellite stability
(MSS) subgroup (n¼235) (Figure 4D). Since MSI is a mature
biomarker in CRC for prognosis and for some chemotherapies
(Boland and Goel, 2010), it seems that 4-DysReg has a good
consistency across various subtypes for CRC prognosis
prediction.

At last, cross-validation on three datasets, TCGA CRC,
GSE39582, and GSE17538, indicated that C-index, 1-, 3-, and
5-year survival AUC, and log-rank test of the testing sets main-
tained high levels compared to the training sets (Table 1).
Taken together, our signature 4-DysReg is capable of robustly
predicting OS with high accuracy.

Comparison of the predictive accuracy of 4-DysReg with other
CRC signatures

We compared the predictive accuracy of 4-DysReg for OS
with previously reported CRC expression signatures, including
RUNX3 (Soong et al., 2009), ColoPrint (contains 18 genes)
(Salazar et al., 2011), ColoGuideEx (contains 13 genes)
(Agesen et al., 2012), ColoGuidePro (contains 7 genes) (Sveen
et al., 2012), ColoFinder (contains 9 genes) (Shi and He,
2016), CRCassigner-30 (Sadanandam et al., 2013),

Figure 3 Prognostic effects of the identified gene dysregulations.
(A) Results in TCGA CRC dataset. (B) Results in GSE39582 dataset.
(C) Results in GSE17538 dataset. X-axis indicates four prognostic
models. ExpþClin_OS: OS cox model fitted with two genes’ expres-
sion data and clinical information; Exp_OS: OS cox model fitted
with two genes’ expression data; ExpþClin_RFS: RFS cox model fit-
ted with two genes’ expression data and clinical information;
Exp_RFS: RFS cox model fitted with two genes’ expression data.
Y-axis indicates negative logarithm of P-value of Wilcox test when
examining whether C-indexes of cox models fitted with dysregula-
tions were significantly larger than controls. Each test was re-
peated 100 times. The blue dashed line indicates negative
logarithm of 0.05. The red dashed line indicates negative logarithm
of 0.5. compare_1, compare_2, compare_3, and compare_4 repre-
sent four types of control settings. compare_1: two genes were ran-
domly selected from the gene list of preprocessed expression
data; compare_2: one DEG and one non-DEG were randomly se-
lected from the gene list of preprocessed expression data; com-
pare_3: one regulation was randomly selected from the reference
GRN; compare_4: one regulation whose target is DEG was randomly
selected from the reference GRN.
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Figure 4 Construction of prognostic signature base on dysregulations with TCGA CRC dataset. (A) Scatter plot for OS time, survival status,
and risk score for TCGA CRC samples. (B) Time-dependent ROCs for risk score at 1-, 3-, and 5-year survival. (C) Kaplan–Meier curves of
OS between two groups cut by median risk core. P-value was generated from log-rank test. (D) Forest plots of the associations between
4-DysReg risk score and OS in various subgroups. High score: the group with risk score larger than the median; low score: the group
with risk score smaller than the median.

886 | Li et al.



CRCassigner-7 (Sadanandam et al., 2013), a 7-gene signature
(Chen et al., 2017), and a 4-gene signature (Zou et al.,
2015). The detailed gene information of every signature
could be found in Supplementary File. In TCGA CRC dataset,
our 4-DysReg signature outperformed all the others in the
cross-validation (Figure 5A). With clinical information
included, the accuracy of all signatures was enhanced and
4-DysReg still performed the best (Figure 5B). In GSE39582

dataset, ColoGuideEx alone displayed a slightly higher C-

index than 4-DysReg (Figure 5C), while 4-DysReg surpassed
ColoGuideEx when combining clinical information (Figure 5D).
Taken together, these observations indicate the predictive
power of 4-DysReg for prognosis.

Predictive power of 4-DysReg for chemotherapeutic benefit
ADJC is preferred for curing CRC patients, and the guideline

of ADJC is established on pathologic stage (Watanabe et al.,
2018). Stage III and IV CRC patients are routinely recommended

Table 1 Cross-validation of 4-DysReg in terms of C-indexes, AUC of time-dependent ROC at 1-, 3-, and 5-year survival, and log-rank test in
three cohorts.

Cohort C-index AUC_1 AUC_3 AUC_5 �log10 (log-rank test P-value)

TCGA CRC
Training set 0.80 (0.78–0.81) 0.83 (0.80–0.85) 0.80 (0.78–0.83) 0.79 (0.76–0.82) 7.74 (6.23–8.81)
Testing set 0.76 (0.73–0.78) 0.79 (0.75–0.82) 0.76 (0.72–0.80) 0.73 (0.69–0.78) 4.15 (3.23–5.01)

GSE39582

Training set 0.71 (0.69–0.72) 0.70 (0.65–0.77) 0.73 (0.69–0.82) 0.75 (0.71–0.86) 6.97 (5.85–8.12)
Testing set 0.67 (0.65–0.71) 0.76 (0.72–0.79) 0.71 (0.69–0.74) 0.70 (0.68–0.72) 3.41 (3.31–4.08)

GSE17538

Training set 0.75 (0.73–0.77) 0.84 (0.80–0.87) 0.78 (0.75–0.81) 0.78 (0.76–0.81) 3.52 (2.99–4.23)
Testing set 0.71 (0.68–0.75) 0.76 (0.70–0.81) 0.69 (0.64–0.73) 0.71 (0.65–0.75) 1.54 (1.00–2.08)

Data are expressed as median (first quantile–third quantile) of 100 times of cross-validation.

Figure 5 Comparison of the predictive accuracy of 4-DysReg with other CRC expression signatures. (A) Results in TCGA CRC dataset.
(B) Results in TCGA CRC dataset with clinical information included. (C) Results in GSE39582 dataset. (D) Results in GSE39582 dataset with
clinical information included. In this cross-validation, 60% of the samples were randomly selected as training set to fit a cox model with
each signature, and the left 40% were taken as testing set to calculate C-index. Cross-validation of each signature was repeated 100

times.
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to receive ADJC. Stage II CRC patients with high risk of recur-
rence also consider ADJC, but the usefulness of postoperative
ADJC has not been proved (Watanabe et al., 2018).

Herein, we adopted a large-scale CRC dataset GSE39582

(553 samples), with ADJC records ranging from stage II to stage
IV, to explore the predictive power of 4-DysReg for chemothera-
peutic benefit regardless of pathologic stage. An OS cox model
was trained with the expression data of the seven genes in-
volved in 4-DysReg on samples without ADJC (n¼321), which
was used to calculate risk scores of samples with ADJC
(n¼232) (see Supplementary File for the rationality of choos-
ing the training set). It was shown that the sample group with
negative risk score had better prognosis (HR ¼ 0.432; 95% CI:
0.269–0.693; Figure 6A).

Furthermore, we analyzed the predictive capability of 4-DysReg
for benefit of specific chemotherapy types including 5-FU and
combined ADJC (including FOLFIRI, FOLFOX, and FUFOL). Still, the
samples with negative risk score basically showed better
survival for both combined ADJC (n¼84; HR ¼ 0.380; 95% CI:
0.178–0.813; Figure 6B) and 5-FU (n¼ 79; HR ¼ 0.437; 95% CI:
0.181–1.055; Figure 6C). We also compared the predictive capa-
bility of 4-DysReg for chemotherapeutic benefit with previously
reported signatures. Excepting CRCassigner-7 for 5-FU chemo-
therapy benefit, 4-DysReg performed much better when predicting
chemotherapeutic benefit of all ADJC, combined ADIC, and 5-FU
(Supplementary File). The accuracy of the signature for combined
ADJC was evaluated by time-dependent ROC, and 3- and 5-year

survival AUC reached 0.71 and 0.74, higher than AUC of model
based on pathologic stage, 0.65 and 0.69 (Figure 6D).

These results demonstrate that our 4-DysReg signature pos-
sesses the predictive power for therapeutic benefit of ADJC, in-
cluding only for 5-FU, only for combined ADJC, and for all ADJC,
and therefore has the potential to guide ADJC regardless of
pathologic stage information.

Discussion
In the field of cancer precision medicine, a series of signa-

tures have been built for prognosis or therapeutic benefits
based on gene expression data (Chen et al., 2007; Khambata-
Ford et al., 2007; Salazar et al., 2011; Sparano et al., 2019).
However, current efforts are always focusing on predictive ac-
curacy over explanatory power. Driven by the recent
mechanism-driven strategies, we developed a robust gene dys-
regulation analysis framework by using machine learning algo-
rithms, which is capable of robustly exploring gene
dysregulations underlying carcinogenesis from high-
dimensional data without ignoring cooperativity and synergy
between regulators. We applied our framework on a TCGA CRC
cohort and eventually developed a dysregulation-based signa-
ture with the capability of predicting prognosis and chemother-
apy benefit as well. Our signature 4-DysReg showed superior
performance over a series of previously reported CRC expres-
sion signatures for prognosis and chemotherapy benefit.
Compared with those reported signatures generated from indi-
vidual gene expression analysis based methodology (Xiong

Figure 6 Predictive power of 4-DysReg for chemotherapeutic benefit in GSE39582. (A–C) Kaplan–Meier curves for OS predicted by 4-DysReg
between positive and negative risk score groups in all ADJC (A), combined ADJC (B), and 5-FU (C). (D) Time-dependent ROC for combined ADJC.
N_RiskScore, negative risk score predicted by 4-DysReg; P_RiskScore, positive risk score predicted by 4-DysReg. P-value was generated from log-
rank test.
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et al., 2018), 4-DysReg involves much fewer genes, and have
more functional relevance in carcinogenesis in terms of dys-
functional transcriptional regulation.

It has been widely accepted that dysfunctional regulation of
gene expression programs can cause a broad range of pheno-
typic changes, such as carcinogenesis (Lee and Young, 2013).
Systematic identification of gene dysregulations based on
omics data is an effective path for exploring molecular mecha-
nisms behind phenotypic changes. Quite a few approaches
have been reported to address this by measuring the change of
expression correlation between gene pairs across phenotypes
(de la Fuente, 2010; Ideker and Krogan, 2012; Li et al., 2016),
yet in the framework of correlation analysis, this pair-based es-
timation inevitably overrates the contribution of an individual
regulator to its target. In order to simultaneously consider the
contributions of multiple regulators to transcriptional regula-
tions, even the cooperative and synergistic effect between mul-
tiple regulators (Lambert et al., 2018), we have previously
developed dysregulation analysis methods based on multivari-
ate regression, which were applied to cancer and generated
carcinogenesis-relevant biomarkers (Cao et al., 2015; Li et al.,
2017b). However, the methodology is far from robust when
dealing with high-dimensional transcriptome data for dysregu-
lation analysis on a systematic level.

In the present dysregulation analysis framework, the cooper-
ative and synergistic effect between regulators could be fully
considered in a robust way. First, conditional GRNs are con-
structed by selecting important TFs for target expression with
feature selection algorithm Boruta, in which the relative impor-
tance of all candidate TFs are estimated simultaneously (Kursa
and Rudnicki, 2010); secondly, regulatory intensities and its
CIs of remaining TFs for target expression are quantified with
de-biased LASSO (Javanmard and Montanari, 2014), where the
expression of the target is determined by the combined regula-
tory effect of its all possible regulators, which naturally consid-
ers the cooperativity and synergy between TFs. Besides, we
identify gene dysregulations according to three factors includ-
ing differential regulation, differential expression of target, and
the consistency between differential regulation and differential
expression. In this way, our dysregulation analysis framework
is robust in dealing with high-dimensional transcriptome data
and endowed with explanatory power by combining biological
principles and machine learning algorithms with
interpretability.

The explanatory signature 4-DysReg built in this study con-
sists of four dysregulations including RUNX3!GPR15,
RUNX3!P2RY8, SNAI3!TLR7, and ATOH1!SIGLEC1. The 4-DysReg
showed good performance in predicting prognosis and therapeutic
benefit of ADJC in CRC patients. Attributed to dysregulation
analysis, 4-DysReg has sufficient interpretability in terms of
dysfunctional transcriptional regulation and molecular func-
tions. As expected, the seven genes involved in 4-DysReg have
been reported to participate in diverse processes related to car-
cinogenesis. RUNX3 is a member of the runt domain-containing
family of TFs, and participates in diverse processes including

proliferation, differentiation, cell lineage specification, apopto-
sis, and DNA repair (Ito et al., 2015; Bae et al., 2019). In CRC,
RUNX3 is taken as a tumor suppressor since its methylation is
a significant risk factor for tumor development and high nuclear
expression of RUNX3 is associated with better survival
(Weisenberger et al., 2006; Soong et al., 2009). It is intriguing
that RUNX3 demonstrates both tumor-suppressive and onco-
genic activities in multiple solid tumors (Ito et al., 2015). Still
intriguingly, GPR15, an orphan G-protein-linked receptor, is re-
cently reported to mediate T-cells localization to colon when
expressed on cell surface of T cells (Habtezion et al., 2016),
while play a supporting role in anti-inflammatory process (Pan
et al., 2017) when expressed on cell surface of vascular endo-
thelial cells. P2RY8, an orphan G protein-coupled receptor like
GPR15, is a key regulator for affinity maturation of B cells in
germinal centers (Muppidi et al., 2014). SNAI3 was identified
as an invasion-related marker (Puisieux et al., 2014), and also
reported to play a key role in differentiation of lymphoid cells
and myeloid cells (Dahlem et al., 2012). TLR7, a dual receptor
for guanosine and uridine-containing ssRNA in innate immu-
nity, could perform tumor-suppressive activity by mediating the
activation of NFkB and inducing proinflammatory cytokines
(Schon and Schon, 2008). This gene has been recognized as a
hot target for tumor targeted immunotherapy and cancer vac-
cines (Schon and Schon, 2008; Lynn et al., 2020). ATOH1 is a
master TF for regeneration and differentiation of intestinal epi-
thelial cells (Ishibashi et al., 2018). SIGLEC1, also named as
CD169, could function as a facilitator of the recognition and in-
ternalization of sialic acid decorated apoptotic bodies and exo-
somes derived from tumors, which potentially contributes to
both attenuation and facilitation of anti-tumor immunity
(Fraschilla and Pillai, 2017). It is appealing that several genes
among 4-Dysreg possess immune-related functions, including
RUNX3, GPR15, P2RY8, SNAI3, TLR7, and SIGLEC1. We have ac-
tually observed the positive correlation between the expression
of these genes and the abundance of eight immune cell types
within tumor tissue (Supplementary File and Supplementary
Figure S5), which provides functional interpretability of 4-
DysReg from the viewpoint of cellular functions among tissue.

It is noted that some signature genes, e.g. RUNX3, display
opposite functions in different studies. Although RUNX3 was
reported to be a tumor suppressor in CRC (Weisenberger et al.,
2006; Soong et al., 2009), in TCGA CRC dataset, RUNX3 expres-
sion displays weak difference between normal and cancer
(Supplementary Figure S6) and weak correlation with prognosis
(HR¼1.125, 95% CI: 0.965–1.312). In line with previous
observations, it is suggested that cytoplasmic localization of
RUNX3 is a main mode of RUNX3 inactivation (Soong et al.,
2009; Ito et al., 2015), which explains why only RUNX3 displays
limited prediction accuracy for prognosis (Figure 5A and C).
Benefitting from gene dysregulation analysis, we obtained
functional relevance of RUNX3 from its one target, GPR15. Still,
in TCGA CRC dataset, the expression of GPR15 significantly
decreases in cancer (Supplementary Figure S6) and is signifi-
cantly correlated with good prognosis (HR¼0.735, 95% CI:
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0.621–0.870). This observation supports the tumor-
suppressive activity of GPR15, consistent with its immunomod-
ulatory role (Habtezion et al., 2016) and its therapeutic poten-
tial proposed very recently (Namkoong et al., 2019). According
to gene dysregulation analysis, the regulatory intensity of
RUNX3!GPR15 is decreased from normal to cancer
(Figure 2A), which suggests that RUNX3 at least partly contrib-
utes to the high expression of GPR15 in normal. This explains
the anti-cancer activity of RUNX3 in CRC. In this case, our dysre-
gulation analysis links the two individual genes in the gene
transcriptional regulation scenario, characterizes the regulation
intensity under specific condition, and implies the role of dys-
regulation of RUNX3!GPR15 in CRC carcinogenesis, which is
obviously worthy of further in-depth investigation.

Beyond this, we would bring up again what we proposed in
2011 that the attention to correlation change will help to ex-
plore subtle mechanisms involved in tuning of molecular balan-
ces between opposite factors (Yu et al., 2011). Quite a lot of
efforts have actually been devoted to elucidating the mecha-
nism of the selectivity of cell fates, or, the tip of balance of mo-
lecular events. For example, the activation of p53 induced by
DNA damage would lead to cell cycle arrest allowing for DNA re-
pair if the damage is mild, or irreparably trigger apoptosis if the
damage is severe (Kastenhuber and Lowe, 2017; Levine,
2019). A common issue is, when a key molecular component
(p53 in the above example) was identified to be associated
with diverse events (DNA repair and apoptosis) in response to
a common signal (genotoxic stress), how to determine the
mechanism by which the key component determines which
genes to turn on or off from a plethora of partner proteins to
achieve the desirable cellular outcome. As 10 years ago, we be-
lieve differential regulation analysis, or dysregulation analysis,
could provide a promising solution to address this issue. In the
RUNX3!GPR15 case, we adopted dysregulation relationship
between RUNX3 and GPR15 to confirm the anti-cancer function
of RUNX3 in CRC. Meanwhile, there might be unknown partners
of RUNX3 that confer RUNX3 oncogenic activity in other condi-
tions. This implication is not limited to RUNX3 and GPR15, but
also could be extended to other genes or regulations in the
context of gene transcriptional dysregulation.

Despite the promising results, still there is a large room for
improvement in our approach. First, our reference GRN is de-
rived from the predicting TF binding site in 1000 bp sequence
ahead transcription start site, which is one of the most general
manner used to build reference GRN at present (Lambert et al.,
2018). It should be noted that promoter sequence could be lon-
ger for some genes, and distant enhancers also play important
role in gene transcription (Schoenfelder and Fraser, 2019).
Additionally, the tool of predictive TF binding site used in this
work, FIMO, is based on the similarity between TF motif and
DNA sequence (Grant et al., 2011). Besides DNA sequence, the
binding is also influenced by other features, such as chromo-
some accessibility, histone modification, DNA methylation, TF
post-transcriptional modification and TF combination (Lambert
et al., 2018). How to build a reference GRN with high reliability

for TF–DNA binding is a hot topic in the area. Secondly, gene
dysregulations in the present study were identified with only
32 paired samples. We believe a larger dataset could enhance
the performance of dysregulation analysis and prognostic
signature. At last but not least, based on the effectiveness of
4-DysReg proved by the present study, we will include a baseline
dataset with large sample size and build a prognostic model
with seven genes involved in 4-DysReg in future.

In summary, we presented a gene dysregulation analysis
framework, which is capable of exploring gene dysregulations
underlying carcinogenesis from high-dimensional data with
cooperativity and synergy of multiple regulators and several
other transcriptional regulation rules taken into consideration.
The framework was applied to CRC dataset, and the signature
4-DysReg was built based the identified CRC-related dysregula-
tions. 4-DysReg has the capability of predicting prognosis and
chemotherapy benefit, and the potential of explaining carcino-
genesis in terms of dysfunctional transcriptional regulation. It
is our belief that the gene dysregulation analysis framework
will help to elucidate systematic mechanisms of carcinogenesis
and develop signatures with high predictive accuracy and
mechanistic interpretability in clinical application.

Materials and methods
Collecting and preprocessing expression data

TCGA CRC mRNA data and clinical data were downloaded
from UCSC Xena (Vivian et al., 2017), and 380 primary tumor
samples and 51 adjacent normal samples were selected. The
abundance of mRNA was determined as transcripts per million
(TPM). The TPM values <1 were treated as missing values. For
a certain gene, when the number of missing values was >20%
of total sample size, the gene was deleted. The remaining miss-
ing data were filled in with k-nearest neighbor method
(Troyanskaya et al., 2001). The expression data were log2

transformed. Among them, 32 pairs of matched tumor and adja-
cent normal samples were used to construct conditional GRNs
and identify gene dysregulations; 350 primary tumor samples
with OS, RFS, age, gender, and pathological stage information
were used in prognostic analysis.

Two expression datasets with clinical data including OS, RFS,
age, gender, and pathological stage, GSE39582 (Marisa et al.,
2013) and GSE17538 (Smith et al., 2010), were downloaded
from GEO (http://www.ncbi.nlm.nih.gov/geo/). GSE39582 con-
tains 566 CRC tumor samples and 19 normal samples.
GSE17538 contains 238 CRC tumor samples. Both datasets are
based on GPL570 platform. The probes matching to multiple
genes were deleted. When >1 probe could be mapped to the
same gene, the probe with the highest value was taken to rep-
resent the expression level of the gene. The way of handling
missing data was the same as that for TCGA data. The expres-
sion data were log2 transformed. Quantile method was
adopted to normalize data between samples (Bolstad et al.,
2003). A total of 553 tumor samples in GSE39582 and 200
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tumor samples in GSE17538 with sufficient clinical information
were used in prognostic analysis.

Constructing reference GRN
TF and the ‘best’ motif data were accessed from HumanTF data-

base (Lambert et al., 2018). The 1000 bp upstream sequences
from transcription start site of all coding genes were acquired by
biomaRt (http://www.biomart.org/) and regarded as promoter
regions. The promoter region of each gene was scanned with
FIMO (Grant et al., 2011) with P-value <1e�04. For each TF, the
threshold that the probability of making at least one false discov-
ery was <0.01 was adopted to perform multi-hypothesis test cor-
rection to select its targets. If a TF had >5000 targets, only the
top 5000 targets ranked by FIMO score were kept (Grant et al.,
2011). The remaining TF–target relationships, or candidate TF–tar-
gets, composed the reference GRN (Figure 1A), which included
1083 TFs and 1773407 relationships.

Constructing conditional GRNs
Based on expression data under a specific condition, TF–target

relationships in reference GRN were filtered by using a feature se-
lection method Boruta, a wrapper around random forest algorithm
(Kursa and Rudnicki, 2010). For each target, the expression values
of its candidate TFs in reference GRN were regarded as original
features, and the target’s expression was regarded as response
variable. By shuffling candidate TFs, Boruta generated shadow
features, iteratively estimated the importance of every TF, and re-
moved the TF less relevant to its target. In this way, those concep-
tual links which did not perform functions under specific
condition were removed from reference GRN, and the remaining
TF–target relationships formed conditional GRNs (Figure 1B), i.e.
normal GRN and cancer GRN in the present study.

Identifying gene dysregulations
Gene dysregulations were identified by integrating three

standards. Firstly, the regulatory intensity should be signifi-
cantly different between conditions; secondly, target should be
differentially expressed; lastly, the change direction of regula-
tory intensity should be consistent with the change direction of
target’s expression between conditions (Figure 1C).

Since the de-biased LASSO method is able to robustly obtain
the estimation and the covariance of regression coefficients for
high-dimensional regression (Javanmard and Montanari, 2014),
it was adopted to estimate the regression coefficients and their
CIs of every upstream TF of a certain target, with regression coef-
ficients and CIs taken as regulatory intensities and their ranges.
For each regulation, if 95% CIs of the regression coefficient have
no overlap between normal and cancer conditions, the regula-
tory intensity could be regarded as significantly differential.

For target expression change, we carried out differential ex-
pression analysis by using limma (Ritchie et al., 2015) with the
cutoff of jlogFCj > 1 and Padj < 0.05 on log2-transformed ex-
pression data. DEGs were identified and their change direc-
tions, say activation of inhibition, were recorded.

Eventually, for a certain regulation, the TF whose regulatory
intensity change was consistent with its target’s expression
change from one condition to another was considered to play
key role in controlling target’s expression. And the regulations
with consistent change of regulatory intensity and target’s ex-
pression were kept in the following analysis.

Checking prognostic effect of dysregulations
For each gene dysregulation, four types of cox proportional

hazard models were constructed in TCGA CRC dataset by using
R package survival (https://cran.r-project.org/web/packages/
survival/), fitted with (i) two genes’ expression data adjuvant
with clinical information including age, gender, and pathologi-
cal stage for OS, (ii) two genes’ expression data for OS, (iii) two
genes’ expression data adjuvant with clinical information in-
cluding age, gender, and pathological stage for RFS, and (iv)
two genes’ expression data for RFS. For each cox model, C-in-
dex was calculated to measure the prediction accuracy.
Meanwhile, four groups of controls were set with the following
procedures, each containing the same number of randomly se-
lected gene pairs as the identified gene dysregulations: (i) two
genes were randomly selected from the gene list of prepro-
cessed expression data; (ii) one DEG and one non-differentially
expressed gene (non-DEG) were randomly selected from the
gene list of preprocessed expression data; (iii) one regulation
was randomly selected from the reference GRN; and (iv) one
regulation whose target is DEG was randomly selected from the
reference GRN. Still, four types of cox models were built for
each random pair, and C-index was calculated for each model.
At last, for each type of cox models, Wilcox test was used to
check whether the C-indexes from the identified dysregulations
were significantly larger than those from random pairs (one-
way Wilcox test), i.e. whether the accuracy of cox models fitted
by the identified dysregulations as a whole was higher than by
controls. This process was repeated 100 times. The prognostic
effect of the identified dysregulations was also validated in
GSE39582 and GSE17538.

Building prognostic signature
Among the OS cox models fitted with gene expression data of

every dysregulation adjuvant with clinical information in TCGA
CRC dataset as described above, the model with the largest C-in-
dex was taken as the primary one, and then a greedy strategy
was adopted to exclusively add every other candidate dysregula-
tion to the primary model. For each new model, 60% of the sam-
ples were randomly selected as training set to construct a cox
model, and the left 40% of the samples were taken as testing set
to calculate C-index of the cox model. This cross-validation was
repeated 100 times and the median C-index was assigned to the
new model. For every iteration, the model was finally updated by
integrating one more dysregulation which led to the highest C-in-
dex. The iteration ended up with C-index of the updated model
being steady (DC-index < 0.001). The dysregulations involved in
the final model were taken as prognostic signature.
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Risk score of each sample was calculated by genes in the
prognostic signature and clinical factors including age, gender,
and histological type with cox multivariate regression among
all samples in the dataset. Samples were divided into two
groups with the median of risk scores, and Kaplan–Meier (KM)
survival analysis was then carried out to evaluate the differ-
ence in survival time between the two groups. The accuracy of
the risk score for predicting survival was evaluated by C-index
and AUC with timeROC (Blanche et al., 2013). These analyses
were also conducted in two independent datasets.

The prognostic signature was further validated following a
cross-validation procedure. That is, 60% of the samples
were randomly selected as training set to fit a cox model as
described above, and the left 40% were taken as testing set
to calculate C-index, AUC at 1-, 3-, 5-year OS, and signifi-
cance of KM survival curves. The cross-validation was re-
peated 100 times. This cross-validation procedure was
respectively conducted in TCGA CRC and two independent
datasets.

Enrichment analysis
Pathway over-representation analysis was implemented on

ConcensusPathDB (Herwig et al., 2016), which is a comprehen-
sive collection of human molecular interaction data integrating
different public repositories. The pathway databases used in
ConcensusPathDB include KEGG, Reactome, WikiPathways,
Biocarta, and PharmGKB. Over-representation pathways were
extracted with the threshold that pathway had at least five genes
overlapped with input genes and P-value was <0.05.

GSEA was performed with GSEA3.0 software (Subramanian et al.,
2005). The gene set database ‘c5.bp.v6.2.symbols.gmt [Gene on-
tology]’ was used to determine the enrichment of gene sets.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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