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Abstract

The vestibular system controls balance, posture, blood pressure, and gaze. However, the

roles of the vestibular system in energy and glucose metabolism remain unknown. We

herein examined the roles of the vestibular system in obesity and impaired glucose metabo-

lism using mice with vestibular lesions (VL) fed a high-sucrose/high-fat diet (HSHFD). VL

was induced by surgery or arsenic. VL significantly suppressed body fat enhanced by

HSHFD in mice. Glucose intolerance was improved by VL in mice fed HSHFD. VL blunted

the levels of adipogenic factors and pro-inflammatory adipokines elevated by HSHFD in the

epididymal white adipose tissue of mice. A β-blocker antagonized body fat and glucose intol-

erance enhanced by HSHFD in mice. The results of an RNA sequencing analysis showed

that HSHFD induced alterations in genes, such as insulin-like growth factor-2 and glial fibril-

lary acidic protein, in the vestibular nuclei of mice through the vestibular system. In conclu-

sion, we herein demonstrated that the dysregulation of the vestibular system influences an

obese state and impaired glucose metabolism induced by HSHFD in mice. The vestibular

system may contribute to the regulation of set points under excess energy conditions.

Introduction

The linear and angular acceleration of the head is sensed by vestibular epithelial cells, and then

transmitted to vestibular nuclei through vestibular neurons. The neurons of vestibular nuclei

are the control center of balance perception, and the vestibular system is connected to other

neuronal tracts, such as the vestibulo-oculomotor and vestibulo-spinal tracts, which regulate

eye gaze by vestibulo-ocular reflexes and posture, respectively [1,2]. Moreover, vestibular

nucleus neurons connect to the autonomic nervous system and regulate the cardiovascular sys-

tem as vestibulo-autonomic reflexes [2,3].

Regarding the relationships between the vestibular system and skeletal organs, previous

studies revealed that vestibular lesions (VL) decrease bone mineral density (BMD) through the
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sympathetic nervous system in rodents [4,5]. Luxa et al. reported that labyrinthectomy

increased myofiber remodeling in the soleus muscle of mice [6]. We recently revealed that

gravity changes affect muscle and bone through the vestibular system in mice [7,8]. Collec-

tively, these findings suggest that the vestibular system regulates the musculoskeletal system

partly through the sympathetic nervous system. Dysfunctions in the vestibular system clini-

cally cause dizziness, vertigo, and unsteadiness [9]. Long-term space flight impairs the vestibu-

lar system in astronauts who experience orthostatic intolerance and unsteadiness [3].

However, the roles of the vestibular system in metabolic homeostasis have not yet been eluci-

dated in detail.

Excess energy is stored in white adipose tissue (WAT) as lipids and causes obesity, a risk

factor for diabetes [10]. Adipocytes differentiate from mesenchymal stem cells, and the activa-

tion of adipogenic differentiation is followed by enhanced levels of peroxisome proliferator-

activated receptor γ (PPARγ), aP2, long chain acyl-CoA synthetase (ACSL) 1, and lipoprotein

lipase (LPL). In obesity, WAT releases pro-inflammatory adipokines, such as tumor necrosis

factor (TNF)-α, plasminogen activator inhibitor (PAI)-1, and monocyte chemoattractant pro-

tein (MCP)-1, which impair glucose metabolism due to the induction of low-grade systemic

inflammation [10]. Adiponectin and leptin released from adipose tissue exert pleiotropic

effects in glucose metabolism [10]. Circulating adiponectin and leptin produced from WAT

are negatively and positively related to fat mass, respectively [11,12]. Previous findings showed

that the activated hypothalamic leptin/melanocortin system, decreased adiponectin levels, and

hyperinsulinemia enhance sympathetic nervous activity in obesity [13–15].

The regulation of energy and glucose metabolism by the autonomic nervous system has

been well established. Sympathetic β agonists directly stimulate glycogenolysis and gluconeo-

genesis mainly through β2 receptors [16]. Catecholamines stimulate lipolysis through β1 and

β2 adrenergic receptors [17]. β3 adrenergic receptors mediate lipolysis and glucose uptake in

adipocytes [18]. Since chronic hyperglycemia in diabetes causes peripheral neuropathy, partic-

ularly in sensory nerves and the autonomic nervous system, auditory and vestibular dysfunc-

tions are often comorbid with diabetes [19]. Long-term space flight increases insulin resistance

and impairs the vestibular function in astronauts [3,20]. Several centrifugation studies suggest

that the macular gravity receptor (MGR) influences the Medial Vestibular Nucleus (MVe) and

further projects into many of the homeostatic nuclei of the brain stem and hypothalamus that

are responsible for energy regulation and metabolic homeostasis [21]. Fuller et al. reported

that wild-type mice subjected to vestibular stimulation via centrifugation for a period of 8

weeks exhibit an initial decrease in food intake and prolonged body fat reduction, which are

not observed in macular otoconia-deficient mice [22]. These findings suggest that the vestibu-

lar system influences metabolism and energy regulation [21,22]. However, the details in the

mechanisms by which the vestibular system regulates energy and glucose metabolism remain

unclear.

In the present study, we examined the influence and mechanism of action of VL on obesity

and impaired glucose metabolism using high-sucrose/high-fat diet (HSHFD)-fed obese mice

with VL induced by surgery and toxic chemicals to clarify the roles of the vestibular system in

diet-induced obesity and impaired glucose metabolism.

Materials and methods

Ethics statement

All animal experiments were performed in accordance with the guidelines of the National

Institutes of Health and the institutional rules for the use and care of laboratory animals at

Kindai University. All procedures were approved by the Experimental Animal Welfare
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Committee of Kindai University (Permit number: KAME-27-029). All efforts were made to

minimize suffering. Mice were euthanized with excess isoflurane.

Animal experiments

Male C57BL/6J mice were purchased from CLEA Japan (Tokyo, Japan). Mice were fed ad libi-
tum with HSHFD (28% of calories from carbohydrates and 55% from fat, Oriental Yeast,

Tokyo, Japan) or a normal diet (ND) and water from 9 weeks old for 4 or 8 weeks. After 6

hours of fasting, mice were euthanized with excess isoflurane and tissue samples were

collected.

Surgical vestibular lesions (sVL)

Male C57BL/6J mice (7 weeks old) were randomly divided into 4 groups: ND/Sham (n = 8),

ND/sVL (n = 8), HSHFD/Sham (n = 8), and HSHFD/sVL (n = 8). VL surgery was bilaterally

performed in accordance with the method described previously in mice under 2% isoflurane

anesthesia [7]. Briefly, ear ossicles were removed through the external auditory canal. The ves-

tibule was lesioned by inserting a dental reamer through the oval window in the inner ear fol-

lowed by ablation using a cautery apparatus. The effects of VL surgery on the vestibular system

were assessed by a swimming test, as described previously [23], in which mice with vestibular

dysfunction could not swim and continue to turn under the warm water (35˚C). In sham

mice, the tympanic membrane was removed, but ear ossicles and vestibule remained. After a

2-week recovery period, mice were fed ND or HSHFD for 8 weeks.

Arsenic-induced vestibular lesions (aVL)

Male C57BL/6J mice (9 weeks old) were randomly divided into 4 groups: ND/Control (n = 8),

ND/aVL (n = 8), HSHFD/Control (n = 8), and HSHFD/aVL (n = 8). VL using sodium arsani-

late was bilaterally induced in accordance with the previously described method [24]. Under

2% isoflurane anesthesia, 10 μl sodium arsanilate (Tokyo Chemical Industry, Tokyo, Japan)

dissolved in saline was injected into the middle ear cavity (1.5 mg/ear). In control mice, same

volume of saline was bilaterally injected. Mice were fed ND or HSHFD for 4 weeks from 1 day

after the procedure for aVL.

Propranolol treatment

Male C57BL/6J mice were divided into 4 groups: ND/Control (n = 8), ND/propranolol

(n = 8), HSHFD/Control (n = 8), and HSHFD/propranolol (n = 8). Propranolol (Sigma,

St. Louis, MO, USA) was administered to 9-week-old mice via drinking water at 0.5 g/l for 8

weeks, as described previously [8].

Glucose and insulin tolerance tests

Glucose (Wako, Osaka, Japan) at 1.5 g/kg and insulin (Eli Lilly Japan, Kobe, Japan) at 0.5 U/kg

were administered intraperitoneally to mice for glucose and insulin tolerance tests, respec-

tively. Blood glucose levels were measured before and 30, 60, 90, and 120 minutes after the

injection.

Measurement of grip strength

The grip strength of mice was measured five times using a grip strength meter (1027SM,

Columbus Instruments, Columbus, OH, USA) and the results obtained were expressed as an

average, as described previously [25].
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Quantitative computed tomography (QCT)

After mice were anesthetized with 2% isoflurane, a QCT scan was performed using an X-ray

CT system (Latheta LCT-200; Hitachi Aloka Medical, Tokyo, Japan) with the following param-

eters: a 500-μA tube current, 50-kVp tube voltage, and 48-mm axial field of view, as described

previously [7]. In analyses of total fat and muscle masses as well as total bone mineral content

(BMC), CT images (voxel size of 96×192×1008 μm) were acquired, and the region of interest

was defined as the whole body. In analyses of tibial trabecular and cortical BMD, CT images

with a 24-μm isotropic voxel size were obtained, and regions of interest were defined as 1680-

μm segments from 96 μm distal to the end of the proximal growth plate towards the diaphysis

and 2160-μm segments of the mid-diaphysis, respectively. CT images were analyzed using

LaTheta software (version 3.41).

Histological analysis

Epididymal WAT was fixed in 4% paraformaldehyde for 24 hours, embedded in paraffin, and

cut into 4-μm-thick sections. Sections were stained with hematoxylin and eosin, and photo-

graphed using a microscope (E800; Canon, Tokyo, Japan) with a CCD camera. Cross-sectional

areas of at least 350 adipocytes were quantified by planimetry using ImageJ in a blinded

manner.

Real-time PCR analysis

Total RNA was extracted using the RNeasy Mini kit (Qiagen, Hilden, Germany) in accordance

with the manufacturer’s instructions. cDNA was synthesized using a high capacity cDNA

reverse transcription kit (Thermo Fisher Scientific, Waltham, MA, USA). A real-time PCR

analysis was performed using an ABI PRISM 7900HT (Thermo Fisher Scientific) and Fast

SYBR Green Master Mix (Thermo Fisher Scientific), as described previously [25]. Primers

used for real-time PCR were shown in S1 Table. The relative mRNA levels of target genes were

analyzed by the ΔΔCt method and normalized with 18S rRNA levels.

Blood chemistry

Serum insulin, leptin, and adiponectin levels were assessed using a mouse insulin enzyme-

linked immunosorbent assay kit (Cat. No. AKRIN-011T, FUJIFILM Wako Shibayagi, Gunma,

Japan), mouse/rat leptin Quantikine ELISA kit (Cat. No. MOB00, R&D systems, Minneapolis,

MN, USA), and mouse/rat adiponectin enzyme-linked immunosorbent assay kit (Cat. No.

AKMAN011, FUJIFILM Wako Shibayagi), respectively.

RNA sequencing

One-millimeter-thick coronal slices were obtained from mouse brains using a mouse brain

matrix (Muromachi Kikai, Tokyo, Japan). Vestibular nuclei were collected using a punch

according to the Allen Mouse Brain Atlas [26]. Total RNA was extracted from biopsy samples

using TRIzol reagent (Thermo Fisher Scientific) and assessed using an Agilent Bioanalyzer

with the RNA 6000 Pico Kit (Agilent, Santa Clara, CA, USA). rRNA depletion and library syn-

thesis were performed using the NEBNext rRNA Depletion Kit (E6310, New England Biolabs,

Ipswich, MA, USA) and NEBNext Ultra Directional RNA Library Prep Kit (E7420, New

England Biolabs) from 500 ng of total RNA. The quality of the library was checked using the

Agilent Bioanalyzer with the DNA High-sensitivity kit (Cat. No. 5067–4626, Agilent). Each

library was sequenced using Illumina (2×36-bp paired-end reads) with NextSeq500 High Out-

put Kit v2 (Illumina, San Diego, CA, USA). FASTQ files were imported to CLC Genomics

Obesity and the vestibular system

PLOS ONE | https://doi.org/10.1371/journal.pone.0228685 February 3, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0228685


Obesity and the vestibular system

PLOS ONE | https://doi.org/10.1371/journal.pone.0228685 February 3, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0228685


Workbench (ver.10.1.1, Qiagen, Germantown, MD, USA). Reads were mapped to mm10

mouse reference genome and quantified for 49,585 annotated genes. Reads per kilobase of

transcript per million mapped reads (RPKM) values were normalized by quantile method.

Statistical analysis

Data are expressed as means ± standard errors of the mean. Significant differences were ana-

lyzed using a two-way analysis of variance followed by the Tukey-Kramer test. P values of less

than 0.05 were considered to be significant. Statistical analyses were performed using Graph-

Pad PRISM 7.00 (GraphPad Software, San Diego, CA, USA).

Results

Effects of sVL on HSHFD-induced obesity

Body weight, total fat mass, and adipocyte size in epididymal WAT were significantly higher

in HSHFD-fed mice than in ND-fed mice (Fig 1A and 1B). sVL significantly reduced body

weight, total fat mass, and adipocyte size enhanced by HSHFD, but did not affect calorie intake

with or without HSHFD (Fig 1A and 1B). sVL suppressed ACSL1 mRNA levels enhanced by

HSHFD in the epididymal WAT of mice (Fig 1C), while HSHFD did not affect the mRNA lev-

els of PPARγ, aP2, or LPL in the epididymal WAT of mice (Fig 1C). Total muscle mass was sig-

nificantly lower in HSHFD-fed mice, and sVL significantly reduced total muscle mass with or

without HSHFD (Fig 1D). Although HSHFD feeding did not affect the tissue weights of the

soleus and gastrocnemius muscles or grip strength in mice, sVL significantly reduced the tissue

weight of the gastrocnemius muscle in ND- or HSHFD-fed mice (Fig 1D). Regarding bone,

HSHFD feeding for 8 weeks did not affect total BMC or tibial trabecular and cortical BMD in

mice (Fig 1E). sVL significantly decreased total BMC and tibial trabecular BMD in mice fed

ND and HSHFD (Fig 1E).

Effects of sVL on glucose metabolism in mice fed HSHFD

The levels of fasting blood glucose and serum insulin were significantly higher in mice fed

HSHFD than in mice fed ND (Fig 2A). sVL significantly reduced the levels of fasting blood

glucose and serum insulin elevated by HSHFD feeding for 8 weeks in mice (Fig 2A). sVL

improved glucose intolerance, but not insulin resistance, in mice fed HSHFD (Fig 2B and 2C).

sVL significantly suppressed the mRNA levels of key enzymes of gluconeogenesis such as glu-

cose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) enhanced by

HSHFD in mouse liver tissues (Fig 2D).

Fig 1. Effects of sVL on body weight and composition in mice fed HSHFD for 8 weeks. (A) Data on body weight and calorie intake from sham

surgery and sVL mice fed ND or HSHFD. Body weight was measured 8 weeks after ND or HSHFD feeding. Food intake was collected for 3 days on

days 54 to 56 after ND or HSHFD feeding was started and shown as a representative of the average daily calorie intake. (B) Fat mass in the whole body

of sham surgery and sVL mice was assessed by QCT 8 weeks after ND or HSHFD feeding was started. The cross-sectional area (CSA) of adipocytes in

the white epididymal adipose tissue (WAT) of sham surgery and sVL mice 8 weeks after ND or HSHFD feeding was started. (C) Total RNA was

extracted from the epididymal WAT of sham surgery and sVL mice 8 weeks after ND or HSHFD feeding was started. A real-time PCR analysis was

then performed. Data are expressed relative to the levels of 18S rRNA. (D) Muscle mass in the whole body of sham surgery and sVL mice was assessed

by QCT 8 weeks after ND or HSHFD feeding was started. The tissue weights of the soleus and gastrocnemius (GA) muscles were measured 8 weeks

after ND or HSHFD feeding. The grip strengths of the four limbs were measured by a grip strength meter in sham surgery and sVL mice 8 weeks after

ND or HSHFD feeding was started. (E) Total BMC, trabecular (Tb) BMD, and cortical (Ct) BMD in the tibia of sham surgery and sVL mice were

assessed by QCT 8 weeks after ND or HSHFD feeding was started. �P< 0.05 and ��P< 0.01 (Tukey-Kramer test). Data represent the mean ± SEM of 8

mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g001
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Effects of aVL on obesity and impaired glucose metabolism in HSHFD-fed

mice

We examined the effects of aVL on obesity and impaired glucose metabolism in mice fed

HSHFD for 4 weeks because the vestibular function was recovered 8 weeks after aVL. Body

weight, total fat mass, and the tissue weight of epididymal WAT were higher in mice fed

HSHFD than in those fed ND for 4 weeks (Fig 3A and 3B). aVL significantly reduced body

weight, total fat mass, and the tissue weight of epididymal WAT enhanced by HSHFD feeding

(Fig 3A and 3B). Although the mRNA levels of PPARγ, aP2, and LPL were higher in mice fed

HSHFD for 4 weeks than in those fed ND, aVL significantly decreased the mRNA levels of aP2

and LPL enhanced by HSHFD (Fig 3C). aVL reduced fasting blood glucose levels in mice fed

ND and HSHFD, and significantly suppressed serum insulin levels enhanced by HSHFD feed-

ing in mice (Fig 3D). Although HSHFD feeding for 4 weeks induced glucose intolerance, but

not insulin resistance, aVL improved glucose intolerance in mice fed HSHFD (Fig 3E and 3F).

Effects of VL on adipokine levels in mice fed HSHFD

sVL significantly suppressed the mRNA levels of TNF-α, PAI-1, MCP-1, and leptin as well as

serum leptin levels enhanced by HSHFD feeding for 8 weeks (Fig 4A), while HSHFD feeding

for 8 weeks and sVL did not affect serum adiponectin levels in mice (Fig 4A). aVL significantly

blunted the mRNA levels of TNF-α, MCP-1, and leptin as well as serum leptin levels enhanced

by HSHFD feeding for 4 weeks in mice (Fig 4B).

Effects of propranolol on obesity, adipokine levels, and glucose intolerance

in mice fed HSHFD

The vestibular system contributes to the control of the cardiovascular and skeletal systems

through the sympathetic nervous system. We therefore examined the role of the sympathetic

nervous system in HSHFD-fed mice using the β-blocker, propranolol. Propranolol signifi-

cantly reduced body weight, total fat mass, the tissue weight of epididymal WAT, and adipo-

cyte sizes enhanced by HSHFD feeding for 8 weeks in mice (Fig 5A–5C). Propranolol did not

affect the mRNA levels of ACSL1, TNF-α, PAI-1, or MCP-1 enhanced by HSHFD feeding in

mice (Fig 5D). Propranolol significantly reduced fasting blood glucose and serum insulin levels

increased by HSHFD feeding in mice (Fig 5E). Propranolol improved glucose intolerance and

seemed to improve insulin resistance in mice fed HSHFD, although its effects on insulin resis-

tance were not significant (Fig 5F and 5G).

Effects of HSHFD feeding and sVL on gene expression in vestibular nuclei

in mice

Since the vestibular nuclei is considered to be the center in central nervous system of the ves-

tibular system leading to peripheral vestibular oculomotor, motor and sympathetic nerve sys-

tems, we speculated that some factors expressed in the vestibular nuclei might be important

for the regulation of the vestibular system on energy metabolism. We therefore performed

Fig 2. Effects of sVL on glucose metabolism in mice fed HSHFD for 8 weeks. (A) Fasting blood glucose and serum insulin

levels were measured 8 weeks after ND or HSHFD feeding was started. (B, C) Responses of blood glucose to a single

intraperitoneal injection of glucose (B) and insulin (C) in sham surgery and sVL mice 8 weeks after ND or HSHFD feeding

was started. The area under the curve (AUC) for 120 min was calculated. (D) Total RNA was extracted from liver tissues of

sham surgery and sVL mice 8 weeks after ND or HSHFD feeding was started. A real-time PCR analysis was then performed.

Data are expressed relative to 18S rRNA levels. �P< 0.05 and ��P< 0.01; ¶P< 0.05 and ¶¶P< 0.01, vs ND/Sham; #P< 0.05

and ##P< 0.01, vs HSHFD/sVL (Tukey-Kramer test). Data represent the mean ± SEM of 8 mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g002
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RNA sequencing analyses on vestibular nuclei between ND- and HSHFD-fed mice with or

without sVL to examine the effects of HSHFD feeding for 8 weeks and sVL on gene expression

in the vestibular nuclei of mice. The levels of 25 gene transcripts were 2-fold higher in

HSHFD/Sham mice than in ND/Sham mice and 0.5-fold lower in HSHFD/sVL mice than in

HSHFD/Sham mice (S2 Table). HSHFD for 8 weeks significantly elevated the mRNA levels of

insulin-like growth factor-2 (IGF-2), glial fibrillary acidic protein (GFAP), and Nnat in the ves-

tibular nuclei of mice, while sVL significantly suppressed the mRNA levels of IGF-2 and GFAP

enhanced by HSHFD feeding (Fig 6).

Discussion

In the present study, VL blunted body fat and adipokine expression as well as glucose intoler-

ance enhanced by HSHFD feeding in mice. The adrenergic β-blocker propranolol improved

fat mass and glucose intolerance enhanced by HSHFD feeding in mice. Vestibular lesions

modulated the expression of several genes, such as IGF-2 and GFAP, enhanced by HSHFD

feeding in the vestibular nuclei of mice.

The brain and nervous system are the key regulators of energy homeostasis [27,28]. Previ-

ous studies suggested that hypergravity with a centrifuge reduces body fat partly through the

vestibulo-hypothalamic pathway in mice [22,29]. Moreover, Abe et al. reported that vestibular

system-linked serotonergic neurons are crucial for hypophagia induced by hypergravity in rats

[30]. In the present study, we revealed that surgical or toxic chemical-induced VL both blunted

total fat mass, the tissue weight of epididymal WAT, and adipocyte size increased by HSHFD

feeding in mice. Moreover, VL reduced the expression of adipogenic factors, such as ACSL1,

aP2, and LPL, elevated by HSHFD feeding in the epididymal WAT of mice. Collectively, the

present results suggest that the vestibular system dysregulation influences body fat elevated by

HSHFD in mice. Homeostasis is maintained in physiological and pathological states through

the optimal use of energy regulated by various organs, such as the nervous system [31,32]. The

vestibular system may be related to the centers that integrate multiple inputs for the regulation

of a set-point for body fat.

A chronic energy excess causes obesity accompanied by insulin resistance and hyperinsuli-

nemia [10]. In the present study, VL improved hyperglycemia, hyperinsulinemia, glucose

intolerance and the liver expressions of G6Pase and PEPCK induced by HSHFD feeding in

mice, although surgical VL did not affect insulin resistance induced by HSHFD feeding in

mice. These results suggest that the dysregulation of the vestibular system might influence glu-

cose metabolism partly through the regulation of gluconeogenesis in mice. Alternatively, a

review by Sailesh et al. proposed that vestibular stimulation affects diabetic state by increasing

insulin secretion through modulating autonomic nerve activity based on some preliminary

evidence [33]. Moreover, the vestibular system might affect glucose and energy metabolism

through various endocrine factors, including cortisol and thyroid hormone [21]. Since VL sig-

nificantly suppressed serum insulin levels elevated by HSHFD and the slight, but not

Fig 3. Effects of aVL on fat mass and glucose metabolism in mice fed HSHFD for 4 weeks. (A) Data on body weight and calorie intake from control

(Cont) and aVL mice fed ND or HSHFD. Body weight was measured 4 weeks after ND or HSHFD feeding. Food intake was collected for 3 days on

days 26 to 28 after ND or HSHFD feeding was started and shown as a representative of the average daily calorie intake. (B) Fat mass in the whole body

of control and aVL mice was assessed by QCT 4 weeks after ND or HSHFD feeding was started. The tissue weight of epididymal white adipose tissue

(WAT) was measured 4 weeks after ND or HSHFD feeding. (C) Total RNA was extracted from the epididymal WAT of control and aVL mice 4 weeks

after ND or HSHFD feeding was started. A real-time PCR analysis was then performed. Data are expressed relative to the levels of 18S rRNA. (D)

Fasting blood glucose and insulin levels were measured 4 weeks after ND or HSHFD feeding was started. (E, F) Responses of blood glucose to a single

intraperitoneal injection of glucose (E) and insulin (F) in control and aVL mice 4 weeks after ND or HSHFD feeding was started. The area under the

curve (AUC) for 120 min was calculated. �P< 0.05 and ��P< 0.01; ¶P< 0.05 and ¶¶P< 0.01, vs ND/Sham; ##P< 0.01, vs HSHFD/aVL (Tukey-

Kramer test). Data represent the mean ± SEM of 8 mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g003
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significant, effects of VL on blood glucose response abnormality to insulin induced by HSHFD

were observed in insulin tolerance tests in our study, the vestibular system might affect glucose

metabolism through the complex regulation of insulin secretion and resistance or the mecha-

nisms other than insulin action, such as the regulation of glucagon, catecholamines, growth

hormone, glucocorticoids, incretins, thyroid hormone, adipokines and myokines. Elevations

in circulating pro-inflammatory adipokines, such as TNF-α, PAI-1, and MCP-1, contribute to

low-grade systemic inflammation and enhanced insulin resistance in obesity [10]. We revealed

that VL suppressed the expression of pro-inflammatory cytokines enhanced by HSHFD feed-

ing in the epididymal WAT of mice; however, they did not affect serum adiponectin levels

with or without HSHFD feeding. These results suggest that the dysregulation of the vestibular

system may influence impaired glucose metabolism through decreases in pro-inflammatory

adipokine levels in mice fed HSHFD. In the present study, VL antagonized serum leptin levels

and leptin mRNA expression in WAT enhanced by HSHFD feeding in mice. Leptin changes

induced by the vestibular system may affect pro-opiomelanocortin neurons and agouti-related

peptide/neuropeptide Y neurons in the hypothalamus, which control appetite and energy

expenditure [27]; however, VL did not affect calorie intake with or without HSHFD in the

present study. Further studies are needed to clarify the mechanical insights of the VL effects on

glucose metabolism.

Plastic changes in the vestibular system induced by long-term exposure to microgravity

have been shown to impair vestibulo-cardiovascular reflexes through the sympathetic nerves

in astronauts [3]. Previous studies revealed that VL reduced BMD through the activation of

the sympathetic nervous system in rodents [5,34]. Moreover, we reported that an adrenergic

β-blocker antagonized the effects of hypergravity on skeletal muscle masses through the vestib-

ular system in mice [8]. These findings suggest that the sympathetic nervous system is involved

in the effects of the vestibular system on the cardiovascular system, bone metabolism, and skel-

etal muscle. In the present study, the adrenergic β-blocker, propranolol, partially blunted

increases in total fat mass and adipocyte size by HSHFD feeding in mice, which is consistent

with previous findings [35]. Moreover, the β-blocker improved glucose intolerance induced by

HSHFD feeding in mice. These results suggest that the sympathetic nervous system is involved

in obesity and impaired glucose metabolism induced by HSHFD feeding in mice. On the other

hand, the β-blocker did not affect the expression of pro-inflammatory adipokines or adipo-

genic factors in adipose tissue. Since the adrenergic signal facilitates lipolysis and gluconeogen-

esis and also inhibits insulin release [16], sympathetic nerves may play some roles in the effects

of the vestibular system on lipolysis and glucose metabolism rather than pro-inflammatory

cytokine production and adipogenic differentiation. Propranolol is a non-specific β-blocker

and it crosses the blood-brain barrier. Thus, effects of propranolol may be multifactorial,

including central nervous system and peripheral. Further studies using some more specific

sympathetic β2 antagonist without crossing the blood-brain barrier or adrenergic β2 receptor-

deleted mice might be useful to exactly evaluate the contribution of the sympathetic nerve sys-

tem on VL effects on glucose and energy metabolism.

Fig 4. Effects of sVL and aVL on adipokine levels in mice fed HSHFD. (A) Total RNA was extracted from the

epididymal WAT of sham surgery and sVL mice 8 weeks after ND or HSHFD feeding was started. A real-time PCR

analysis was then performed. Data are expressed relative to 18S rRNA levels. Serum samples were collected from sham

surgery and sVL mice 8 weeks after ND and HSHFD feeding was started. The quantification of serum leptin and

adiponectin levels was performed. (B) Total RNA was extracted from the epididymal WAT of control (Cont) and aVL

mice 4 weeks after ND or HSHFD feeding was started. A real-time PCR analysis was then performed. Data are

expressed relative to the levels of 18S rRNA. Serum samples were collected from control and aVL mice 8 weeks after

ND and HSHFD feeding was started. The quantification of serum leptin levels was performed. �P< 0.05 and
��P< 0.01 (Tukey-Kramer test). Data represent the mean ± SEM of 8 mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g004
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Our comparative RNA sequence data revealed that HSHFD feeding affects the expression

of several genes, such as IGF-2, GFAP, and Nnat, in the vestibular nuclei of mice. IGF-2 is

strongly expressed in the central nervous system (CNS) and exerts various functions in brain

development, neurological disorders, and metabolic diseases [36,37]. GFAP, a cytoskeleton

protein, is abundantly expressed in astrocytes and contributes to several cellular processes,

including migration, proliferation, vesicle trafficking, autophagy, and astrocyte-neuron inter-

actions [38]. Nnat, which encodes neuronatin, is expressed in the CNS, pancreatic β cells, and

adipocytes, and neuronatin contributes to the development of the CNS and the pathological

states of several diseases, such as cancer, obesity, and diabetes [39]. Since VL blunted the

expression of IGF-2 and GFAP enhanced by HSHFD feeding in the vestibular nuclei of mice

in the present study, IGF-2 and GFAP changes in the vestibular nuclei may be related to

changes in energy and glucose metabolism modulated by the vestibular system in the excess

energy state in mice. Degerman et al. revealed that components of insulin signaling, including

insulin receptors and insulin receptor substrate 1, are expressed in the sensory epithelium of

the saccule [40]. Insulin facilitates the proliferation of the vestibular sensory epithelium in rats

[41]. These findings suggest that hyperinsulinemia in the obese state influences gene expres-

sion in the vestibular nuclei through changes in the vestibular sensory epithelium. Moreover,

Xing et al. reported that hyperglycemia induced cochlear hair cell damage through advanced

glycation end products and its receptors [42]. Therefore, it may be the case that hyperglycemia

Fig 5. Effects of the propranolol treatment on fat mass and glucose metabolism in mice fed HSHFD for 8 weeks. (A) Data on body weight and calorie

intake from mice with or without propranolol (Propra). Body weight was measured 8 weeks after ND or HSHFD feeding. Food intake was collected for 3 days

on days 54 to 56 after ND or HSHFD feeding was started and shown as a representative of the average daily calorie intake. (B) Fat mass in the whole body of

mice with or without propranolol was assessed by QCT 8 weeks after ND or HSHFD feeding was started. The tissue weight of epididymal WAT was measured

8 weeks after ND or HSHFD feeding. (C) The cross-sectional area (CSA) of adipocytes in the epididymal WAT of mice with or without propranolol 8 weeks

after ND or HSHFD feeding was started. (D) Total RNA was extracted from the epididymal WAT of mice with or without propranolol 8 weeks after ND or

HSHFD feeding was started. A real-time PCR analysis was then performed. Data are expressed relative to the levels of 18S rRNA. (E) Fasting blood glucose and

serum insulin levels were measured 8 weeks after ND or HSHFD feeding was started. (F, G) Responses of blood glucose to a single intraperitoneal injection of

glucose (F) and insulin (G) in mice with or without propranolol 8 weeks after ND or HSHFD feeding was started. The area under the curve (AUC) for 120 min

was calculated. Cont; control. �P< 0.05 and ��P< 0.01; ¶P< 0.05 and ¶¶P< 0.01, vs ND/Control; #P< 0.05 and ##P< 0.01, vs HSHFD/Propranolol (Tukey-

Kramer test). Data represent the mean ± SEM of 8 mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g005

Fig 6. Effects of sVL and HSHFD feeding on gene expression in vestibular nuclei of mice. Total RNA was extracted from the

vestibular nuclei of sham surgery and sVL mice 8 weeks after ND or HSHFD feeding was started. A real-time PCR analysis was then

performed. Data are expressed relative to the levels of 18S rRNA. �P< 0.05 (Tukey-Kramer test). Data represent the mean ± SEM of 6

mice in each group.

https://doi.org/10.1371/journal.pone.0228685.g006
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also induces damage to vestibular hair cells and alterations in IGF-2, GFAP, and Nnat expres-

sion in the vestibular nuclei of mice fed HSHFD. Further studies using brain-specific IGF-2,

GFAP or Nnat-deleted mice are necessary to clarify the relationships of those genes and the

phenotypes of mice.

Obesity is a risk factor for various disorders, such as cardiovascular diseases, diabetes, and

osteoarthritis. Although the prevention and treatment of obesity are important for the exten-

sion of health life expectancy in the elderly, effective and non-invasive treatment options for

obesity remain limited. A recent study suggested that bariatric surgery is effective for the treat-

ment of obesity partly through changes in the set-point of energy expenditure as well as a

decrease in calorie intake [43]. The present study revealed that the vestibular system is involved

in the development of obesity and its influences on glucose metabolism induced by energy

excess in mice. A previous study showed that a noisy galvanic vestibular stimulation (nGVS),

an imperceptible level of GVS, improves balance in patients with bilateral vestibulopathy [44].

Moreover, nGVS ameliorates autonomic nervous and motor functions in patients with central

neurodegenerative disorders [45]. Therefore, the vestibular signal modified with nGVS has

potential to prevent or treat obesity and impaired glucose metabolism.

In conclusion, we herein provide novel evidence to show that VL prevents high-sucrose/

high-fat diet-induced obesity and glucose intolerance partly through the sympathetic nervous

in mice. The present results suggest that the vestibular system contributes to the regulation of

energy and glucose metabolism under excess energy conditions.
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