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Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or
follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate
commitment remain elusive. Additionally, effector virus-specific TFH cells further
differentiate into corresponding memory population, which confer long-term protection
against re-infection of same viruses by providing immediate help to virus-specific memory
B cells. Currently, the molecular mechanisms underlying the long-term maintenance of
memory TFH cells are largely unknown. In this review, we discuss current understanding of
early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-
specific memory TFH cells in mouse models of viral infection and patients of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

Keywords: CD4+ T cell, follicular helper T cell, Viral infection, COVID-19, SARS-CoV-2.
INTRODUCTION

During viral infection, the orchestration of CD4+ T cells, CD8+ T cells and B cells constitutes the
core events of host adaptive immunity, which confers specialized and long-term cellular and
humoral immune protection. As “helper” cells, CD4+ T cells not only optimize the cytotoxic
function and memory generation of CD8+ T cells, but also play indispensable roles in both efficient
neutralizing antibody production and antibody-producing long-lived plasma cells as well as
memory B cells development (Seder and Ahmed, 2003; Kurosaki et al., 2015). Regulated by
specific cytokine milieu and transcriptional factors, activated CD4+ T cells have the potential to
differentiate into various cellular subsets, including TH1, TH2, TH9, TH17, TH22, TH25, follicular
helper T (TFH), and induced regulatory T (iTREG) cells (Figure 1), to deal with different types of
infection or non-infection situations (O’Shea John and Paul William, 2010; Caza and Landas, 2015;
Das et al., 2017; Umar et al., 2020). During viral infection, virus-specific CD4+ T cells mainly
differentiate into T helper type 1 (TH1) cells and follicular helper T (TFH) cells (Crotty, 2014; Xu
et al., 2015; Huang et al., 2019). TFH cell subset was first identified in human tonsils and peripheral
blood, characterized by the expression of C-X-C chemokine receptor type 5 (CXCR5) and inducible
costimulator (ICOS), in which the former facilitates TFH cells to interact with cognate B cells and
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further drives B cells homing to follicles and sustains T-B
interaction (Breitfeld et al., 2000; Schaerli et al., 2000).

Canonical TFH cells usually locate in the intra-follicle
germinal center (GC) of secondary lymphoid organs (SLO),
such as lymph nodes, spleen, and tonsils, in which TFH cells
frequently wander out and in different GC regions, keeping close
interaction with the cognate B cells (Shulman et al., 2013). GC is
a highly dynamic structure where the high-affinity mutants of B
cells are generated via somatic hypermutation (SHM) and
affinity-based selection implemented by TFH cells (Victora and
Nussenzweig, 2012). In addition, a fraction of TFH cells lingering
in T-B border helps cognate B cells ahead to the extrafollicular
pathways of antibody generation, which provides immediate
protection against invading viruses at the early time of
infection (Lee et al., 2011; Di Niro et al., 2015). In addition to
SLO, TFH cells have also been witnessed functional in the
inducible bronchus-associated lymphoid tissues (iBALT) in
lung (Tan et al., 2019), and the tertiary lymphoid structures
(TLS) in tumor (Garaud et al., 2022), and the periphery
circulation (Morita et al., 2011).

TFH cells are featured as the key players to facilitate high-
affinity antibody production of B cells via guaranteeing efficient
SHM of immunoglobulin genes and the selective processes in GC
during viral infection. After primed by dendritic cells (DCs)
through engagement of viral peptide-major histocompatibility
complex class II molecules (p-MHCII) complex and virus-
specific TCR, TFH-committed CD4+ helper T cells initiate GC
responses by moving to the T-B border and interact with cognate
B cells to elicit B cell proliferation. During this process, B cells
circulate between the light zone (LZ), where follicular dendritic
cells (FDCs) deposit antigens and TFH cells recognize the p-
MHCII complexes on cognate B cells, and the dark zone (DZ),
where B cells extensively proliferate after receiving “help” signals
from TFH cells. In DZ, GC B cells undergo rapid proliferation
accompanied by SHM, allowing generation of mutated BCRs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
with diverse affinities to antigens. When back into LZ, mutated
GC B cells with higher affinity are selected by TFH cells for
another circulation of proliferation and mutation (Victora and
Nussenzweig, 2012; Shulman et al., 2013; Crotty, 2014). In
addition to directly providing costimulatory signaling to
cognate B cells via ICOS, CD40L, and SAP (Qi et al., 2008;
Crotty, 2014), TFH cells produce high levels of IL-21, which is
essential for B cell survival, proliferation, plasma cell
differentiation, and isotype switching (Chtanova et al., 2004;
Kuchen et al., 2007; Linterman et al., 2010). In addition to IL-21,
TFH cell-derived IL-9 also promotes the development of memory
B cells in GC (Wang et al., 2017). It was long and widely believed
that TH1 cells rather than TFH cells primarily contribute to
promote killing function of CD8+ T cells. Of late, however, Cui
et al. revealed that IL-21 produced by tumor-specific TFH cells
directly promotes the anti-tumor capacity of CD8+ T cell (Cui
et al., 2021). Meanwhile, Zander et al. demonstrated that TFH-
derived IL-21 promotes the development and antiviral immunity
of CD8+ T cells during chronic viral infection (Zander et al.,
2022). Since IL-21 promotes the formation of stem-like/memory
CD8+ T cells (Tian and Zajac, 2016), it is possible that the help
from CD4+ T cells to CD8+ T cell memory may be mediated by
TFH cells. Moreover, CXCR5+ CD4+ TFH cells locating in
perifollicular areas of iBALT act to enhance the homing and
fitness of CD8+ T cells through IL-21 and IFN-g production
during influenza A virus infection (Pruner and Pepper, 2021).

Overall, TFH cells bridge the cellular and humoral immunity
in host, thus playing an essential role in adaptive immune
responses. Here we firstly focus on the current understanding
of the generation and longevity of virus-specific TFH cells during
viral infection, including the fate commitment, lineage
differentiation, memory formation, and long-term maintenance
(Figure 2). Then, we also discuss the role of SARS-CoV-2-
specific TFH cells during currently still ongoing pandemic
coronavirus disease 2019 (COVID-19) (Figure 3).
FIGURE 1 | The plasticity of helper CD4+ T cells. Upon activation, naïve CD4+ T cell can differentiate into various subsets of T helper lineages, regulated by certain
cytokines and activated signal transducers and activators of transcription (STATs). Each CD4+ helper lineage has the specific lineage-defining transcription factors,
e.g. BCL6 in TFH cell, and the characteristic profile of cytokine production, e.g. IL-21 and IL-9 in TFH cell.
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VIRUS-SPECIFIC TFH CELL
DIFFERENTIATION

Signals from T Cell Receptor Elicit
TFH Commitment
TFH cell differentiation is a multistep and multifactorial process.
Naïve CD4+ T cells are primed by TCR recognition of p-MHCII
presented on DCs to initiate the activation and lineage
differentiation (Goenka et al., 2011). TFH cell program starts at
a very early stage after TCR activation. After immunization,
antigen-specific CD4+ T cells in draining lymph nodes
upregulate expression of BCL6, which is the master
transcriptional factor for TFH cells, within 48 hours
(Baumjohann et al., 2011). Meanwhile, using lymphocytic
choriomeningitis virus- (LCMV) specific TCR transgenic CD4+

T (SMARTA) cells, Choi et al. showed an early development of
virus-specific TFH cells at day 3 post-infection (Choi et al., 2011).
Previous studies demonstrated that DCs are necessary and
sufficient to induce CXCR5+ BCL6+ TFH generation (Goenka
et al., 2011), while the late B cell interactions are required for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
complete differentiation of TFH cells (Barnett et al., 2014; Hao
et al., 2018). However, in some scenarios, TFH cells are generated
in DC-depleted mice as long as cognate T-B interactions are
available (Dahlgren et al., 2015; Arroyo and Pepper, 2019). The
strength and duration of TCR signaling are considered to affect
the bimodal fate commitment of TFH/TH1 cell during viral
infection. By adoptive transfer of TCR transgenic T cells with
different TCR affinities, Fazilleau et al. demonstrated that CD4+

helper T cells with higher specific binding of p-MHCII and more
restricted TCR junctional diversities tend to commit to TFH cell
differentiation (Fazilleau et al., 2009). Further investigations
suggested that the interaction between TCR and p-MHCII with
long duration favors TFH cell commitment (Baumjohann et al.,
2013b; Tubo et al., 2013). This mechanism of TFH cell
commitment echoes the observation of the accumulation of
TFH cells during chronic viral infection, in which persistent
antigen induces sustained TCR stimulation with a long dwell
time (Fahey et al., 2011; Vella et al., 2017). However, there are
controversial views about the facilitation of stronger TCR signals
in determining TFH cell commitment and differentiation (Keck
et al., 2014; Snook Jeremy et al., 2018; Kotov et al., 2019). Both
Keck et al. and Kotov et al. utilized the Listeria monocytogenes
expressing peptides with different TCR affinities and
corresponding TCR transgenic mice to demonstrate that TCRs
with higher affinity promote TH1 cell formation, whereas TCRs
with lower affinity poised to the TFH-biased differentiation of
naïve CD4+ T cells (Keck et al., 2014; Kotov et al., 2019). In
addition, Jeremy P. Snook et al. confirmed ectopically enhanced
TCR signaling via knockdown SHP-1, which is a tyrosine
phosphatase that suppresses early TCR signaling events,
increases the differentiation of TH1 cells rather than TFH cells
(Snook Jeremy et al., 2018). These discrepancies warrant to be
reconciled by future studies.
ICOS, SAP, and CD40L Maintain
TFH Differentiation
In addition to the interaction of TCR and cognate p-MHCII on
DCs, molecules associated with T-B cell conjugation, like ICOS,
SAP and CD40L, are also important regulators of TFH cell
differentiation during viral infection (Crotty, 2011). With a
high expression of CXCR5 and a low level of CCR7, TFH cells
are capable of migrating to the T-B border (Breitfeld et al., 2000;
Schaerli et al., 2000), where the B cell-dependent TFH cell
differentiation occurs. ICOSL expressed on B cells is essential
for the responses of TFH cells (Akiba et al., 2005; Bossaller et al.,
2006; Gigoux et al., 2009; Xu et al., 2013; Liu et al., 2015), in both
CD28-dependent and CD28-independent pathways (Tan et al.,
2006; Linterman et al., 2009). ICOSL expression on B cell is
subject to the negative feedback regulation of ICOS-ICOSL
interaction (Watanabe et al., 2008), while ICOS expression on
TFH cells seems under the negative regulation of transcriptional
suppressor FOXP1 (Wang et al., 2014). ICOS signaling
inactivates FOXO1, which strongly inhibits TFH cell
development via negatively regulating BCL6 expression (Stone
et al., 2015). ICOS-ICOSL interaction is also required for the
persistence of TFH cells and GC responses by down-regulating
FIGURE 2 | The generation, maintenance, and functions of virus-specific
TFH cells. In viral infection, antigen presenting cells like dendritic cells (DCs)
conduct antigen uptake, processing, and presentation to prime naïve virus-
specific CD4+ T cells, inducing T cell activation. Upon activation, virus-specific
CD4+ T cells are mainly committed into either TH1 cells or TFH cells. The
lineage commitment and differentiation of TH1/TFH cell are orchestrated under
the regulation of TCR signals, T-B interaction, cytokine milieu, transcription
factors, and other factors as illustrated. Virus-specific effector TFH cells work
on initiating GC responses, facilitating the cognate B cell maturation, promoting
generation of long-lived memory B cells and high-affinity neutralizing antibodies.
Memory virus-specific TFH cells are developed and sustained after viral
clearance under the regulation of a variety of regulators, epigenetic remodeling,
and cognate memory B cells. The longevity of memory TFH cells are guaranteed
by T cell quiescence and viability conferred by mTORC2 signaling. Upon re-
challenge of encountered viruses, memory virus-specific TFH cells provide
immediate help to cognate memory B cells, promoting robust cellular and
humoral recall responses.
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KLF2, which serves to inhibit TFH cell differentiation (Weber
et al., 2015). In addition to conduct TCR signaling, PI3K
signaling acts to mediate the TFH-promoting function of ICOS
(Gigoux et al., 2009). Rolf et al. showed that the number of TFH

cells, GC B cells, and high-affinity antibody-secreting cells is
correlated with the magnitude of PI3K signaling (Rolf et al.,
2010). SAP expression on TFH cell is critical for the formation of
T-B interaction (Qi et al., 2008; Cannons et al., 2010a), which is
indispensable for GC TFH cell differentiation. Moreover, SAP
actively participates in the modulation of TCR signaling in TFH

cells (Cannons et al., 2004; Cannons et al., 2010b). In addition,
CD40L expressed on TFH cells is essential for the GC B cells
survival and GC maintenance as well as the function of TFH cells
(Elgueta et al., 2009; Crotty, 2011; Vinuesa et al., 2016).

Cytokines Shape TFH
Lineage Differentiation
Cytokine milieu is pivotal to the lineage fate determination of
CD4+ helper T cells. Unlike other subsets of CD4+ T cells which
have the default cytokine-driving paradigm of lineage
differentiation, for examples, IFN-g and IL-12 promote TH1
differentiation, whereas IL-4 facilitates TH2 generation, TFH

cells manifest no default cytokine-driving differentiation
pathway. Though without determining cytokines, TFH cells can
be shaped by multiple cytokine types (Pawlak et al., 2020).

IL-6 and IL-21 are important cytokines for TFH cell
differentiation in mice (Karnowski et al., 2012), whereas IL-12,
IL-23, and TGF-b play prominent roles in human TFH cell
differentiation (Ma et al., 2009; Sweet et al., 2012; Schmitt
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
et al., 2014). IL-21 is also an essential effector molecular of TFH

cells, though it can be mainly expressed by both TH17 and TFH

cells (Chtanova et al., 2004). It is generally acknowledged that IL-
21 signaling is critical for the maintenance of GC in a B cell
intrinsic mechanism (Linterman et al., 2010; Zotos et al., 2010).
IL-6 produced by DCs induces early up-regulation of BCL6 in
mouse TFH cells (Eto et al., 2011), as well as promotes the
maintenance of TFH cells during chronic viral infection
(Harker James et al., 2011). IL-21 also functions in an
autocrine manner to support TFH cell responses (Nurieva et al.,
2008). In human, plasmacytes-derived IL-6 induces the
differentiation of circulating TFH cells (Chavele et al., 2015).
Different with murine CD4+ T cells, human CD4+ T cells
differentiate into IL-21 producing TFH cells with increased
expression of CXCR5, ICOS, and BCL6 under the regulation of
IL-12 rather than IL-6 (Ma et al., 2009; Schmitt et al., 2009).
Moreover, TGF-b, which substantially inhibits TFH cell
differentiation in mice, induces human TFH cell development
via activating STAT3-STAT4 signaling (Schmitt et al., 2014).

Recently, an important role of IL-2 in controlling TFH/non-
TFH cell commitment was revealed. By using IL-2 reporter mice,
DiToro et al. demonstrated that naïve CD4+ T cells receiving
highest TCR signals and producing IL-2 will differentiate into
TFH cells, whereas IL-2 non-producers will differentiate into
non-TFH cells (DiToro et al., 2018). Given abovementioned
discrepant roles between certain human and mouse cytokines
in regulating TFH cell differentiation, whether IL-2 signaling
exerts the same or similar function on mouse and human TH1/
TFH commitment needs further investigation.
FIGURE 3 | TFH cell responses to COVID-19. Infection or vaccination of SARS-CoV-2 induces differentiation of virus-specific TFH cells and activation of cognate B
cells in secondary lymphoid organs like lymph nodes and spleen. With the help of TFH cells, antigen-specific B cells develop into plasma cells to produce neutralizing
antibodies with increased affinity, and meanwhile, generate long-lived plasma cells and memory B cells that traffic to the bone marrow and provide long-term
protection. Neutralizing antibodies are capable of blocking the attachment and entry of SARS-CoV-2 to prevent COVID-19. In infection site and circulation, the pre-
existing cross-reactive TFH cells and circulating TFH cells are proved to be beneficial for the immune protection of natural infection and vaccination. To date, multiple
vaccine platforms are utilized to develop SARS-CoV-2 vaccines, including (a) inactivated virus vaccines, (b) adjuvanted recombinant protein vaccines, (c) adenoviral
vector-based vaccines, and (d) mRNA vaccines. The heterologous sequential immunization provides a superior effectiveness to protect vaccines from variant of
concern (VOC) of SARS-CoV-2 compared to homologous vaccination. The superiority of this vaccination strategy may attribute to the competent responsiveness of
memory CD4+ T cells to SARS-CoV-2 VOCs.
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Transcription Factors Regulate TFH
Commitment and Differentiation
Intrinsic programs for TFH cell commitment and differentiation
initiate very early upon activation (Baumjohann et al., 2011; Choi
et al., 2011). BCL6 is required for TFH cell differentiation by
inhibiting Blimp-1, which drives CD4+ T cells developing into
non-TFH lineages (Johnston Robert et al., 2009; Nurieva Roza
et al., 2009; Yu et al., 2009). BCL6 expression is associated with
upregulation of CXCR5 and downregulation of CCR7 and
PSGL1, allowing the migration of TFH cells to T-B border and
GC (Hatzi et al., 2015). KLF2, another target of BCL6, impedes
TFH cell differentiation via inducing expression of Prdm1. Tbx21,
and Gata3, and meanwhile repressing Cxcr5 transcription via
directly binding to its genomic region (Hatzi et al., 2015; Lee
et al., 2015; Weber et al., 2015). Recent studies further elucidated
that BCL6 also negatively regulates ID2 to facilitate TFH cell
differentiation (Shaw et al., 2016) and positively regulates TOX2
to promote chromatin accessibility of TFH-associated genes (Xu
et al., 2019).

Since BCL6 was identified to be the master transcription
factor in TFH cell differentiation, plenty of transcription factors
have been discovered to regulate TFH cell differentiation via
directly or indirectly affecting BCL6 expression and function
(Vinuesa et al., 2016; Choi et al., 2020; Schroeder et al., 2021).
TCF1 and LEF1 initiate and promote TFH cell differentiation by
ensuring the early expression of BCL6 and the repression of
Blimp-1 (Choi et al., 2015; Wu et al., 2015; Xu et al., 2015). TCF1
is also involved in suppression of IL-2Ra (Wu et al., 2015), which
together with Blimp-1 forms a negative feedback loop of TCF1/
IL-2R/Blimp-1 regulating the TFH responses during viral
infection. In addition, signal transducers and activator (STAT)
1 and 3 both contribute to TFH differentiation via IL-21 and IL-6
signaling (Nurieva et al., 2008). STAT3 and STAT4, in response
to IL-12 and IL-23, cooperatively with TGF-b promote human
but not mouse TFH cell differentiation by promoting TFH cell
associated molecules (CXCR5, ICOS, IL-21, Bcl-6, etc.)
expression and repressing Blimp-1 expression (Schmitt et al.,
2014). IRF4 promotes TFH cell differentiation also through
signals mediated by STATs (Nurieva et al., 2008) or other
transcription factors (Huber and Lohoff, 2014). However,
STAT5, in collaboration with Blimp-1 and IL-2 signals, is a
potent negative regulator of TFH cell differentiation (Johnston
et al., 2012). Also, BATF directly induces transcription of
BCL6 and c-MAF in TFH cell to promote the TFH cell
differentiation (Betz et al., 2010). Not surprisingly, absence
of c-MAF decreases the amount of TFH cells and IL-21
production (Bauquet et al., 2009; Andris et al., 2017).
Transcription factors EGR2/3 are also required for TFH cell
differentiation and GC formation by regulating BCL6 (Ogbe
et al., 2015). Moreover, ASCL2, which has multiple binding sites
in Cxcr5 locus, directs the migration of TFH cells towards B cell
follicles, and is essential for early TFH cell differentiation (Liu
et al., 2014). Recently, Vacchio et al. revealed that Thpok
promotes BCL6 and MAF to facilitate virus-specific TFH cell
differentiation and GC formation in LCMV infection (Vacchio
et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Two forkhead box proteins, FOXO1 and FOXP1, are
demonstrated to negatively regulate TFH cell differentiation
(Wang et al., 2014; Stone et al., 2015). FOXO1 closely binds to
the region of Bcl6 locus, limiting the BCL6 expression and TFH

cell development (Stone et al., 2015). FOXP1 directly binds to the
Il21 promoter region to suppress IL-21 expression. In addition,
FOXP1-deficient CD4+ T cells upregulate expression of ICOS
during T cell activation (Wang et al., 2014), indicating a
repressive role of FOXP1 on ICOS. In addition, a recent
investigation showed that TOX2 acts to bind to and facilitate
the chromatin accessibility of gene loci associated with TFH cell
differentiation and function, including BCL6 (Xu et al., 2019).

Other Factors Regulating TFH
Cell Differentiation
Epigenetic modulation is also involved in TFH cell differentiation.
Besides abovementioned chromatin remodeling of TFH cell
associated genes via BCL6-TOX2 (Xu et al., 2019), the histone
methyltransferase EZH2 also plays an important role in
epigenetic regulation of TFH cell differentiation. Using assay for
transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq), Chen et al. demonstrated that EZH2
is essential for chromatin accessibility remodeling of TFH-
associated genes at the early commitment of TFH cells (Chen
et al., 2020a). Li et al. revealed that abundant EZH2 binding
peaks overlapped with TCF1 peaks, explaining the defective
differentiation of TFH cell with EZH2 deficiency (Li et al.,
2018). Another histone methyltransferase, NSD2, which is
induced by CD28 stimulation and sustained by ICOS signaling,
is also required for the early expression of BCL6 and late
maintenance of TFH cells (Long et al., 2020).

Moreover, T cell activation and differentiation always
manifest substantial re-programming of cellular metabolism
(MacIver et al., 2013; Chapman et al., 2020). The serine/
threonine kinase mammalian target of rapamycin (mTOR) is a
potent regulator of T cell response via sensing and integrating
inputs from nutrients, growth factors, energy, and cellular stress
(Chi, 2012; Yang and Chi, 2012; Huang et al., 2020). By down-
regulating mTOR, Myr-Akt, and/or CD25 signals in LCMV-
specific CD4+ T cells, Ray et al. demonstrated that IL-2/
mTORC1 axis orchestrates the reciprocal balance between TFH

and TH1 cell differentiation during viral infection (Ray et al.,
2015). Further studies revealed the discrete regulatory roles of
two different mTOR complexes, mTORC1 and mTORC2 (Yang
et al., 2016; Zeng et al., 2016; Hao et al., 2018). Deficiency of
mTORC1 substantially impairs cell proliferation and TFH cell
differentiation, whereas mTORC2 is needed for TFH cell
differentiation by promoting Akt activation and TCF1
expression without impacting cell proliferation (Yang et al.,
2016). Hao et al. further demonstrated that mTORC2 signals
induced by TCR and ICOS stimulation participates in cell
migration, late differentiation and maturation of TFH cells
(Hao et al., 2018). Recently, using in vivo CRISPR-Cas9
screening and functional validation in mice, Fu et al. revealed a
direct regulatory function of de novo synthesis of
phosphatidylethanolamine (PE) on TFH cell development via
July 2022 | Volume 12 | Article 953022
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controlling surface expression of CXCR5 (Fu et al., 2021). Taken
together, those findings highlight the metabolic control of TFH

cell differentiation.
In addition, these are many other factors involved in

regulating TFH cell commitment and differentiation. For
example, RNA-binding protein Roquin exerts negative post-
transcriptional regulation on TFH cells via binding to the TFH-
associated genes like Icos, Ox40 (Vinuesa et al., 2005). Some
microRNAs also play roles in post-transcriptional regulation of
TFH cell differentiation. miR-17~92 promotes TFH cell
differentiation by enhancing PI3K signaling as well as
repressing non-TFH genes (Baumjohann et al., 2013a). miR-155
promotes TFH cell differentiation during chronic inflammation
in which miR-155-knockout diminished the accumulation of
TFH cells (Hu et al., 2014). In addition, miR-146a acts as a post-
transcriptional repressor to ICOS-ICOSL signaling and the
subsequent TFH cell differentiation and GC responses (Pratama
et al., 2015). Also, NOTCH1/2 deficiency in CD4+ T cell reduces
the expression of BCL6, IL-21, and CXCR5, but increases Blimp-
1 expression, resulting in impairment of the development and
function of TFH cells. Additional factors have been verified in
regulating TFH cell differentiation, including but not limited to
the E3 ligase cullin 3 (Cul3) (Mathew et al., 2014), heterotrimeric
G protein Ga13 (Kuen et al., 2021), kinase PRKD2 (Misawa et al.,
2020), kinase PDK1 (Sun et al., 2021), extracellular matrix
protein 1 (ECM1) (He et al., 2018), and stromal cell-derived
DEL-1 (Wang et al., 2021).
MEMORY VIRUS-SPECIFIC TFH CELLS

Identification of Virus-Specific Memory
TFH Cells
In acute viral infection or vaccination, a small proportion of the
antigen-experienced CD4+ T cells survive after antigen clearance,
subsequently become the memory CD4+ helper T cells. In
addition to survival capacity and homeostatic proliferation
without antigenic stimulation, a memory CD4+ helper T cell
also need to preserve the lineage features during resting and
recall responses (MacLeod et al., 2009; Hale and Ahmed, 2015).
In the first report describing the existence of antigen-specific
memory TFH cells, Fazilleau et al. found a group of antigen-
specific CXCR5+ICOSlo TFH cells in the memory phase of protein
vaccination (Fazilleau et al., 2007). It is worth noting that those
CXCR5+ICOSlo cells were retained along with persistent peptide-
MHCII (Fazilleau et al., 2007), which raises a question about the
true memory property of TFH cells. By adoptive transfer of TCR
transgenic antigen-specific CD4+ T cells or TFH/non-TFH cells
into second recipients, MacLeod et al. further confirmed the
existence of antigen-specific memory TFH cells after protein
immunization (MacLeod et al., 2011). Accumulating studies
further demonstrated the validity and characteristics of virus-
specific memory TFH cells during viral infection and vaccination
(Weber et al., 2012; Bentebibel et al., 2013; Hale et al., 2013; Locci
et al., 2013).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Memory TFH cells are usually marked by co-expression of
CXCR5, CCR7, CD62L, and FR4, along with downregulated
expression of PD1, ICOS, Ly6c, and BCL6 (Iyer et al., 2013; Hale
and Ahmed, 2015). Memory TFH cells exert a superior help
function on naïve B cells than primary responding TFH cells
(MacLeod et al., 2011). In recall responses, virus-specific TFH

cells provide immediate help to virus-specific memory B cells
(He et al., 2013; Locci et al., 2013; Phan and Tangye, 2017). In
addition, local memory TFH cells colocalized with B cells within
the parenchymal lung tissues are critical for the production of
virus-specific B cells and antibodies (Son Young et al., 2021).

Formation of Virus-Specific Memory
TFH Cells
A consensus is that virus-specific memory CD4+ T cells are
progenies of corresponding effector CD4+ T cells, the so-called
memory precursors generated during effector phase of acute viral
infection (Hale and Ahmed, 2015). But the high plasticity (Zhou
et al., 2009) and non-default differentiation pathway (Choi et al.,
2020) of TFH cells make it hard to track a destined memory
precursor TFH cell at early effector phase. Some studies suggest
formation of memory TFH cells can be prior to GC development
(He et al., 2013; Tsai and Yu, 2014). However, given the antigen
retention in follicle and a rather long time of persistent GC
reaction, another view is that since TFH cells can shuttle between
different GCs, and when they emigrate into follicles where no
presented antigens exist, they acquire less activated phenotypes,
resultantly, these TFH cells gradually differentiate into memory
cells with a resting state (Kitano et al., 2011; Choi et al., 2013).

Since TFH cells are prone to stay at GC while TH1 cells migrate
into infected location, TFH cells are regarded to be more likely to
differentiate into central memory TFH cells (Zhu et al., 2010).
Nevertheless, distribution of memory TFH cells is not necessarily
limited in GCs. Circulating HIV-specific effector memory TFH

cells are potent players for immune surveillance in situ (Locci
et al., 2013). Moreover, iBALT-resident memory TFH cells in
lung are essential for the robust recall humoral responses and
provide help to local CD8+ TRM cells (Pruner and Pepper, 2021;
Son Young et al., 2021).

Early study showed that CD30 and OX40 signals are needed
to form CD4+ T cell memory (Gaspal et al., 2005). Further
investigations revealed that memory TFH cells down-regulate
BCL6 while retain the surface expression of CXCR5 (Hale and
Ahmed, 2015). ASCL2 may be important for the expression of
CXCR5 in memory TFH cells, because it binds to the conserved
non-coding sequence regions of Cxcr5 locus to promote Cxcr5
transcription without inducing BCL6 expression (Liu et al.,
2014). FR4, highly expressed by naïve CD4+ T cells, is down-
regulated upon activation and re-expressed on TFH cells (Iyer
et al., 2013), and is maintained on memory TFH cells as CXCR5
does (Hale and Ahmed, 2015). What’s more, recent study shows
that long-lived TFH cells persisted for over 400 days after
infection are marked by high expression of FR4 (Künzli et al.,
2020). Yet the mechanism driving the FR4 expression is still
unknown. In addition, Ciucci et al. recently showed that Thpok is
required for the signatures and emergence of memory CD4+ T
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cell via antagonizing the expression of Blimp-1 and Runx3
(Ciucci et al., 2019). Overall, mechanisms underlying the
formation of virus-specific memory TFH cells remain largely
unknown. The imprinting effects from effector phase, the
various features induced by different niches (GC in SLO,
peripheral residence, or circulation), and driving force of the
continuous expression of CXCR5, are parts of the unsolved
issues about TFH cell memory formation.

Lineage Maintenance Versus Plasticity
CD4+ helper T cells are featured with high plasticity. Several
studies showed that adoptively transferred memory TFH cells
eventually differentiate into both TFH and non-TFH cells in
second recipients upon rechallenge (Pepper et al., 2011; Lüthje
et al., 2012; Künzli et al., 2020). The plasticity of TFH cells is
highlighted by the work of Lu et al, in which the authors found
that TFH cells harboring chromatin accessibility of Tbx21, Gata3,
and Rorc genes that could drive CD4+ Helper T cells to
differentiate into TH1, TH2, and TH17 cells under the
respective polarizing conditions (Lu et al., 2011).

Given the extrinsic factors, like antigens and effector cytokine
milieu (O’Shea John and Paul William, 2010), which promote T
helper cell differentiation, are absent after viral clearance, it is
reasonable to consider that intrinsic programs play a dominant
role in sustaining memory virus-specific TFH cell lineage during
memory phase. However, the master transcription factor of TFH

cells like BCL6, and other factors constraining T helper cell
lineages are down-regulated in memory CD4+ T cells (Hale and
Ahmed, 2015). How do memory T cells retain lineage
commitment? It is still an unsolved question. Transcriptional
and epigenetic profiling suggest that epigenetic remodeling
during effector phase may play an important role in retaining
lineage characteristics in memory TFH cells (Wilson et al., 2009;
Josefowicz, 2013; Youngblood et al., 2013). In addition, memory
B cells conduct immediate antigen presentation to memory TFH

cells, inducing rapid re-expression of BCL6 in reactivated TFH

cells (Ise et al., 2014), which safeguards the TFH-oriented
recall responses.

Longevity of Virus-Specific Memory
TFH Cells
Following the clearance of virus in acute viral infection, virus-
specific memory CD8+ T cells can persist for a very long period at
a stable level, whereas virus-specific memory CD4+ T cells
gradually decay over time (Homann et al., 2001). However,
there is much less knowledge about how memory CD4+ T cells
sustain longevity compared to that of memory CD8+ T cells. By
transcriptional profiling, Song et al. reveal multiple genetic
programs contributed to the longevity of antigen-specific
memory CD4+ T cells by maintaining T cell quiescence (Song
et al., 2020). In a mouse model of acute infection with LCMV,
Wang et al. demonstrated that the mTORC2-Akt-GSK3b axis is
critical for the longevity of virus-specific memory TFH and TH1
cells by protecting these memory cells from ferroptosis, however
this signaling axis seems to be non-essential for memory CD8+ T
cells (Wang et al., 2022c). The tonic mTORC2 activity in virus-
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specific memory CD4+ T cells is sustained by the IL-7 signaling
at memory phase, which suggests an important role of IL-7
signaling in memory TFH cell maintenance (Wang et al., 2022c).
Given the essential functions of mTOR signaling pathway in
regulating cellular metabolism and the divergent role of
mTORC2 in memory CD4+ T cells and CD8+ T cells (Pollizzi
et al., 2015), it is reasonable to speculate that there are certain
differences either in metabolic features or/and redox homeostasis
between virus-specific memory CD4+ and CD8+ T cells. Paired
comparison analysis of memory CD4+ and CD8+ T cells may
provide valuable clues in further understanding memory CD4+ T
cell longevity.
VIRUS-SPECIFIC TFH CELLS IN COVID-19

TFH Cell Responses in SARS-CoV-2-
Infection and Vaccination
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2)
is an enveloped single-stranded positive-sense RNA virus
accounting for the ongoing pandemic of COVID-19. SARS-
CoV-2 genome encodes 4 structural proteins including surface
spike (S) glycoprotein, membrane protein (M), envelop protein
(E), and nucleoprotein (N). The S protein of SARS-CoV-2
facilitates viral attachment and entry through the engagement
with its cognate receptor, angiotensin converting enzyme-2
(ACE2), which is mediated by the receptor binding domain
(RBD) within the S1 subunit of S protein (V'Kovski et al., 2021).
SARS-CoV-2 infection induces both humoral and cellular
immune responses in hosts (Post et al., 2020; Sette and Crotty,
2021; Shrotri et al., 2021). Commonly, neutralizing antibodies
are vital for sterilizing immunity of viral infection. Antibodies
targeting S protein and RBD are capable of blocking the
attachment and entry of SARS-CoV-2 into host cells to
prevent COVID-19 infection (Robbiani et al., 2020; Gupta
et al., 2021; Wang et al., 2022a; Wang et al., 2022b). The
production of neutralizing antibodies targeting SARS-CoV-2
with high magnitude and durability requires potent B cell
responses with the help from virus-specific TFH cells.
Evidences from non-human primate studies validated that
natural infection of SARS-CoV-2 protects rhesus macaques
from reinfection, indicating the occurrence of protective
immunological memory post SARS-CoV-2 infection
(Chandrashekar et al., 2020; Deng et al., 2020). Both two
studies verified viral S protein-specific memory CD4+ T cells in
rhesus macaques after infection of SARS-CoV-2; moreover,
Deng et al. further detected the increased viral S protein-
specific central memory CD4+ T cells in lymph nodes of
rhesus macaques post rechallenge of SARS-CoV-2. Given the
bimodal differentiation of virus-specific TFH and TH1 cells in
acute infection, these studies highlight the importance of virus-
specific TFH cells in SARS-CoV-2 natural immunity and vaccine-
induced immunological protection.

Vaccine candidates that can induce sufficient antibodies
targeting S protein and RBD are reckoned to be protective
against SARS-CoV-2 infection. Therefore, investigations on
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SARS-CoV-2-specifc T cell responses, especially the virus-
specific TFH cell’s help to cognate B cell, help to accelerate the
vaccine testing pipeline and contribute to vaccine development
under the pandemic COVID-19. Currently, a plethora of
vaccines are applied to fight against COVID-19, including
mRNA vaccines , adenoviral vector-based vaccines ,
recombinant protein vaccines, and inactivated virus vaccines
(Grigoryan and Pulendran, 2020). According to the results from
clinical trials, all vaccines induce detectable antibodies against
SARS-CoV-2. To now, the most efficient vaccine platform is
mRNA/LNP, which delivers mRNA encoding S protein of SARS-
CoV-2 by lipid nanoparticle (LNP) to host cells and induces
robust immune responses towards the S antigen (Laczkó et al.,
2020; Painter et al., 2021; Mudd et al., 2022). Immunization with
SARS-CoV-2 mRNA vaccines foster potent antigen-specific GC
responses (Laczkó et al., 2020) and virus-specific CD4+ T cells
(Painter et al., 2021) to generate robust neutralizing antibody
responses. By analyzing T cells from samples of lymph nodes
acquired by fine-needle aspiration from donors who received
mRNA vaccines, Mudd et al. further underscored the vital role of
virus-specific TFH cell responses in mRNA vaccine-induced
robust and durable immunological protection against SARS-
CoV-2 (Mudd et al., 2022).

The Functions of SARS-CoV-2-Specific
TFH Cells
In infected individuals, the durable neutralization and memory B
cells can be predicted by prompt CD4+ T cell responses,
especially the strong circulating TFH (cTFH) cell responses
(Gong et al., 2020; Boppana et al., 2021; Narowski et al., 2022).
Nevertheless, the imbalanced humoral and cellular immunity
were often observed in COVID-19 patients (Oja et al., 2020; Gao
et al., 2021). Among convalescents, stronger antibody responses
were observed in individuals experienced a severe COVID-19,
compared to those got moderate symptoms or asymptomatic
individuals (Chen et al., 2020b; Gudbjartsson et al., 2020; Röltgen
et al., 2020). In some severe sick patients, remarkably strong
virus-specific IgG responses were observed, along with decreased
CD4+ T cell responses (Oja et al., 2020). By sequencing the B cell
receptor repertoires, Schultheiß et al. further found that
individuals who have much severer clinical course got a
markedly lower percentage of B cells carrying un-mutated
BCRs (Schultheiß et al., 2020), which indicates a profound TFH

cell-mediated SHM-and-selection have occurred. Above data
suggest a gradually compromise of CD4+ T cell responses
during COVID-19 progression. Impaired GC reaction was also
observed in some cases, of which Naoki Kaneko et al. showed
that GC and BCL6+ TFH and B cells were absent in lymph nodes
and spleens from severely SARS-CoV-2 infected patients who
eventually succumbed after admission (Kaneko et al., 2020).
Altogether, these findings emphasize the essential role of virus-
specific TFH cells in natural immunity to control COVID-19.

Evidences of robust responses of SARS-CoV-2-specific TFH cell
responses upon administration of mRNA vaccines suggest that
virus-specific TFH cell responses contribute to the successful
immunization of this preeminent vaccine platform (Painter et al.,
2021; Mudd et al., 2022). Moreover, using TFH cell-deletion (TFH-
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DTR) mice, Cavazzoni et al. showed that reduction of TFH cells
results in compromised GC responses and decreased production of
anti-S and anti-RBD IgG upon SARS-CoV-2 protein vaccination
(Cavazzoni et al., 2022), suggesting that virus-specific TFH cell
response is also essential to establish an optimized immune
protection in traditional immunization strategy.

On the other hand, TFH cells may also play a pathogenic role
in certain circumstances. Wang et al. showed that the hyper-
functional CD8+ and CD4+ T cells were associated with the
pathogenesis of extremely severe COVID-19 patients (Wang
et al., 2020). In another study conducted by Meckiff et al., the
authors found compared to non-hospitalized COVID-19
patients, increased cytotoxic TFH cells which manifest high
production of IFN-g, IL-2, and TNF-a were observed in
hospitalized patients with severe illness (Meckiff et al., 2020).
In addition, Fenoglio et al. revealed the pathogenic roles of
CCR4+ and CCR6+ TFH cells in COVID-19 patients (Fenoglio
et al., 2021). Moreover, it is necessary to pay additional attentions
to COVID-19 patients who also suffer from other diseases
associated with TFH cell responses, like HIV-infection,
autoimmune diseases and cancers treated with immune
checkpoint blockade (ICB) therapies (Picchianti-Diamanti
et al., 2021; Riou et al., 2021; Salomé and Horowitz, 2021).

Memory SARS-Cov-2-Specific TFH Cells
Bacher et al. suggested that there are pre-existing memory T cells
with low avidity and a cross-reactivity to SARS-CoV-2 in unexposed
individuals (Bacher et al., 2020). Given the observation that
excessive but low-avidity T cell response to SARS-CoV-2 features
the severe COVID-19 but not the mild disease, Bacher et al.
questions the protective role of pre-existing cross-reactive
memory T cells in anti-SARS-CoV-2 immunity (Bacher et al.,
2020). However, other investigations targeting T cell responses to
SARS-CoV-2 in unexposed individuals revealed that cross-reactive
memory TFH cells could trigger a rapid and superior antibody
response to SARS-CoV-2, which might exert better viral control in
upper respiratory tract and lung (Grifoni et al., 2020; Lipsitch et al.,
2020). The latter view was appreciated by Bonifacius et al., who
showed that COVID-19 patients with pre-existing anti-human
coronavirus CD4+ and CD8+ T cells with cross-reactivity of
endemic coronaviruses manifested higher frequency of SARS-
CoV-2 S protein-specific T cells (Bonifacius et al., 2021). In
addition, Mateus et al. observed a significantly higher frequency
of viral S protein-specific CD4+ T cells and stronger neutralizing
antibody responses in vaccinated individuals who present pre-
existing SARS-CoV-2 S protein-specific CD4+ T cells than
subjects with no cross-reactive memory (Mateus et al., 2021).
Therefore, besides the classical functions of virus-specific memory
TFH cells, the pre-existing virus-specific TFH cells also function to
favor T cell and antibody responses against SARS-CoV-2.

Following SARS-CoV-2 infection, substantial virus-specific T
cell memory responses are induced in convalescent individuals,
whereas the breadth and magnitude were positively correlated to
the disease severity of COVID-19 (Peng et al., 2020). The
longitude study of T/B cell and antibody responses to COVID-
19 revealed a long duration of CD8+ and CD4+ T cell memory
and neutralizing antibodies against SARS-CoV-2 (Dan et al.,
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2021). In general, accruing evidences suggest a profound
protection of nature infection of COVID-19 and vaccination.
The emerging incompetent immune protection from vaccination
or immunological memory of convalescent individuals is more
associated with the rapid evolution of SARS-CoV-2 variants
(Thakur et al., 2022; Woldemeskel et al., 2022). SARS-CoV-2
continuously undergoes genetic mutations or viral
recombination, resulting in variants with possible differences in
transmissibility, clinical manifestation, and immunogenicity. To
date, the variant of concern (VOC) is Omicron variant
(B.1.1.529), which harbors as many as 36 substitutions in viral
S protein and total 59 mutations in whole genome compared
with SARS-CoV-2 ancestral strain, leading to immune evasion
from neutralization by vaccination- and infection-induced
antibodies (Woldemeskel et al., 2022). Although Omicron
evade a large fraction of antibodies, its neutralizing antibodies
are still represented in a portion of memory B cell repertoire
induced by mRNA vaccines (Sokal et al., 2022).

Multiple studies revealed that despite the decay of protective
serologic components and decreased effectiveness against
infection, vaccines developed based on ancestral strains still
efficiently protect individuals from SARS-CoV-2 variants-
induced hospitalization and/or severe diseases (Nanduri et al.,
2021; Rosenberg et al., 2021; Tenforde et al., 2021). This
phenomenon highlights the relative impervious function of T
cell immunity against SARS-CoV-2 variants, given that virus-
specific T cells mainly act to eliminate infected cells (CD8+ T cell)
and help B/CD8+ T cells responses after activation (CD4+ T cell),
rather than to directly prevent infection like neutralizing
antibodies do. In addition, a recent study demonstrated that the
preserved T cell reactivity to variant Omicron variant in most
infected and vaccinated individuals can be enhanced shortly after
booster vaccination (Naranbhai et al., 2022). In this study,
Naranbhai et al. identified about 79% individuals with a
preserved T cell reactivity to the viral S protein of Omicron.
Moreover, the effector T cell responses to SARS-CoV-2, including
both wild type and Omicron strain, were enhanced after additional
booster vaccine, accompanied with proliferative memory viral S
protein-specific CD4+ T cell responses but reduced CD8+ T cell
responses to Omicron. This evidence indicates that virus-specific
memory T cell, especially virus-specific memory CD4+ T cell, is a
silver lining to the plight of controlling circulating SARS-CoV-2
variants. Notably, heterologous vaccination was used in the
abovementioned infection/vaccination-booster stratagem,
providing corroborative evidence to the effectiveness of the
heterologous sequential vaccination strategy against mutant
VOCs of SARS-CoV-2. Compared to homologous vaccination,
multiple kinds of heterologous sequential immunization were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
proved to be superior to induce broad neutralization against
VOCs, including combination of inactivated vaccine followed by
heterologous mutant RBD vaccine (Song et al., 2022), adenoviral
vectored vaccine followed by mRNA vaccine (Pozzetto et al.,
2021), inactivated vaccine followed by mRNA vaccine (Zuo
et al., 2022), and inactivated vaccine followed by adenoviral
vectored vaccine (Li et al., 2022). Given the barely affected
memory CD4+ T cell responses to peptide pool of Omicron S
protein (Naranbhai et al., 2022), it is thus clear that virus-specific
memory TFH cells play an important role in the generation of
potent and broad neutralizing antibodies to VOCs induced by the
heterologous sequential vaccination strategy.
CONCLUDING REMARKS

Since the initial seminal description of TFH cells in 2000 (Breitfeld
et al., 2000; Schaerli et al., 2000), many characteristics, functions,
and underlying mechanisms of TFH cells have been uncovered
over the past two decades. We illustrate the multiple lines and
underpinnings of the TFH cell differentiation and maintenance
during viral infection in Figure 1. But still a lot of puzzles remain
to be solved. For example, the extrinsic and intrinsic factors that
determine the fate commitment of antigen-specific TFH cells are
still unknown. Maybe the differentiation of TFH cells is not a
“default” pathway (Choi et al., 2020), and deciphering the
networks regulating TFH cell differentiation needs more intense
investigations. In addition, how memory TFH cells retain lineage
features and prolong over time is fascinating and merits further
studies. Better understanding of virus-specific TFH cells will be of
great importance for optimizing anti-viral vaccine development,
including SARS-CoV-2 vaccines.
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