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Abstract

Bifidobacteria colonize the human gastrointestinal tract, vagina, oral cavity and breast milk.

They influence human physiology and nutrition through health-promoting effects, play an

important role as primary colonizers of the newborn gut, and contribute to vaginal microbiome

homeostasis by producing lactic acid. Nevertheless, the mechanisms by which bifidobacteria

are transmitted from mother to infant remains in discussion. Moreover, studies have sug-

gested that Bifidobacterium spp. have specializations for gut colonization, but comparisons

of strains of the same bifidobacteria species from different body sites are lacking. Here, our

objective was to compare the genomes of Bifidobacterium breve (n = 17) and Bifidobacterium

longum (n = 26) to assess whether gut and vaginal isolates of either species were distinguish-

able based on genome content. Comparison of the general genome features showed that

vaginal and gut isolates did not differ in size, GC content, number of genes and CRISPR,

either for B. breve or B. longum. Average nucleotide identity and whole genome phylogeny

analysis revealed that vaginal and gut isolates did not cluster separately. Vaginal and gut iso-

lates also had a similar COG (Cluster of Orthologous Group) category distribution. Differ-

ences in the accessory genomes between vaginal and gut strains were observed, but were

not sufficient to distinguish isolates based on their origin. The results of this study support the

hypothesis that the vaginal and gut microbiomes are colonized by a shared community of Bifi-

dobacterium, and further emphasize the potential importance of the maternal vaginal micro-

biome as a source of infant gut microbiota.

Introduction

Bifidobacterium are Gram-positive, non-motile, anaerobic, non-spore forming rod-shaped

bacteria. They belong to the Bifidobacteriaceae family and are characterized by high genomic

G+C content (55–67 mol%) [1]. Bifidobacteria are common members of the gastrointestinal

tract (GIT), representing ~10% of the adult gut microbiota [2, 3]. Bifidobacteria also colonize

the human vagina, oral cavity, and breast milk [1, 4]. Beyond the human microbiome, they can

be found in sewage, fermented milk products, and the gastrointestinal tracts of animals includ-

ing insects [5]. Although members of the genus inhabit a wide range of habitats, most Bifido-
bacterium spp. are host-specific [1].
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Bifidobacteria have been the subject of numerous studies due their probiotic potential and

health promoting characteristics, such as immune modulation [6, 7], production of bacterio-

cins [8] and inhibition of pathogens [9–11]. The precise mechanisms by which bifidobacteria

provide these benefits, however, are not fully understood. Bifidobacteria also play an important

role as one of the primary colonizers of the neonatal gut, representing 60–91% of fecal bacteria

in breast-fed infants [12, 13]. This early microbial colonization is an essential step in the mod-

ulation of the neonatal immune system [14, 15] and may be influenced by mode of delivery

(vaginal or C-section) and feeding type (breast milk or formula) [16–18].

Studies of the vaginal microbiota using deep sequencing methods have shown that bifidobac-

teria are the dominant bacteria in the vaginal microbiomes of some reproductive aged women

[19]. Culture-based studies have subsequently confirmed that some vaginal Bifidobacterium
spp. (Actinobacteria phylum) are able to perform a protective role similar to the beneficial lacto-

bacilli (Firmicutes phylum), which includes the production of lactic acid and hydrogen peroxide

[19, 20]. These features prevent the overgrowth of unwanted bacteria and help to maintain the

homeostasis of the vaginal microbiome. Common species detected in the vaginal microbiome,

based on sequencing [19, 21, 22] and culture methods [19, 23], include Bifidobacterium breve, B.

longum, B. bifidum, and B. dentium. Based on the recognition that both the gut and vagina har-

bour bifidobacteria, a large number of studies have been conducted to investigate and demon-

strate the influence of maternal microbiota on the neonatal gut microbiome [4, 17, 18, 24–30],

but the specific contribution of each microbial community (vaginal, gut and to a smaller extent,

milk) in the mother-to-infant bifidobacteria transmission remains in discussion.

Comparison of Bifidobacterium spp. genome sequences has revealed a high degree of conser-

vation and synteny across their genomes [31]. Nevertheless, phenotypic differences have been

described among bifidobacteria species indicating some degree of species adaptation [32]. One

indication of these adaptations is the greater percentage of the bifidobacteria genome involved in

carbohydrate metabolism in comparison with the genomes of other members of the gut micro-

biota. Specifically, genome analysis has demonstrated that B. longum has the ability to metabolize

a variety of complex sugars, which gives an ecological advantage in the GIT and evidently reflects

its gut adaptation [33]. It has also been shown that B. longum subsp. infantis has adaptations for

milk utilization [34], and that B. dentium is adapted for the colonization of the human oral cavity

[35]. These observations, however, mostly reflect the differences among different bifidobacteria

species rather than among strains of the same species from different ecological niches.

The importance of bifidobacteria in adult and neonatal health is evident, although evidence

supporting the importance of vertical transmission of maternal microbiota in establishing these

populations remains inconclusive. The overlapping occurrence of bacterial species in different

body sites is one of the challenges in studying vertical transmission. While several bifidobacteria

adaptations for survival in the GIT and oral cavity have been proposed, no study has addressed

possible adaptations to the genital tract, in particular, by comparing strains of the same species

from different body sites. Here, we compared the genomes of gut and vaginal isolates of B. breve
and B. longum to identify evidence of strain specialization that could indicate if vaginal and gut

strains represent two distinct, adapted subpopulations. Improved knowledge of bifidobacteria

ecology is necessary for a better understanding of mother-to-infant bifidobacteria transmission,

a potentially important determinant of infant health.

Material and methods

Bacterial strains

A total of 16 bifidobacteria (7 Bifidobacterium breve and 9 Bifidobacterium longum) were

sequenced in this study. Genome sequences from an additional 27 Bifidobacterium spp. were
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acquired from GenBank for comparative analysis (Table 1). All 16 genomes sequenced in this

study were from strains originally isolated from human vaginal microbiota as part of previous

studies [19, 20]. Gut and vaginal isolates were from different individuals. Genomic DNA was

isolated from cultures grown in Modified Reinforced Clostridial broth using a modified salting

out procedure [36]. The integrity of DNA was verified by electrophoresis on 1% agarose gels.

Genomic DNA was quantified using Qubit dsDNA BR assay kit (Invitrogen, Burlington,

Ontario) and DNA quality was assessed by the A260/A280 ratio using a spectrophotometer.

Genome sequencing and assembly

Libraries were prepared with 1 ng of genomic DNA using the Nextera XT DNA Library Prepa-

ration Kit (Illumina Inc., San Diego, CA) according to the manufacturer’s instructions. After

PCR amplification and clean up, the fragment size distribution of the tagmented DNA was

analyzed using the High Sensitivity DNA Analysis Kit on Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA). PhiX DNA (15% (v/v)) was added to the pooled indexed

libraries prior to loading onto the flow cell. The libraries were sequenced using Reagent Kit V2

(500 cycles) on Illumina Miseq platform (Illumina Inc., San Diego, CA).

Raw sequence reads were trimmed for quality using Trimmomatic [37] with a minimum

read length of 40 and quality cut-off of Phred score of 20. To estimate genome coverage and

calculate average insert size, reads were mapped on to the reference genome of B. breve (Gen-

bank Accession AP012324) or B. longum (Genbank Accession NC_015067.1) using Bowtie2

[38] and the results were converted to BAM format for viewing in Qualimap v2.2.1 [39]. High

quality reads were assembled with SOAPdenovo2 [40] using the estimated average insert size

from Qualimap analysis.

Genome analysis

Genomes sequenced in this study were annotated using the NCBI (National Center for Biotech-

nology Information) Prokaryotic Genome Automatic Annotation Pipeline (PGAAP). For all

other genomes, the published annotation from the NCBI Genbank or Refseq database was used.

CRISPRFinder (http://crispr.i2bc.paris-saclay.fr/) was used to identify CRISPR (clustered regu-

larly interspaced short palindromic repeats) within the genome sequences [41]. Annotated

genomes were also submitted to the Joint Genome Institute (JGI - http://jgi.doe.gov/) for COG

(Clusters of Orthologous Groups) category assignment.

Overall genome similarities were assessed by calculating the Average Nucleotide Identity by

Mummer (ANIm) and tetranucleotide scores (tetra) within JSpecies [42]. ANIm values were

visualized as heatmap, generated in R. The ‘vegdist’ function was used to calculate the Euclid-

ean distance between the ANI divergence values, and ‘hclust’ function was used to calculate the

complete linkage on the distance matrix, in R.

CSI Phylogeny was used to call SNPs (single-nucleotide polymorphisms) and infer phylog-

eny based on the concatenated alignment of SNPs. The following settings were used: minimum

depth at SNP positions of 10; relative depth at SNP positions of 10; minimum distance between

SNPs (prune) of 10; minimum SNP quality of 30; minimum read mapping quality of 25; mini-

mum Z-score: 1.96. A maximum likelihood tree indicating the whole genome phylogeny was

also computed within CSI Phylogeny [43].

Pangenome calculation based on a pairwise BLASTp comparison of all predicted proteins

from all genomes and rarefaction plots were conducted using the R package micropan [44].

Gene clusters (families) were identified using complete linkage and the resulting table of gene

cluster prevalence in individual genomes was used to determine the size of the core genome

for each species and the distribution of gene clusters among genomes from gut and vaginal
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Table 1. General features of the bifidobacteria genomes included in this study.

Strain Ecological origin Size (Mb) GC (%) Total genes tRNA CRISPR N50 / N90 GenBank Status (n. scaffolds/ contigs)

B. breve (n = 17)

B.b.# 30–1 Vagina 2.54 59.8 2346 67 1 125268 / 38442 � D (32 / 5)

B.b. 91–1 Vagina 2.24 58.0 2215 50 0 188169 / 56499 � D (21 / 1)

B.b. 322–1 Vagina 2.24 58.5 2026 47 1 29270 / 9437 � D (67 / 36)

B.b. W20-13 Vagina 2.30 58.3 2113 50 1 43276 / 19775 � D (49 / 16)

B.b. W56 Vagina 2.36 57.8 2207 49 2 126027 / 46295 � D (24 / 13)

B.b. N6D12 Vagina 2.29 58.5 2097 50 1 119740 / 29243 � D (30 / 12)

B.b. 12–4 Vagina 2.26 58.7 2148 48 3 148702 / 48178 � D (25 / 7)

B.b. ACS-071-V-Sch8b Vagina 2.33 58.7 2046 53 4 NA CP002743 C

B.b. JCM 1192T Infant feces 2.27 58.9 2039 53 0 NA AP012324 C

B.b. UCC2003 Infant feces 2.42 58.7 2131 54 3 NA CP000303 C

B.b. JCM 7017 Infant feces 2.29 58.7 1995 54 2 NA CP006712 C

B.b. JCM 7019 Adult feces 2.36 58.6 2133 56 2 NA CP006713 C

B.b. NCFB 2258 Infant feces 2.32 58.7 2036 53 2 NA CP006714 C

B.b. 689b Infant feces 2.33 58.7 2052 53 0 NA CP006715 C

B.b. S27 Infant feces 2.29 58.7 2005 53 2 NA CP006716 C

B.b. CBT BR3 Infant feces 2.43 59.1 2195 54 2 NA CP010413 C

B.b. LMC520 Infant feces 2.40 59.0 2146 55 1 NA CP019596 C

B. longum (n = 26)

B.l.# 239–2 Vagina 2.28 59.1 2060 50 8 33459 / 10497 � D (60 / 56)

B.l. W35-1 Vagina 2.30 60.3 2133 49 1 17831 / 5459 � D (81 / 132)

B.l. N2E12 Vagina 2.34 59.1 2114 51 5 80659 / 26287 � D (43 / 12)

B.l. N2F05 Vagina 2.33 59.6 2076 55 2 105634 / 41749 � D (30 / 13)

B.l. N2G10 Vagina 2.28 59.6 2200 38 0 9284 / 3230 � D (165 / 186)

B.l. N3A01 Vagina 2.31 59.7 2056 51 5 82928 / 40450 � D (33 / 13)

B.l. N3E01-2 Vagina 2.34 59.6 2167 51 3 202175 / 50971 � D (23 / 1)

B.l. N5E04 Vagina 2.46 58.3 2219 45 0 154725 / 47782 � D (27 / 3)

B.l. N6D05 Vagina 2.72 60.4 2641 77 3 25630 / 6992 � D (80 / 105)

B.l.l. JCM 1217T Infant feces 2.39 60.3 2090 73 1 NA AP010888 C

B.l.l. JDM301 Gut 2.48 59.8 2156 55 1 NA CP002010 C

B.l.l. BBMN68 Elderly feces 2.27 59.9 1959 54 3 NA CP002286 C

B.l.l. KACC 91563 Infant feces 2.40 59.8 2064 56 1 NA CP002794 C

B.l.l. GT15 Adult feces 2.34 60.0 2021 56 1 NA CP006741 C

B.l.l. NCIMB 8809 Human feces 2.34 60.1 2037 56 1 NA CP011964 C

B.l.l. CCUG 30698 Gut 2.46 60.2 2184 72 1 NA CP011965 C

B.l.l. AH1206 Infant feces 2.42 60.2 2179 60 2 NA CP016019 C

B.l. NCC2705 Infant feces 2.26 60.1 1799 57 1 NA AE014295 C

B.l. DJO10A Adult feces 2.39 60.1 2105 58 2 NA CP000605 C

B.l. 105-A Human feces 2.29 60.1 1950 56 2 NA AP014658 C

B.l. BXY01 Gut 2.48 59.8 2158 55 1 NA CP008885 C

B.l. BG7 Infant feces 2.46 60.0 2128 57 1 NA CP010453 C

B.l. 35624 Gut 2.26 60.0 1942 57 2 NA CP013673 C

B.l.i. JCM 1222T Infant feces 2.83 59.9 2673 77 0 NA CP001095 C

B.l.i. 157F Infant feces 2.41 60.1 2147 59 1 NA AP010890 C

B.l.i. BT1 Infant feces 2.58 59.4 2308 56 1 NA CP010411 C

# B.b. = B. breve; B.l. = B. longum; B.l.l. = B. longum subsp. longum; B.l.i. = B. longum subsp. infantis.
� Genome sequenced as part of this study. T = type strain. NA = not applicable. C = complete, D = draft.

https://doi.org/10.1371/journal.pone.0196290.t001
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isolates. Gene cluster prevalence data was converted to a binary matrix and similarities in pres-

ence/absence patterns were calculated using the Jaccard index. Dendrograms were calculated

using the unweighted pair group method with arithmetic mean (UPGMA) in DendroUPGMA

([45] http://genomes.urv.cat/UPGMA/index.php).

Results and discussion

General genome features

We performed a comparative genomic analysis between gut and vaginal isolates for two Bifido-
bacterium species commonly found in the human gut and vagina: B. breve and B. longum.

Thus, all analysis comparing vaginal and gut strains was performed in parallel for these two

species. The general features of all genomes included in this study are listed in Table 1.

Seventeen B. breve genomes were analyzed, seven of which were sequenced in this study.

We also analyzed the genome sequences of twenty-six B. longum strains, nine of which were

sequenced as part of this study. Genome sequence data and annotated assemblies have been

deposited in GenBank under BioProject PRJNA387952. The B. breve genomes were sequenced

to an average of 97-fold coverage ± 47 (range 14–270), and B. longum genomes were sequenced

to an average of 57-fold coverage ± 34 (range 11–182). Currently, B. longum encompass three

subspecies: -longum, -infantis and -suis, but it has been previously considered as three separate

species (B. longum, B. infantis and B. suis) or as a unified species (B. infantis and B. suis were

published as synonyms of B. longum) [46, 47]. Considering this controversial taxonomic history

of B. longum, we opted to include in our analysis published complete genomes of B. longum of

gut origin regardless of subspecies, which included (n = 8 subsp. longum, n = 3 subsp. infantis
and n = 6 for which no subspecies affiliation was reported).

The average genome size of vaginal and gut B. breve was 2.32 ± 0.09 Mb and 2.34 ± 0.05 Mb,

respectively; where vaginal strains 91–1 and 322–1 were the smallest (2.24 Mb) and the vaginal

strain 30–1 was the largest (2.54 Mb). For B. longum, the average genome sizes of vaginal and gut

isolates were 2.37 ± 0.14 Mb and 2.41 ± 0.13 Mb, respectively; the smallest genomes were repre-

sented by gut isolates NCC2705 and 35624 (2.26 Mb) and the largest genome was from JCM

1222T (2.83 Mb). All genomes analyzed had high GC content, a known characteristic of the

genus Bifidobacterium and previously reported as 55–67 mol% [5]. Vaginal and gut B. breve have

58.5% and 58.8% genomic GC content, respectively; and vaginal and gut B. longum have 59.5%

and 60% of GC content, respectively. There were no differences in genome size and GC content

between gut and vaginal isolates, either for B. breve or B. longum (t-test, all p>0.05) (Fig 1).

The genomes of B. breve and B. longum contained an average of 2113 and 2137 genes,

respectively, which is within the range of number of predicted genes previously reported for

Bifidobacterium spp. (1369–2564 genes) [48]. Also, B. breve and B. longum contained an aver-

age of 1.6 (range 0–4) and 1.8 (range 0–8) CRISPR, respectively. The inclusion of complete

and draft genomes in the analysis and the choice of particular analysis tool may have affected

the CRISPR analysis; however, there was no difference in the number of genes and CRISPR

between gut and vaginal isolates of either B. breve or B. longum (t-test, all p>0.05). Since gut

strains are more likely to be often exposed to viral infection, a greater CRISPR activity might

be expected within the gut isolates, which was not the case. CRISPR have been implicated in

chromosomal rearrangement, modulation of expression of neighbouring genes, target for

DNA binding proteins, and DNA repair [49]. More recently, it has been shown to act as the

defense mechanism in bacteria against phages and plasmids by providing adaptive immunity

[50]. Notably, vaginal B. longum 239–2 and N2E12 had a total of 8 and 5 CRISPR, respectively,

which suggest these strains had an active CRISPR immune system against potentially damag-

ing foreign DNA. Previous studies have shown that CRISPR systems are frequent and diverse
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in the genus Bifidobacterium and differences in the frequency of CRISPR-Cas systems

(CRISPR and CRISPR-associated proteins) within species are an indication that CRISPR dis-

tribution is strain-dependent [51, 52].

The overall genome sequence similarity between vaginal and gut strains was assessed based

on average nucleotide identity (ANI). A hierarchal clustering based on the distance matrix of

ANI divergence values was computed and visualized as a heatmap (Fig 2). All ANI values

between isolates of the same species were>95%, consistent with their identification as members

of the same species [53]. The genomes of vaginal B. breve did not cluster separately from the gut

isolates (Fig 2A). Two clusters of B. longum were apparent but these do not correspond to sub-

species longum or infantis based on genomes where a subspecies was identified (Fig 2B). For

example, in the upper cluster of five genomes, JDM301 is reported to be subsp. longum, JCM

1222T and BT1 are reported to be subsp. infantis and no subspecies information is available for

239–2 or BXY01 (Table 1). This result is not unexpected since genome-wide ANI may not pro-

vide sufficient resolution to discern subspecies and identities between the two B. longum clusters

were>95%. Similarly, vaginal B. longum did not form a separate cluster from the gut isolates

(Fig 2B). Therefore, vaginal and gut isolates could not be distinguished based on their overall

nucleotide identity, either for B. breve or B. longum. The relatedness of isolates was also assessed

by calculating the tetranucleotide scores (tetra), which led to similar results as ANI (data not

shown).

Fig 1. Genome features. Genome size and GC content of B. breve and B. longum of gut and vaginal origin.

https://doi.org/10.1371/journal.pone.0196290.g001
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Whole genome phylogeny

Whole genome phylogeny of isolates was inferred based on the concatenated alignment of

SNPs, and a maximum likelihood circular tree was created for phylogeny visualization (Fig 3).

Fig 2. Average nucleotide identity (ANI). Heatmap of ANI values between genomes of gut and vaginal origin. (A) B.

breve; (B) B. longum. T = type strain.

https://doi.org/10.1371/journal.pone.0196290.g002
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The comparison of all genomes revealed an average of 9307 SNPs in B. breve strains and an

average of 9050 SNPs in B. longum strains. Phylogenetic analysis indicated that vaginal B. breve
isolates did not cluster separately from the gut isolates (Fig 3A). Similarly, the genomes of vagi-

nal B. longum did not form a separate cluster from the genomes of gut strains (Fig 3B).

COG distribution

To identify significant differences in the predicted functional repertoires of gut or vaginal iso-

lates of B. breve or B. longum, predicted proteins were functionally categorized based on COG

(Cluster of Orthologous Group) assignment and the proportions in each category were com-

pared between vaginal and gut isolates (Fig 4). Most sequences in B. breve and B. longum were

assigned to the ‘carbohydrate transport and metabolism’ category, followed by ‘amino acid

Fig 3. Whole genome phylogenies based on SNPs. (A) B. breve; (B) B. longum. T = type strain.

https://doi.org/10.1371/journal.pone.0196290.g003
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transport and metabolism’ and ‘translation, ribosomal structure and biogenesis’ categories,

which is consistent with previous reports [54, 55]. Most importantly, vaginal and gut strains

did not differ in terms of COG category distribution. This does not mean that there are not dif-

ferences in the specific genes within these larger functional categories, but only that the pro-

portion of each genome encoding functions in the broad categories are similar. Considering

that carbohydrates are less abundant in quantity and variety in the vagina relative to the gut,

we had anticipated that if vaginal isolates have genome adaptations, these would include pres-

ence of fewer genes involved in metabolism. Our observation of similar proportions of COGs

in category G (‘carbohydrate transport and metabolism’) in vaginal and gut isolates corrobo-

rates our previous observation that the carbohydrate utilization profile phenotypes of the vagi-

nal isolates included in this study do not differ from those reported for the type strains of B.

breve and B. longum [19].

COGs were also investigated in terms of their presence/absence among isolates. B. breve iso-

lates were represented by a set of 1016 COG, 489 of which were present in all strains (vaginal

Fig 4. Clusters of Orthologous Groups (COG). COG function distribution among genomes of (A) B. breve and (B) B. longum. COG classification: [D] Cell cycle control,

cell division, chromosome partitioning; [M] Cell wall/membrane/envelope biogenesis; [N] Cell motility; [O] Post-translational modification, protein turnover, and

chaperones; [T] Signal transduction mechanisms; [U] Intracellular trafficking, secretion, and vesicular transport; [V] Defense mechanisms; [W] Extracellular structures;

[Y] Nuclear structure; [Z] Cytoskeleton; [A] RNA processing and modification; [B] Chromatin structure and dynamics; [J] Translation, ribosomal structure and

biogenesis; [K] Transcription; [L] Replication, recombination and repair; [C] Energy production and conversion; [E] Amino acid transport and metabolism; [F]

Nucleotide transport and metabolism; [G] Carbohydrate transport and metabolism; [H] Coenzyme transport and metabolism; [I] Lipid transport and metabolism; [P]

Inorganic ion transport and metabolism; [Q] Secondary metabolites biosynthesis, transport, and catabolism; [R] General function prediction only; [S] Function unknown;

[X] Mobilome: prophages, transposons.

https://doi.org/10.1371/journal.pone.0196290.g004
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and gut origin). A total of 30 COG were exclusively present in vaginal isolates, i.e., they were

absent in gut isolates and present in at least one vaginal isolate. Notably, the prevalence of

these 30 “unique” COG among vaginal isolates was low, ranging from 12.5% (1/8) to 37.5%

(3/8), suggesting it is unlikely that these rare COG represent a biologically significant vaginal

adaptation. Similarly, a total of 34 COG were exclusively present in gut isolates, but their prev-

alence was also mostly low, ranging from 11.1% (1/9) to 33.3% (3/9), with only one exception:

COG1396 (Transcriptional regulator, contains XRE-family HTH domain) that was present in

55.5% (5/9) of the gut isolates. Two additional COG showed substantial differences in distribu-

tion between vaginal and gut B. breve isolates. Glucan phosphorylase (COG0058) was present

in only 12.5% (1/8) of vaginal isolates against 88.9% (8/9) of isolates of gut origin. On the other

hand, the predicted ABC-type sugar transport system (permease component) (COG4158) was

present in 87% (7/8) and 22.2% (2/9) of vaginal and gut isolates, respectively.

For B. longum, a total of 1128 COG were identified, 451 of which were present in all strains

(vaginal and gut). Although 26 COG were exclusively present in vaginal isolates, most of them

were found in only one or two vaginal isolates, with one exception: COG3695 (Alkylated DNA

nucleotide flippase Atl1), which was present in 55.5% (5/9) of vaginal isolates. On the other

hand, a total of 113 COG were exclusively associated with isolates of gut origin, although their

prevalence was also low, ranging from 5.8% (1/17) to 29.4% (5/17). The only exception was

COG1672 (Predicted ATPase), which was found in 76.5% (13/17) of gut strains. Additionally,

5 COG were more frequently found in gut isolates than vaginal isolates: COG0481 (Translation

elongation factor EF-4, membrane-bound GTPase), COG0802 (tRNA A37 threonylcarbamoy-

ladenosine biosynthesis protein TsaE), COG1225 (Peroxiredoxin), COG0159 (Tryptophan

synthase alpha chain), and COG0732 (Restriction endonuclease S subunit). Four COG were

more prevalent in vaginal isolates: COG1327 (Transcriptional regulator NrdR, contains Zn-riB.

b.on and ATP-cone domains), COG0328 (Ribonuclease HI), COG1983 (Phage shock protein

PspC (stress-responsive transcriptional regulator)), and COG0759 (Membrane-anchored pro-

tein YidD, putatitve component of membrane protein insertase Oxa1/YidC/SpoIIIJ). Although

there were differences in the presence/absence of COG between vaginal and gut isolates, differ-

ences were not systematically concentrated within function categories, and were insufficient to

distinguish isolates from the two body sites.

Pangenome analysis

The pangenome is defined as the entire gene set of all isolates, including genes present in all

isolates (core genome) and genes present in one or some isolates (accessory genome). B. breve
had a pangenome of 3773 gene clusters, consistent with a previous report (3667 in 13

genomes) [54] (Fig 5). The larger pangenome of B. longum (5609 gene clusters) reflects the

inclusion of different B. longum subspecies in the analysis and is also consistent with a recent

analysis of 20 B. longum genomes (5970 in 37 genomes) [56] (Fig 5). The content of pangen-

omes of B. breve and B. longum have recently been described in great detail [54–57] and so the

focus of this analysis was on our primary objective, to determine if vaginal and gut bifidobac-

teria could be distinguished based on the presence/absence of components of the pangenome.

By strictest definition (gene must be present in all genomes included), the core genomes of

B. breve and B. longum contained 916 and 835 gene clusters, respectively. There were 2192

gene clusters shared by at least one vaginal and one gut isolate of B. breve, while vaginal and

gut B. longum had a total of 2659 shared gene clusters (Fig 6A). Relatively large numbers of

gene clusters were identified exclusively in vaginal or gut bifidobacteria but further investiga-

tion showed that the majority of these were present in only one genome and thus could not

be used to distinguish vaginal and gut isolates (Fig 6A). In fact, only two gene clusters in the
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B. breve pangenome, corresponding to a hypothetical protein and a putative fluoride ion trans-

porter (crcB, Fluc family), were found in all (9/9) gut isolate genomes and none (0/8) of the

Fig 5. Rarefaction plot of B. breve and B. longum pangenome. Accumulated number of new gene clusters plotted against the number of genomes sequentially added.

One hundred permutations were performed at each step.

https://doi.org/10.1371/journal.pone.0196290.g005
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vaginal isolate genomes. A crcB sequence was also found in 16/17 gut B. longum and 0/9 vagi-

nal B. longum isolates. These small integral membrane proteins are important for counteract-

ing toxicity of environmental fluoride anions and are widespread in bacteria [58]. Most of the

gene clusters that were present in at least half of the genomes in one group and absent from

genomes in the other group were unidentified (hypothetical proteins of unknown function),

which is not surprising given that at least 20–40% of genes in sequenced bacterial genomes

Fig 6. Shared and unique gene clusters. (A) The numbers of shared (present in at least one genome of each group)

and unique (present in at least one genome of one group) gene clusters of B. breve and B. longum isolates from vaginal

and gut microbiotas. Histograms below the Venn diagrams show the distribution of group-specific gene clusters

among genomes and indicate that most group-specific gene clusters are found in only one genome. (B) Relationships

of genomes based on presence/absence of gene clusters identified in the pangenomes for B. breve (3773 gene clusters)

and B. longum (5609 gene clusters).

https://doi.org/10.1371/journal.pone.0196290.g006
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encode unknown functions [59]. Average numbers of gene clusters that were unique to one

genome were 68.1 (range 6–247) for B. longum and 67.8 (range 2–228) for B. breve.

To determine if the vaginal and gut bifidobacteria genomes could be differentiated based

on shared and unique gene clusters, hierarchical clustering of the presence/absence patterns of

gene clusters in the calculated pangenome was conducted (Fig 6B). Similar to the results of the

clustering based on ANI comparisons, the vaginal and gut bifidobacteria did not form separate

clusters based on core and accessory genome content, which further emphasizes that although

there is strain diversity in genome content, systematic differences that differentiate isolates

based on source (vaginal or gut) are not apparent.

Conclusions

In this study, we investigated the genomes of B. breve and B. longum from two different body

sites of significant importance in neonatal health: gut and vagina. In all analyses, gut and vaginal

strains of B. breve or B. longum were not distinguishable from each other based their genomic

content. Consistent with these observations, it has been previously demonstrated that several

vaginal and gut Bifidobacterium spp. did not differ based on phenotypic characteristics related to

their carbohydrate fermentation patterns, lactic acid production and tolerance to low pH [19].

Our results support the hypothesis that vaginal and gut isolates represent the same bacterial pop-

ulation with similar genetic repertoires that allow them to efficiently colonize both body sites.

The genomes included in our study are from isolates recovered from individuals of different ages

around the world over many years. While this provides an opportunity to look at these species

very broadly, an obvious complimentary study would be a comparison of gut and vaginal isolates

from individual women, or paired samples from women and their babies. Both vaginal and gut

microbiota are thought to contribute to mother-infant transmission of bifidobacteria, and recog-

nition that vaginal and gut isolates represent the same population is an important step for future

studies in maternal-neonatal health.
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