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Abstract. Breast cancer (BC) is the leading malignancy in 
women worldwide, yet relatively little is known about the 
genes and signaling pathways involved in BC tumorigenesis 
and progression. The present study aimed to elucidate 
potential key candidate genes and pathways in BC. Five gene 
expression profile data sets (GSE22035, GSE3744, GSE5764, 
GSE21422 and GSE26910) were downloaded from the Gene 
Expression Omnibus (GEO) database, which included data 
from 113 tumorous and 38 adjacent non‑tumorous tissue 
samples. Differentially expressed genes (DEGs) were identified 
using t‑tests in the limma R package. These DEGs were 
subsequently investigated by pathway enrichment analysis and 
a protein-protein interaction (PPI) network was constructed. 
The most significant module from the PPI network was 
selected for pathway enrichment analysis. In total, 227 DEGs 
were identified, of which 82 were upregulated and 145 were 
downregulated. Pathway enrichment analysis results revealed 
that the upregulated DEGs were mainly enriched in ʻcell 
division ,̓ the ʻproteinaceous extracellular matrix (ECM) ,̓ 
ʻECM structural constituentsʼ and ʻECM-receptor interaction ,̓ 
whereas downregulated genes were mainly enriched in 
ʻresponse to drugs ,̓ ʻextracellular space ,̓ ʻtranscriptional 
activator activityʼ and the ʻperoxisome proliferator‑activated 
receptor signaling pathway .̓ The PPI network contained 
174 nodes and 1,257 edges. DNA topoisomerase 2‑a, 
baculoviral inhibitor of apoptosis repeat‑containing protein 5, 
cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 
and kinetochore protein NDC80 homolog were identified 
as the top 5 hub genes. Furthermore, the genes in the most 
significant module were predominantly involved in ʻmitotic 
nuclear division ,̓ ʻmid-body ,̓ ʻprotein bindingʼ and ʻcell cycle .̓ 
In conclusion, the DEGs, relative pathways and hub genes 

identified in the present study may aid in understanding of 
the molecular mechanisms underlying BC progression and 
provide potential molecular targets and biomarkers for BC.

Introduction

Breast cancer (BC) is one of the most common types of 
cancer in women worldwide and its incidence is increasing, 
particularly in developed countries (1‑3). Women are typically 
screened for BC with mammography and traditional tumor 
markers, including carcinoembryonic antigen and carcinoma 
antigen 15‑3 (4). However, the diagnostic power of these 
methods is limited, due to low sensitivity and specificity (5,6). 
BC treatment commonly includes surgical resection and 
hormone therapy, radiotherapy or chemotherapy. However, BC 
remains highly prevalent and malignant due to recurrence and 
metastasis. Therefore, there is an urgent need to develop novel 
diagnostic strategies and therapeutic agents to improve the 
prognosis of patients with BC.

The molecular mechanisms of BC tumorigenesis and 
progression remain unclear. It is therefore critical to identify 
new genes and pathways that are associated with BC 
tumorigenesis and patient prognosis, which may not only help 
to elucidate the underlying molecular mechanisms involved, 
but also to discover novel diagnostic markers and therapeutic 
targets. Microarrays can rapidly detect gene expression on 
a global basis and are particularly useful in screening for 
differentially expressed genes (DEGs) (7). Gene chips are 
a form of microarray which allow the investigation of gene 
expression in a high throughput manner with high sensitivity, 
specificity and repeatability. A significant amount of data has 
been produced via the use of microarrays and the majority of 
such data has been uploaded and stored in public databases. 
Previous studies concerning BC gene expression profiling have 
identified hundreds of DEGs (8‑10). However, the comparative 
analysis of DEGs across a range of independent studies may 
yield only a relatively limited amount of useful data with regard 
to carcinogenesis. The disadvantages of these single studies 
may be overcome by combining microarray technology and 
bioinformatics analysis, as this approach would make it possible 
to analyze the associated pathways and interaction networks 
associated with the identified DEGs. This information may aid 
in elucidating the molecular mechanisms underlying BC.

In the present study, five profiling microarray datasets 
were downloaded from the Gene Expression Omnibus (GEO): 
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GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910. 
DEGs were identified in tumor tissues relative to adjacent 
non-cancerous tissues in patients with BC. Additionally, gene 
ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis was performed and protein‑protein inter-
action (PPI) networks were constructed to identify the hub 
genes in BC. Collectively, the findings of the present study 
highlighted key genes and pathways that may contribute to the 
pathology of BC. These may provide a basis for the develop-
ment of future diagnostic and therapeutic tools for BC.

Materials and methods

Microarray data. GSE22035 (11), GSE3744 (12), GSE5764 (13), 
GSE21422 (14) and GSE26910 (15) profile datasets were 
downloaded from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) and based on a GeneChip Human Genome U133 
Plus 2.0 Array platform (Affymetrix; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). The datasets contained 151 tissue 
samples, including 88 invasive ductal carcinoma tissues, 
23 invasive lobular carcinoma tissues, five ductal carcinoma 
in situ tissues and 38 adjacent non‑tumorous tissues.

Expression analysis of DEGs. Raw data were converted into 
an expression matrix, which was subsequently normalized 
with the robust multi‑array average algorithm (16) in the affy 
package (version 3.4.1) in R (17). Inter‑batch difference was 
rectified using the ComBat function in the sva R package (18). 
The t-test method in the limma (19) R package was subsequently 
used to identify DEGs between the tumor tissues and adjacent 
non‑tumorous tissue samples. A |log2‑fold change|>1 and P<0.05 
were considered as the threshold values for DEG identification.

GO and pathway enrichment analysis. The Database 
for Annotation Visualization and Integrated Discovery 
(DAVID) (20) is a tool which provides a comprehensive set 
of functional annotation tools for researchers to investigate 
the biological meaning of genes. Identified DEGs were 
investigated further using DAVID (version 6.7), GO (21) and 
KEGG (22) pathway enrichment analyses. P<0.05 and gene 
counts of >5 were considered to indicate a statistically signifi-
cant difference in the functional enrichment analysis.

Integration of the PPI network. Identified DEGs were mapped 
into the online Search Tool for the Retrieval of Interacting 
Genes (STRING; 2017 release) database (23) to evaluate the 
interactive relationships among the DEGs. Interactions with a 
combined score >0.4 were defined as statistically significant. 
Cytoscape software (version 3.5.1) (24) was used to visualize 
the integrated regulatory networks. The Cytoscape plugin 
Molecular Complex Detection (MCODE; version 1.31) was 
used to further detect deeper connected regions within the PPI 
network (25). According to the degree levels in the Cytoscape 
plugin cytoHubba (version 0.1), the top five ranked genes were 
defined as hub genes.

Results

The identification of DEGs in BC. Database analysis (Table I) 
identified a total of 227 DEGs, including 82 upregulated 

genes and 145 downregulated genes. An expression heat map 
(Fig. 1) and a volcano plot (Fig. 2) for the identified DEGs was 
constructed.

Functional enrichment analysis. To identify the pathways 
which had the most significant involvement with the genes 
identified, upregulated (Fig. 3) and downregulated (Fig. 4) 
DEGs were submitted into DAVID for GO and KEGG 
pathway analysis. GO analysis revealed that in biological 
process terms, the upregulated DEGs were mainly enriched 
in ʻcell division ,̓ ʻmitotic nuclear divisionʼ and ʻcollagen 
catabolic processʼ (Fig. 3A). Downregulated DEGs were 
mainly enriched in ʻresponse to drug ,̓ ʻresponse to estradiolʼ 
and ʻnegative regulation of the extracellular signal‑regulated 
kinase (ERK)1 and ERK2 cascadeʼ (Fig. 4A). In cell compo-
nent terms, upregulated DEGs were mainly enriched in 
ʻproteinaceous extracellular matrix (ECM) ,̓ ʻmid-bodyʼ and 
ʻcondensed chromosome kinetochoresʼ (Fig. 3B), whereas 
downregulated DEGs were mainly enriched in ʻextracellular 
space ,̓ ʻextracellular exosomesʼ and the ʻextracellular 
regionʼ (Fig. 4B). In molecular function terms, upregulated 
DEGs were mainly enriched in ʻECM structural constituents ,̓ 
ʻprotein bindingʼ and ̒ microtubule bindingʼ (Fig. 3C), whereas 
downregulated DEGs were mainly enriched in ̒ transcriptional 
activator activity ,̓ ʻstructural constituents of the cytoskeletonʼ 
and ʻprotein homo-dimerization activityʼ (Fig. 4C).

KEGG pathway analysis demonstrated that upregu-
lated DEGs were significantly enriched in ʻECM‑receptor 
interact ionʼ,  ʻcel l  cycleʼ,  ʻfoca l  adhesionʼ  and 
ʻphosphatidylinositol 3 kinase‑protein kinase B (PI3K‑Akt) 
signaling pathwayʼ and ʻpathways in cancerʼ (Fig. 3D). 
Downregulated DEGs were significantly enriched in the 
ʻperoxisome proliferator‑activated receptor (PPAR) signaling 
pathwayʼ and ̒ cytokine‑cytokine receptor interactionʼ (Fig. 4D).

PPI network construction and module analysis. Interactions 
between the identified DEGs were revealed by constructing 
a PPI network. In total, there were 174 nodes and 1,257 edges 
in the network (Fig. 5). According to degree levels, the top 
five hub nodes were: DNA topoisomerase 2‑α (TOP2A; 
degree, 53), baculoviral inhibitor of apoptosis repeat‑containing 
protein 5 (BIRC5; degree, 49), cyclin‑dependent kinase 1 
(CDK1; degree, 45), G2/mitotic‑specific cyclin‑B1 (CCNB1; 
degree, 44) and kinetochore protein NDC80 homolog 
(NDC80; degree, 44). A significant module was subsequently 
constructed with 39 nodes and 728 edges, which gained the 
highest MCODE score (Fig. 6). Subsequent functional enrich-
ment analysis revealed that the genes in this module were 
mainly enriched in ʻmitotic nuclear division ,̓ ʻcell division ,̓ 
ʻnucleus ,̓ ʻcytoplasm ,̓ ʻprotein binding ,̓ A̒TP bindingʼ and 
ʻcell cycleʼ (Table II).

Discussion

BC is a malignant tumor that can be caused by various 
factors, including genetics, the endocrine system and the 
environment (26,27). It is critical to understand the molecular 
mechanisms underlying BC in order to identify and develop 
more effective diagnostic and therapeutic strategies. 
Microarray and high throughput sequencing are widely used 
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to detect the expression levels of thousands of genes within 
the human genome and may aid in the identification of target 
genes of interest for diagnosing or treating BC (28,29).

In the present study, five gene profile datasets were 
obtained from GEO and bioinformatics analysis was 
performed, resulting in identification of 227 genes which were 
differentially expressed between BC and normal controls. 
Functional enrichment analysis revealed that upregulated 
genes were mainly enriched in ʻcell division ,̓ ʻproteinaceous 
ECM ,̓ ʻECM structural constituentsʼ and ʻECM‑receptor 
interaction ,̓ whereas downregulated genes were mainly 
enriched in ʻresponse to drugs ,̓ ʻextracellular space ,̓ 
ʻtranscriptional activator activityʼ and the ʻPPAR signaling 
pathway .̓ A PPI network was constructed for the identified 
DEGs and key genes were defined by the degree rank. The 
most significant module was subsequently extracted from the 
PPI network.

Previous research involving multiple cohort studies 
tend to have a lower false‑positive and false‑negative rate 
than single cohort studies (30). However, multiple microar-
rays from different platforms may mask and confound true 
biological differences because of the batch effects (31). In 
order to increase the credibility of DEG identification, five 
microarray datasets from the same platform were selected 
and a ComBat function was used to eliminate batch effect in 
the present study. A total of 227 genes were identified which 
were differentially expressed between tumor tissues and the 
adjacent non‑tumorous tissues, including 82 upregulated genes 
and 145 downregulated genes. It has been demonstrated that 

there is a co‑expression association between a group of genes 
with similar expression profiles and these often participate in 
parallel biological processes (32). Therefore, it is necessary to 
perform functional enrichment analysis in order to understand 
the interactions between DEGs and the associated biological 
processes.

The upregulated genes identified in the present study were 
mainly enriched in pathways of ʻcell division ,̓ ʻproteinaceous 
ECM ,̓ ʻECM structural constituentsʼ and ʻECM‑receptor 
interaction .̓ This is consistent with the fact that the ECM is 
an important component in the mammary gland microenvi-
ronment and that ECM proteins have been demonstrated to 
accelerate BC tumor progression and metastasis (33‑36). 
Furthermore, previous studies have indicated that the gene 
expression signatures of the BC stroma, which includes ECM 
proteins, can better predict patient outcome than the tumorous 
epithelium (15,37,38).

The downregulated DEGs identified in the present study 
were associated with ʻresponse to drugs ,̓ ʻextracellular space ,̓ 
ʻtranscriptional activator activityʼ and the ʻPPAR signaling 
pathway .̓ PPARs are members of the nuclear hormone receptor 
superfamily and function in proliferation, differentiation, 
inflammation and glucose and lipid balance (39). Evidence 
suggests that PPARg ligands may be regarded as antitumor 
factors in humans due to their involvement in apoptosis and 
cell growth inhibition in several malignant tumor cell types, 
including colon adenocarcinoma, hepatocellular carcinoma 
and breast cancer (40). PPARg has also emerged as a potential 
target for cancer therapy as it has high tumor specificity (41). 

Table I. Compared with adjacent non‑tumorous tissues, 227 DEGs were identified from the datasets analyzed, 82 of which were 
upregulated genes and 145 which were downregulated genes in breast cancer tissues. 

DEGs Genes

Upregulated  DLGAP5, APOBEC3B, RAD51AP1, ASPN, BIRC5, LMNB1, NDC80, BGN, KIF4A, GINS1, 
RACGAP1, IFI6, EZH2, KIF20A, CMPK2, CCNB1, UHRF1, SQLE, VCAN, UBE2C, PTTG1, 
PPAPDC1A, BUB1, COL5A2, TYMS, RSAD2, FNDC1, DTL, CCNE2, BUB1B, ECT2, CXCR4, 
UBE2T, CDKN3, ADAMDEC1, PBK, LYZ, MELK, FAM83D, POSTN, STAT1, CXCL9, ZWINT, 
CEP55, PRR11, HMMR, PRC1, CEACAM6, CKS2, CDK1, CCNB2, TPX2, MMP9, COL1A2, ANLN, 
CENPU, MAD2L1, ISG15, CENPF, COL1A1, NEK2, CXCL11, SULF1, MMP1, GJB2, FN1, MMP11, 
ASPM, SPP1, INHBA, COMP, KIAA0101, WISP1, LRRC15, TOP2A, NUSAP1, RRM2, S100P, 
CTHRC1, CXCL10, COL10A1, COL11A1

Downregulated  ADH1B, KRT14, C2orf40, DST, SFRP1, CD36, PI15, SYNM, NTRK2, ZBTB16, ABCA8, MAMDC2, 
OXTR, FABP4, MUCL1, PDK4, TGFBR3, KRT15, WIF1, FOSB, CFD KRT5, CHRDL1, FMO2, GPC3, 
APOD, ADAMTS5, PLIN1, MAOA, SCGB3A1, ID4, AK5, FHL1, CD300LG, THRSP, CLDN11, CAV1, 
SORBS1, LAMA3, SCARA5, FAM189A2, MIR143HG, PIGR, ACKR1, GHR, ATP1A2, RBP4, PDLIM3, 
CCL28, CHL1, FOS, STEAP4, BTNL9, AKR1C1, ADIPOQ, EGFR, MYBPC1, IGFBP6, ITM2A, OGN, 
GPX3, NOVA1, PGR, HBB, EGR1, MYH11, TF, LIFR, CXCL12, KIT, ACACB, CXCL14, SYNPO2, 
DMD, TFPI2, KLHL13, SRPX, SEMA3G, LEP, ENPP2, HOXA5, AKR1C3, RHOJ, ACTG2, SDPR, 
MIR205HG, ANXA3, LPL, ATF3, KLF4, PAMR1, TMTC1, SEMA6D, CRYAB MEOX1, HLF, ANPEP, 
LYVE1, ADIRF, WLS, SOCS2, ALDH1A1, AQP1, PLIN4, SPRY2, THRB, G0S2, TSHZ2, TM4SF18, 
ITIH5, EFEMP1, CAV2, CX3CL1, TCEAL7, EGR3, SCN4B, PPL, C16orf89, EBF1, MAOB, ANXA1, 
MME, ANK2, ABCA6, CXCL2, IRX1, MIR100HG, LMOD1, NDRG2, NFIB, SAMD5, AOC3, NR3C2, 
LHFP, COL6A6, CITED1, CDO1, BOC, TIMP4, INHBB, GSN

DEG, differentially expressed gene.
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It has been demonstrated that PPARg inhibits the invasion and 
metastasis of human BC cells (42). Furthermore, evidence has 
indicated that PPARg expression and signaling in mammary 
secretory epithelial cells has a protective role against breast 
tumorigenesis (43).

By constructing a PPI network, TOP2A, BIRC5, CDK1, 
CCNB1 and NDC80 were identified to have higher degrees of 
connectivity within the network and were therefore classified 
as the hub genes in the present study. Additionally, module 
analysis of the PPI network revealed that BC development was 
associated with ʻmitotic nuclear division ,̓ ʻmid‑body ,̓ ʻprotein 
bindingʼ and ʻcell cycle .̓

TOP2A is an enzyme that generates t ransient 
double‑stranded breaks in the topological structure of 
DNA (44). In a previous report, Milde‑Langosch et al (45) 
reported that TOP2A expression may be regarded as an indi-
cator of susceptibility to anthracycline neoadjuvant therapy 
in BC. Additionally, Şahin et al (46) demonstrated that the 
overexpression of TOP2A is associated with poor prognosis 
in patients with BC.

BIRC5 is a member of the inhibitor of apoptosis gene 
family and is located on chromosome 17q25 (47). BIRC5 is 

involved in cell cycle checkpoint progression and is overex-
pressed in breast carcinomas; the degree of overexpression 
correlates with poor patient outcome (48,49). Consequently, 

Figure 2. Volcano plot of the 227 identified DEGs. Red indicates DEGs with 
a |log2FC|>1. DEG, differentially expressed gene; FC, fold change.

Figure 1. Heat map of the top 100 differentially expressed genes. A total of 82 upregulated genes and 145 downregulated genes were identified. Red indicates 
upregulation and green indicates downregulation. TT, tumor tissue; NTT, adjacent non‑tumorous tissue.
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Figure 3. Functional enrichment analysis of upregulated DEGs in breast cancer. GO analysis revealed that DEGs were significantly enriched in (A) biological 
process terms, (B) cell component terms and (C) molecular function terms. (D) Significantly enriched KEGG terms obtained from KEGG analysis. DEG, 
differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology.
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Figure 4. Functional enrichment analysis of downregulated DEGs in breast cancer. GO analysis revealed that DEGs were significantly enriched in (A) biological 
process terms, (B) cell component terms and (C) molecular function terms. (D) Significantly enriched KEGG terms obtained from KEGG analysis. DEG, 
differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology.
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the BIRC5 gene is a potential marker for the detection and 
prognosis of cancer at an early age (50).

CDK1 is a conserved serine/threonine kinase that controls 
cell cycle progression and is essential for driving the cell 
cycle (51). A previous study reported that CDK1 is overexpressed 
in BC (52). Additionally, CDK1 degradation may be mediated 
by sequestosome‑1‑histone deacetylase 6‑dependent autophagy 
and the aggresome pathway in BC (53). Consequently, it has 
been reported that the levels of CDK1 clearance may be a 
predictive biomarker for the efficacy of BC chemotherapy (53).

CCNB1 is a highly conserved member of the cyclin family 
that is expressed in almost all tissues of the human body (54). 
CCNB1 is a key initiator of mitosis through regulation of 
CDK1, which is responsible for initiating progression from 
the G2 phase to mitosis (55). Other research has revealed that 
CCNB1 is expressed in many types of cancer, suggesting that 
it may also function in cancer transformation and progres-
sion (56). Ding et al (57) demonstrated that CCNB1 expression 
may be used to monitor hormone therapy efficacy and this may 
aid in the development of personalized therapies for patients 
with estrogen receptor+ BC.

NDC80 is a nuclear protein rich in coiled‑coil motifs 
which was first discovered by Durfee et al (58) by combining 

the C‑terminus of the retinoblastoma protein and using 
yeast two-hybrid technology to screen a B-lymphocyte 

Figure 5. Protein‑protein interaction network of the identified differentially expressed genes. Green indicates the downregulated genes and red indicates the 
upregulated genes. 

Figure 6. MCODE identification of the most significantly enriched 
module. The module with the highest MCODE score was selected from 
the protein‑protein interaction network. Green indicates the downregulated 
genes and red indicates the upregulated genes. 
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complementary DNA library. NDC80 is a kinetochore 
outer layer component and spindle checkpoint regulator that 
is involved in chromosome segregation via overactivation 
of the mitotic checkpoint (59). Furthermore, it has been 
reported that NDC80 overexpression may participate in 
tumor formation by activating the mitotic checkpoint and 
is associated with poor clinical prognosis in patients with 
BC (60,61).

In conclusion, the present study identified candidate genes 
and pathways which may be involved in BC progression 
through the integrated analysis of multiple cohort profile data-
sets. These results may contribute to a better understanding 
of the molecular mechanisms which underlie BC and provide 
a series of potential biomarkers. However, further experi-
ments are required to verify the findings of the present study. 
Additionally, the majority of included studies focused on how 
a single key gene and pathway contribute to the development 
of tumor in breast cancer, with limited research concerning 
the interaction of multi‑genes and multi‑pathways. Therefore, 

further experiments with additional patient cohorts are also 
required to confirm the results of this study. In vivo and in vitro 
investigation of gene and pathway interaction is essential to 
delineate the specific roles of the identified genes, which may 
help to confirm gene functions and reveal the mechanisms 
underlying BC.
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