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Abstract

Restoration of the Florida Everglades, a substantial wetland ecosystem within the United

States, is one of the largest ongoing restoration projects in the world. Decision-makers and

managers within the Everglades ecosystem rely on ecological models forecasting indicator

wildlife response to changes in the management of water flows within the system. One such

indicator of ecosystem health, the presence of wading bird communities on the landscape,

is currently assessed using three species distribution models that assume perfect detection

and report output on different scales that are challenging to compare against one another.

We sought to use current advancements in species distribution modeling to improve models

of Everglades wading bird distribution. Using a joint species distribution model that

accounted for imperfect detection, we modeled the presence of nine species of wading bird

simultaneously in response to annual hydrologic conditions and landscape characteristics

within the Everglades system. Our resulting model improved upon the previous model in

three key ways: 1) the model predicts probability of occupancy for the nine species on a

scale of 0–1, making the output more intuitive and easily comparable for managers and

decision-makers that must consider the responses of several species simultaneously; 2)

through joint species modeling, we were able to consider rarer species within the modeling

that otherwise are detected in too few numbers to fit as individual models; and 3) the model

explicitly allows detection probability of species to be less than 1 which can reduce bias in

the site occupancy estimates. These improvements are essential as Everglades restoration

continues and managers require models that consider the impacts of water management on

key indicator wildlife such as the wading bird community.

Introduction

The Florida Everglades is a unique ecosystem of international importance in the United States.

This large (28,000 km2) sub-tropical wetland supports many plant and wildlife species, pro-

vides freshwater to south Florida’s densely populated cities, and serves as protection against

flooding and damage caused by high-intensity storms such as hurricanes [1]. Once a vast
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wetland that extended across all south Florida, the hydrology of the Everglades has been altered

dramatically to meet human needs [2]. In 2000, the Comprehensive Everglades Restoration

Plan (CERP) was authorized by Congress in order to restore this ecosystem to a hydrologic

regime more reflective of its historic flow while meeting the water supply and flood protection

needs of south Florida [3]. CERP is one of the largest ongoing restoration projects in the world

and requires continuing science that seeks to understand the ecosystem and its function so

that restoration efforts are successful.

Those involved in making Everglades restoration decisions rely on ecological models that

forecast the expected responses of key indicator species to proposed projects or water manage-

ment operations. One such indicator is the presence of wading bird (egret, ibis, stork, heron,

and spoonbill) colonies across the system [4]. In the pre-drainage Everglades system, tens of

thousands of nesting wading birds were common across the landscape during their breeding

season, but populations declined precipitously after draining of the system began [5, 6]. The

decline of wading birds served as an important motivation to begin restoration of the Ever-

glades and their return to historic numbers and colony locations is considered a sign of suc-

cessful restoration [4]. Thus, models that can predict wading bird response to anticipated

changes in hydrologic patterns from restoration projects are highly valuable decision support

tools for restoration decision makers.

Currently, wading bird response to water management in the Everglades is predicted using

a suite of Wading Bird Distribution Evaluation Models (WADEM) for the great egret (Ardea
alba), wood stork (Mycteria americana), and white ibis (Eudocimus albus) [7]. WADEM is a

species distribution model that uses relationships derived by regressing the number of birds in

a spatial cell to the average hydrologic conditions in that cell over a decade-long time scale.

Because each species was modeled separately, the predicted suitability indices are on different

scales, which can make it difficult for decision-makers to compare responses across species.

Additionally, these models have not accounted for the probability of species detection and

instead assume detection probability is 1 and that when species are present, they are detected.

The literature has demonstrated that detection probability of a species can influence wildlife

distribution estimates in significant ways and should be explicitly included in models when

possible [8–12]. WADEM considers three species of interest within the Everglades, but nesting

wading birds can include additional species such as roseate spoonbills (Platalea ajaja), glossy

ibis (Plegadis falcinellus), snowy egrets (Egretta thula), tricolored herons (Egretta tricolor), little

blue herons (Egretta caerulea), and great blue herons (Ardea herodias). Considering additional

species that are both rare and more common across the landscape can provide a broader pic-

ture of the wading bird community response to altered hydrology in the Everglades [13]. Fur-

ther, the presence of one species of wading bird could influence the presence of another

species (via attraction or avoidance). These potential species interactions could be important

drivers of wading bird distribution but have yet to be incorporated into Everglades wading

bird species distribution models [14].

One way to address some of these shortcomings of WADEM is to model wading birds as a

joint species distribution model (JSDM). JSDMs refer to a suite of models that vary in specific

approach but accomplish a general goal: to model the distributions of species jointly in order

to make inferences about a community. JSDMs can be generalized as coming from two per-

spectives: 1) multispecies occupancy models that account for imperfect species detection [15,

16] and 2) stacked single-species distribution models that account for residual correlation of

species apparent occupancy due to biotic interactions or missing environmental covariates

[17, 18]. In the former perspective, residual correlations of species occupancy are not explicitly

modeled, while in the latter perspective, detection of species is assumed to be one. Tobler et al.

[19] also developed a model that combined these two perspectives.
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Considering these developments in the species distribution modeling literature, we sought

to update the current model of Everglades wading bird distribution by building a joint species

distribution model that accounts for species detection probability using a multispecies occu-

pancy modeling framework. We had several goals in applying this approach: 1) to consider a

larger suite of wading bird species when assessing proposed restoration projects; 2) to generate

output for each species on the same scale of response for ease of comparison among species;

and 3) to address imperfect detection within our model.

Materials and methods

Data

Species detection-nondetection (species was observed or not observed) data were generated

from Systemic Reconnaissance Flights (SRF) conducted between 2000–2009 across several

regions of the greater Everglades: the Big Cypress Seminole and Miccosukee Federal Indian

Reservations, the water conservation areas (WCAs), the southern portions of Big Cypress

National Preserve (BCNP), and the north-central portions of Everglades National Park (ENP,

Fig 1). These aerial surveys were conducted monthly between December and June of each

year, corresponding to the general breeding season of wading bird species present in the sys-

tem. The surveys are conducted on transects moving east-west along a 2-by-2 km grid. Flying

at an altitude of ~61 m, two observers record the species and numbers of wading birds present

within the grid cell. For more details on the methodology and history of the SRF transects, see

Conroy et al. [20]. For grid cells that overlapped the extent of available hydrologic covariates,

we developed detection histories for nine species of wading bird over the ten-year period:

great blue heron, glossy ibis, great egret, little blue heron, roseate spoonbill, small dark herons

(a species group mainly comprised of tricolored herons), small white herons (a species group

mainly comprised of snowy egrets), white ibis, and wood stork. We assessed the presence or

absence of each species in each SRF grid cell for the months of January, February, March,

April, and May, creating a detection history of 5 visits where 0 indicated the species was not

detected and 1 indicated the species was detected at least once within the grid cell. The number

of grid cells we were able to generate detection histories for totaled 1,782 and were stacked by

year, totaling 17,820 sampled locations included within the model.

Covariates

Wading bird presence in the greater Everglades is driven by the availability of prey fishes and

invertebrates [21]. During the wetter summer months, water within the landscape is deeper

and the availability of prey to wading birds is restricted to smaller areas of the landscape. How-

ever, during the drier seasons which coincide with the breeding season, water typically slowly

recedes and creates shallow pools where fish density is high, and birds can forage easily [22].

Thus, hydrologic conditions across the landscape can serve as a proxy for prey availability to

wading birds and can predict wading bird presence. These responses can also be species-spe-

cific due to differences in species foraging strategy. For example, ibises, storks, and spoonbills

are tactile feeders, using their beaks to ‘feel’ prey within the water. Conversely, egrets and her-

ons are visual feeders, watching the water and striking prey [21, 23]. Ibises and storks therefore

require higher densities of fish to successfully forage, which typically coincides with relatively

low water depths compared to egrets and herons [24].

We selected six site covariates to include in the model that could explain wading bird occu-

pancy (Table 1). Each hydrologic metric was calculated from daily water depth estimates gen-

erated by the Everglades Depth Estimation Network (EDEN) [25], which uses a network of

water gages across the system to interpolate water depths at a 400 m resolution. Because our
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Fig 1. Sampling locations. Spatial extent of the Systematic Reconnaissance Flight (SRF) grid cells used to fit a joint species distribution model

for wading birds and their location relative to protected areas within the southern Everglades. These areas include the Big Cypress Seminole

Indian Reservation, the Miccosukee Federal Indian Reservation, Water Conservation Areas (WCA-1, 2A, 2B, 3A, and 3B), Big Cypress National

Preserve (BCNP), and Everglades National Park (ENP). The grid shown is only those cells used in the model; the full extent of the SRF surveys is

larger. Sources: Shapefiles for U.S. state boundaries available from census.gov. Shapefiles for the Everglades Management Areas provided by the

Florida Fish and Wildlife Conservation Commission (https://gis.myfwc.com/Data/KMZ_files/Management%20-%20Wildlife%20Mgt%20Areas

%20-%20Generalized%20-%20FL.kmz), the U.S. Fish and Wildlife Service (https://ecos.fws.gov/ServCat/Reference/Profile/128178) and the

National Park Service (https://public-nps.opendata.arcgis.com/datasets/nps-boundary-1). Indian Reservation shapefiles provided by the U.S.

Bureau of Indian Affairs (https://www.sciencebase.gov/catalog/item/4f4e4a2ee4b07f02db61576c).

https://doi.org/10.1371/journal.pone.0245973.g001
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sample grid had a resolution of 2 km, we averaged the 400 m cells that fell into each 2 km cell

as the final metric estimate. Depth during the breeding season described the foraging condi-

tions present in that cell [26, 27]. Water recession rate served as an indicator of prey density,

where a steady recession rate with minimal water reversals would produce dense prey through-

out the breeding season to remain available to birds while nesting [28]. Finally, the number of

days where surface water is absent over the past 3 years serves as an indicator of long-term

hydrologic conditions within the grid cell which can impact both the vegetation community

and crayfish populations within the system [29–31]. The quadratic effect of each hydrologic

covariate was also included within the model. In addition to the three hydrologic variables, we

included the landscape characteristic of proportion tree canopy cover as a habitat covariate

[32]. Proportion tree canopy cover generated by the U.S. Forest Service was included as a

proxy for vegetation structure across the landscape and an indicator of the availability of nest-

ing substrate [33]. Finally, to address additional spatial processes in wading bird distributions

not captured by hydrology or vegetation structure, we included the easting and northing coor-

dinates of each grid cell as additional covariates of wading bird site occupancy. While temporal

trends likely exist, we did not include inter-annual effects on probability of occupancy because

we were interested in fitting generalized relationships between landscape covariates and proba-

bility of occupancy for each species that could be used to generate near- and long-term predic-

tions of occupancy from future hydrologic scenarios.

Modeling

We modeled Everglades wading bird distributions in response to hydrologic conditions using

a joint species distribution model that accounted for imperfect detection. The model’s base is a

hierarchical multispecies occupancy model [15, 34, 35] consisting of an ecological process

model that describes the probability of occurrence at each site and the species detection pro-

cess [8]. Using a Bayesian framework, we modeled all nine species simultaneously by drawing

species-specific occupancy and detection relationships from a common prior distribution. The

probability of occurrence is defined as zji~Bernoulli(ψji) where ψji is the probability that the

site (an SRF grid cell) j is occupied by species i and zji is the occupancy state (0 for unoccupied

and 1 for occupied) for site j and species i. Occupancy is thus modeled as a function of site-

level covariates: logit(ψji) = αψ,i+βcov,i�covj. . . where αψ,i are the species-specific model inter-

cepts, βcov,i are the species-specific beta estimate explaining the relationship between species

occupancy and the covariate of interest, and covj is the measurement of the covariate of interest

at site j. The probability of detection was defined as Xjki~Bernoulli(pjki�zji) where pjki is whether

Table 1. Site covariates used for predicting species occupancy.

Variable Mean SD Range Description

Breeding season

depth

17.28 17.38 0.00–98.65 Average depth (cm) in the EDEN cell from January 1—June 30

Recession 0.02 0.13 -0.45–0.55 Water recession rate within the EDEN cell between January 1—June 30

Days Dry 235.20 262.26 0–1097 Number of days surface water is� 0 cm in the EDEN cell from June 30 of the current year to three

years prior.

Canopy cover 0.07 0.11 0.0–0.64 Proportion of tree canopy cover within the EDEN cell.

Easting 528048.8 22477.46 467021–575021 X coordinate of the centroid of the SRF grid cell

Northing 2863767 35566.75 2792200–

2948200

Y coordinate of the centroid of the SRF grid cell

Site-specific covariates used for predicting wading bird species occupancy within a multispecies occupancy model. We report mean, standard deviation, and range of the

values within the dataset analyzed.

https://doi.org/10.1371/journal.pone.0245973.t001
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the species i is detected at site j during site visit k (1 for detected, 0 for not detected). We then

modeled detection probability as logit(pjki) = αpi, where αpi is the species-specific model inter-

cept for detection probability.

Occupancy covariates (depth during the breeding season, recession rate, number of dry

days, the quadratic effect of these three variables, canopy cover, easting, and northing) were

modeled as species-specific random effects drawn from a community-level normally distrib-

uted prior (mean of 0 and precision of 0.001). Detection probability varied only among species,

but not over time or by site-level covariates.

We ran the model in program R [36] and JAGS [37] via the R2jags package [38] with 20,000

iterations of 3 chains, a burn-in of 10,000, and a thinning rate of 10. We determined model

convergence was achieved by visually examining the MCMC chains to ensure adequate mixing

across iterations and by ensuring that the R-hat statistic measured < 1.1 for all parameters

within the model [39]. Covariate coefficient estimates with 95% credible intervals that did not

cross 0 were considered important predictors of species occupancy as this was reflective of a

consistent relationship within model iterations. To assess the strength of the covariates on pre-

dicting occupancy of each species, we calculated Bayes factors [40] on each parameter using

the Savage-Dickey ratio test [41] calculated using the R package ‘bayestestR’ [42]. Particularly

strong Bayes factors can result in numbers several magnitudes larger than weaker ones, there-

fore we compared the natural log of the raw Bayes factors to facilitate comparison among spe-

cies and covariates. Thus, natural log-transformed Bayes factors > 4.61 indicate decisive

evidence for the importance of a covariate, while Bayes factors < 0.0 indicate a covariate that

likely has very little impact on species occupancy [40]. Code used to fit the model is provided

in the (S1 Appendix).

Model validation and fit

We assessed model goodness-of-fit by calculating the Dunn-Smyth residuals and examined

the values plotted against the species-specific fitted occupancy values [43, 44]. Typically, plots

where the 95% confidence interval of the line of best fit from these residual plots crosses 0 indi-

cates a model with good fit [44]. To assess model accuracy, we calculated species-specific area

under the receiver operating characteristic curve (AUC) values. AUC ranges from 0 to 1, with

values> 0.7 indicative of an adequately accurate model [45, 46].

Predicted occupancy maps

We used the mean of the posterior for each parameter and the values of the landscape-scale

variables to generate species-specific predicted probability of occupancy maps for the year

2009.

Results

The species used in the model ranged from relatively common (great egret and white ibis) to

relatively rare (roseate spoonbill and glossy ibis). The species with the least number of detec-

tions was the roseate spoonbill with 381, while the highest number of detections was the great

egret with 13,042 detections. The spatial distribution of each species also varied by year, with

some years showing higher diversity within the sampled grid cells than in other years (Fig 2).

The joint species distribution model provided species-specific relationships between site

covariates and occupancy (Fig 3) along with species-specific detection probability (Table 2).

The average R-hat statistic for all parameters in the model was 1.01, less than the threshold of

1.1 above which a model is likely not fully converged. Additionally, visual examination of the

MCMC draws did not show evidence of a lack of convergence within the model. The Dunn-
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Smyth residual plots for each species indicated adequate fits for all species (Fig 4) as evidenced

by no strong trend in the residuals plotted against fitted occupancy values. Species-specific

mean AUC values ranged from 0.712 to 0.848, with all species achieving AUC values> 0.70

indicating adequate model accuracy (Table 2).

Breeding season depth was a particularly strong predictor of occupancy for the great blue

heron, glossy ibis, great egret, and roseate spoonbill based on calculated parameter-specific

Bayes factors (Table 3, values > 4.61). We generated species-specific response curves for each

habitat covariate where the 95% credible interval did not cross 0. When all other variables are

held at their mean, probability of occupancy varied across species with the average water depth

during the breeding season (Fig 5). Great blue herons, little blue heron, great egrets, small

white herons, and to a lesser extent, white ibis all showed a greater probability of occupancy at

water depths > 25 cm, while the glossy ibis, small dark herons, wood stork and to a lesser

extent the roseate spoonbill showed a lower probability of occupancy at water depths > 25 cm.

Probability of occupancy as a function of water recession rate during the breeding season

also varied by species (Fig 6). The calculated Bayes factors for the water recession parameters

indicated that water recession rate’s influence on probability of occupancy was strongest for

the great blue heron, great egret, white ibis, and wood stork (Table 3, values > 4.61). The great

blue heron, great egret, white ibis, roseate spoonbill, and wood stork had the greatest probabil-

ity of occupancy when water recedes an average of 0.5 cm per day, with occupancy decreasing

as the recession rate moves toward values indicative of water depth increases and not recession

per se. However, glossy ibis and little blue herons exhibited the opposite trend, where probabil-

ity of occupancy decreased as water approached receding and average of around 0.5 cm per

day. Small white herons, great egret, and small dark herons did not show a particularly strong

relationship with water recession rate, though the relationship was consistent within the

model.

Probability of occupancy as a function of the number of dry days over the previous 3 years

followed a similar trend across all modeled species (Fig 7) and calculated Bayes factors indi-

cated that this variable was a strong predictor of occupancy for all species (Table 3,

values> 4.61). While the maximum probability of occupancy varied, each species was more

Fig 2. Species detections. Total number of species (out of a possible 9) detected in each SRF grid cell in each year across the model’s

spatial extent.

https://doi.org/10.1371/journal.pone.0245973.g002
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Fig 3. Covariate coefficient estimates. Covariate estimates for the site covariates (mean of the posterior and 95% posterior interval) based on SRF

surveys conducted between 2000–2009 for 9 species resulting from a joint species distribution model accounting for imperfect detection. Species are:

GBHE (great blue heron); GLIB (glossy ibis); GREG (great egret); LBHE (little blue heron); ROSP (roseate spoonbill); SDH (small dark herons); SWH

(small white herons); WHIB (white ibis); and WOST (wood stork).

https://doi.org/10.1371/journal.pone.0245973.g003

Table 2. Species-specific detection probabilities and AUC.

Detection probability AUC

Species Mean Low High Mean Low High

Great blue heron 0.179 0.173 0.184 0.755 0.754 0.756

Glossy ibis 0.059 0.051 0.067 0.750 0.748 0.751

Great egret 0.511 0.506 0.514 0.848 0.847 0.849

Little blue heron 0.042 0.034 0.051 0.837 0.835 0.838

Roseate spoonbill 0.042 0.032 0.054 0.771 0.765 0.775

Small dark herons 0.131 0.123 0.139 0.794 0.793 0.795

Small white herons 0.168 0.161 0.175 0.732 0.731 0.734

White ibis 0.356 0.351 0.361 0.785 0.784 0.786

Wood stork 0.151 0.143 0.157 0.712 0.710 0.713

Species-specific wading bird detection probabilities and AUC (mean of the posterior distributions and 95% posterior intervals) estimated by a joint species distribution

model fit using data from Systematic Reconnaissance Flight surveys conducted between 2000–2009.

https://doi.org/10.1371/journal.pone.0245973.t002
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likely to occur in grid cells where the number of dry days was< 300, with the peak always

occurring at 0 dry days over the last three years.

The calculated Bayes factors indicated that proportion of tree canopy cover was a particu-

larly strong predictor of occupancy for the great blue heron, small dark herons, small white

herons, roseate spoonbills, and wood stork (Table 3, values> 4.61). Probability of occupancy

as a function of proportion tree canopy cover was consistent for all modeled species except the

glossy ibis (Fig 8). For most species, probability of occupancy increased as canopy cover

increased, but the magnitude of this effect varied across species. The glossy ibis showed an

opposite response where probability of occupancy decreased as canopy cover increased.

Generally, the spatial effects (easting and northing) were important parameters within the

model for all species. Calculated Bayes factors indicated that the easting coordinate provided a

particularly strong effect for the great blue heron, great egret, small dark herons, small white

herons, roseate spoonbill, and white ibis (Table 3, values> 4.61). For all species except the little

blue heron, moving eastward increased the probability of occupancy for the species (Fig 9).

The effect of the northing coordinate was strong for each species with Bayes factors > 4.61 in

Fig 4. Dunn-Smyth residual plots. Dunn-Smyth residuals plotted against occupancy values fitted from a joint species

distribution model of wading birds surveyed using Systematic Reconnaissance Flights from 2000–2009. If the fitted

line and its 95% confidence interval overlaps 0, it is indicative of a well-fit model for that species. Species are: GBHE

(great blue heron); GLIB (glossy ibis); GREG (great egret); LBHE (little blue heron); ROSP (roseate spoonbill); SDH

(small dark herons); SWH (small white herons); WHIB (white ibis); and WOST (wood stork).

https://doi.org/10.1371/journal.pone.0245973.g004
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all cases (Table 3). Again, most species exhibited a similar pattern of decreasing probability of

occupancy as the northing coordinate increased (Fig 10). The little blue heron displayed the

opposite trend.

We generated species-specific maps of predicted occupancy for the year 2009 to show an

example visualization that may be used by Everglades resource managers to plan restoration

projects (Fig 11).

Discussion

Our improved wading bird model revealed species-specific relationships between hydrology

and wading bird presence on the landscape. Average depth during the breeding season was an

important variable for all species. Great blue herons, great egrets, little blue herons, and small

white herons had a positive relationship between water depths and probability of presence, a

trend that is consistent with much of the literature [22, 23, 26]. Herons are visual feeders that

strike their fish prey from above, making them generally tolerant of relatively deeper water.

Conversely, the wood stork, small dark herons, and glossy ibis had a negative relationship with

average water depth, with probability of occupancy decreasing at deeper water depths. This

also coincides with the ecology of these species, as ibis and storks are filter feeders that use

their bill to ‘feel’ prey within the water. Thus, ibis and storks are generally more successful for-

agers in shallow water [23, 26]. Tricolored herons, the species that dominates the small dark

heron group, are known to be more tolerant of drought conditions than other larger bodied

herons [47].

Average water recession rate over the breeding season was important for all species in the

model and all species except the glossy ibis and little blue heron had a higher probability of

occupancy when water receded between an average of 0.5 cm and 0 cm per day. Glossy ibis

and little blue heron exhibited the opposite response to water recession rates, increasing occu-

pancy after water trended toward increased between > 0 and 0.5 cm per day. Glossy ibis have

been shown to be tolerant of moderately deep water compared to white ibis and wood stork

[21], but also may prefer to feed on submerged vegetation in moderately deep waters as

opposed to accessing crayfish in shallow waters [48]. The little blue heron relationship had

much wider credible intervals than all other species. This could be a function of the little blue

Table 3. Species-specific Bayes factors for parameters predicting species occupancy.

Parameter Species

GBHE GLIB GREG LBHE SDH SWH ROSP WHIB WOST

Depth 16.25 8.37 38.44 -0.72 -1.34 1.16 5.19 0.57 2.54

(Depth)2 21.03 -1.83 40.67 4.71 -1.86 2.19 17.99 25.34 -2.36

Recession 13.72 -3.77 23.30 -1.11 0.88 -3.82 -4.51 0.22 -3.22

(Recession)2 7.82 2.46 0.73 -3.04 -2.66 -4.20 -3.77 8.22 6.38
Days Dry 24.49 24.88 15.74 21.07 13.13 33.77 6.91 34.03 17.55
(Days Dry)2 -0.20 0.28 -3.58 0.21 -2.09 1.92 2.82 4.82 -1.18

Canopy 18.42 0.61 -2.78 -2.90 12.38 9.64 20.62 3.44 20.58
Easting 26.58 -2.08 32.13 -0.49 8.72 6.14 36.42 23.22 0.91

Northing 46.06 13.53 32.55 27.69 9.20 53.61 40.73 9.47 36.72

Natural log-transformed Bayes factors for each species-specific parameter influencing species probability of occupancy using the posterior distributions from a fitted

joint species distribution model of Everglades wading birds. Italicized numbers are those Bayes factors > 4.61 which indicate decisive evidence of that parameter

influencing species occupancy probability. Species are: GBHE (great blue heron); GLIB (glossy ibis); GREG (great egret); LBHE (little blue heron); ROSP (roseate

spoonbill); SDH (small dark herons); SWH (small white herons); WHIB (white ibis); and WOST (wood stork).

https://doi.org/10.1371/journal.pone.0245973.t003
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heron’s plasticity when it comes to water depths during foraging. Previous studies have shown

little blue herons are not particularly constrained by deeper waters and this may be why they

are more tolerant of increasing water depths during the breeding season [21].

All species exhibited a similar response to the number of dry days over the last 3 years,

where probability of occupancy was highest at 0 dry days, dropping off precipitously around

300 dry days. Most vegetation in the Everglades is adapted to the dynamic pattern of drying

Fig 5. Breeding season depth response curves. Species-specific relationships between probability of occupancy and average depth during the breeding

season (Jan 1 –June 30) from a fitted joint species distribution model of wading birds. Responses are calculated with all other model variables held at their

mean. The black line represents the posterior mean and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g005
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and flooding that occurs, but longer periods of drought or flooding can change the vegetation

present on the landscape over time [49]. Shorter hydroperiods can lead to the loss of slough

habitat important for wading bird foraging [26] or facilitate the invasion of cattail which can

cause rapid peat accumulation that makes sites more susceptible to drying and long-term vege-

tation changes [50]. Thus, it is not surprising that our models show high probabilities of occu-

pancy of all wading birds at lower numbers of dry days over a 3-year period.

All species except for the glossy ibis displayed a similar response to proportion canopy

cover. For most species, higher amounts of canopy cover increased the probability of occu-

pancy. This is consistent with the ecology of wading birds generally; these species use woody

vegetation for nesting and thus should be associated with areas that have greater canopy cover

[27, 33]. However, it is important to note that proportion of canopy cover never reached above

~0.65 on the landscape. Wading birds do need open areas of marsh for feeding, therefore if

this metric was assessed at a smaller scale, we likely would have seen wading bird occupancy

peak at an optimal proportion of canopy cover and then decline at higher proportions up to 1.

Glossy ibis showed a slight decline with increases in canopy cover, but this relationship was

not strong and may not be ecologically meaningful.

The spatial parameters we included within the model, easting and northing coordinate,

both exhibited strong influence on the probability of occupancy of all species. This was not

surprising, as we included these predictors to account for residual spatial autocorrelation

within the data due to covariates we could not measure and evidence from a previous study

that indicated spatial autocorrelation is likely present in the data [7].

Fig 6. Water recession rate response curves. Species-specific relationships between probability of occupancy and

average water recession rate during the breeding season (Jan 1 –June 30) from a fitted joint species distribution model

of wading birds. Responses are calculated with all other model variables held at their mean. The black line represents

the posterior mean and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g006
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Detection probabilities of each wading bird species were generally low but ranged between

0.042 (roseate spoonbills and little blue herons) to 0.511 (great egrets). These detection proba-

bilities are slightly lower than those assessed in a previous exploration of detection probability

from a subset of data from the same SRF surveys, but general species-specific patterns are the

same [20]. Conroy et al. [20] did suggest that their estimated detection probabilities were likely

higher than the true detection probability of each species. Thus, we believe our model’s

Fig 7. Number of dry days response curves. Species-specific relationships between probability of occupancy and number of dry days over the last 3 years

from a fitted joint species distribution model of wading birds. Responses are calculated with all other model variables held at their mean. The black line

represents the posterior mean and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g007
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estimation of species-specific detection probabilities are reasonable even though we did not

include covariates on species detection.

While the diagnostic plots of model fit for each species did not reveal fit issues, the AUC

values for all species hovered around 0.7 except for the great egret, the most detected species

within the dataset. While an AUC of 0.7 is still an adequately accurate model, there may be rea-

sons why AUC values were not higher. First, the environmental covariates were averaged onto

Fig 8. Canopy cover response curves. Species-specific relationships between probability of occupancy and proportion tree canopy cover fitted joint species

distribution model of wading birds. Responses are calculated with all other model variables held at their mean. The black line represents the posterior mean

and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g008
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on a 2-by-2 km grid to match with the spatial grain of detection data. In the Everglades system,

small areas of topography changes can create hydrologic patterns that would not be reflected

in a 2 km resolution. Bird presence or absence could be due to conditions that we were unable

to capture given the data available. It is also probable that we are missing an important driver

of wading bird occupancy as an environmental covariate. For example, EDEN hydrologic

Fig 9. Easting coordinate response curves. Species-specific relationships between probability of occupancy and the easting coordinate from a fitted joint

species distribution model of wading birds. Responses are calculated with all other model variables held at their mean. The black line represents the posterior

mean and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g009
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output does not extend to coastal tidal and estuarine areas which are likely important foraging

grounds for wading birds during the breeding season. While the hydrologic drivers included

within the model explain prey availability to wading bird foraging, we do not have landscape-

scale information on potential prey densities across the landscape. There are some models of

fish density response to hydrologic drivers within the Everglades landscape, but these models

Fig 10. Northing coordinate response curves. Species-specific relationships between probability of occupancy and the northing coordinate from a fitted

joint species distribution model of wading birds. Responses are calculated with all other model variables held at their mean. The black line represents the

posterior mean and the gray shading represents the 95% posterior interval.

https://doi.org/10.1371/journal.pone.0245973.g010
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are site-specific and cannot be scaled up accurately to the resolution we have modeled here

[51]. Similarly, crayfish are a significant part of many wading bird species diets in the Ever-

glades [52], but no landscape-scale information on their populations or response to hydrology

at the landscape-scale is yet available to relate to wading bird presence or breeding success

[53]. An important next step for improving models of wading bird occurrence in the Ever-

glades would be to develop dynamic information on fish and crayfish densities across the sys-

tem at larger scales. Similarly, wading birds may be responding to the presence of other species

within the system, such as alligators. Alligators may serve as ‘nest-protectors’ from meso-carni-

vores and wading birds could be selecting for areas where alligators are present to capitalize on

this protection during the nesting season [54].

Though it is possible to estimate residual correlation and infer species interactions using

joint species distribution models [19], we opted not to estimate these for several reasons. Most

importantly, including residual correlation estimation resulted in models that would not con-

verge. If we were able to examine residual correlation between species, it is likely we would

Fig 11. Example species-specific occupancy predictions. Species-specific predicted probabilities of occupancy across

the Everglades landscape during 2009 calculated using the posterior mean of model parameters from a fitted joint

species distribution model. Species are: GBHE (great blue heron); GLIB (glossy ibis); GREG (great egret); LBHE (little

blue heron); ROSP (roseate spoonbill); SDH (small dark heron); SWH (small white heron); WHIB (white ibis); WOST

(wood stork).

https://doi.org/10.1371/journal.pone.0245973.g011
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have observed moderate to high correlation among all wading bird species based on the overall

similarities that species showed to the modeled environmental covariates. These similarities

are expected, as wading birds in the Everglades ecosystem often forage in mixed flocks [5].

Finally, it is important to note that recently there has been some debate on whether examining

co-occurrence of species can be used as evidence of ecological interactions [55]. To make

proper conclusions about species interactions, it is important that the sampling resolution can

capture both negative and positive interactions [56] and that the entire distributional range of

each species is sampled [55]. The distributions of all species modeled here extend outside the

spatial extent of the Everglades, therefore conclusions about species interactions using this

model could be erroneous.

Restoration implementation and seasonal water management decisions in the Everglades

rely heavily on models of indicator species responses to simulated changes in hydrology within

the system. We used new developments in species distribution modeling methodology to

improve our current models of wading bird distributions in three ways. First, we used a detec-

tion-nondetection modeling framework that produced output on a 0–1 scale of probability of

occupancy. The output thus becomes intuitive for decision makers and comparable across spe-

cies as there is a defined lower and upper limit that is consistent across species. Second, we

expanded the number of wading bird species decision makers or managers could consider

from three to nine by using a joint species framework. Through use of community-level priors

in the Bayesian analysis, we could model rarer species such as the roseate spoonbill or glossy

ibis, species typically not detected enough for meaningful modeling to occur. Considering the

response of both common and rare wading bird species to changes in hydrology gives decision

makers a broader view of the wading bird community. This also resulted in the first statistical

landscape-scale models of the small white heron and small dark heron for use in restoration

decision making (but see [57] for a rules-based approach). Third, our model accounts for spe-

cies-specific detectability. Accounting for species detection probability in models of species

distribution is vitally important, as not doing so can bias predicted occupancy estimates and

provide misleading information to decision makers [8–12]. Using the relationships between

hydrology and species occupancy measured from the fitted model, we can generate predicted

occupancy maps for each species and compare across simulated hydrologic scenarios for resto-

ration planning [58, 59]. This process typically involves assessing predicted species occupancy

for a baseline and alternative hydrologic scenario, then comparing the percent differences in

predicted occupancy from the baseline to the alternative. Decision-makers can then use the

relative differences across the landscape and through time as quantitative metrics of improve-

ments and declines in predicted occupancy of each species. Depending on the values of deci-

sion-makers, one or more alternatives will be preferred, and these preferences can feed into

further refinement and analysis of scenario performance in a structured decision making con-

text [60].
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56. Araújo MB, and Rozenfeld A. The geographic scaling of biotic interactions. Ecography. 2014; 37:001–

010.

57. DeAngelis DL, Gross LJ, Huston MA, Wolff WF, Fleming DM, Comiskey EJ, et al. Landscape modeling

for Everglades Restoration. Ecosystems. 1998; 1:64–75.

58. Catano CP, Romañach SS, Beerens JM, Pearlstine LG, Brandt LA, Hart KM, et al. Using scenario plan-

ning to evaluate the impacts of climate change on wildlife populations and communities in the Florida

Everglades. Env Manage. 2014; 55:807–823. https://doi.org/10.1007/s00267-014-0397-5 PMID:

25371194

59. Pearlstine LG, Beerens JM, Reynolds G, Haider SM, McKelvy M, Suir K, et al. Near-term spatial hydro-

logic forecasting in Everglades, USA for landscape planning and ecological forecasting. Envir. Model. &

Soft. 2020; 104783.

60. National Academies of Sciences, Engineering, and Medicine. Progress Toward Restoring the Ever-

glades: The Seventh Biennial Review-2018. National Academies Press; 2019.

PLOS ONE Everglades wading bird models to inform restoration planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0245973 January 28, 2021 21 / 21

https://doi.org/10.1890/11-1936.1
http://www.ncbi.nlm.nih.gov/pubmed/23210312
https://doi.org/10.1111/ele.13525
http://www.ncbi.nlm.nih.gov/pubmed/32429003
https://doi.org/10.1007/s00267-014-0397-5
http://www.ncbi.nlm.nih.gov/pubmed/25371194
https://doi.org/10.1371/journal.pone.0245973

