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Minireview
Close encounters between active genes in the nucleus
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Abstract

A recent paper demonstrates that coregulated genes on different chromosomes show
surprisingly high frequencies of colocalization within the nucleus; this complements similar results
found previously for genes localized tens of megabases apart on a single chromosome.
Colocalization could be related to the earlier observation of active genes associating with foci
where RNA polymerase II is concentrated.
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Nuclear compartmentalization and its study
using the 3C method 
The nucleus is still not infrequently perceived as a micro-

scopic test tube, in which activities such as transcription,

replication, and recombination are performed on a template

of randomly coiled chromatin bathed in a homogeneous

nucleoplasm containing soluble enzymes and cofactors. Yet in

recent years there has been a growing appreciation that the

nucleus is in fact highly organized. In interphase chromo-

somes, DNA is compacted by varying amounts, from hun-

dreds to thousands of times more compact than simple

B-form DNA [1], and the chromosomes form distinct, largely

non-overlapping ‘territories’ [2] that are non-randomly

arranged within the nucleus. As well as chromosome territo-

ries, a plethora of other nuclear compartments and bodies

have been identified, and many of the cofactors and enzymes

mediating the processing of DNA and RNA are enriched in

particular compartments or bodies [3]. The functional signifi-

cance of this considerable nuclear compartmentalization

remains unclear given that most nuclear proteins are quite

dynamic, equilibrating rapidly between specific compart-

ments and a soluble nucleoplasmic pool. But a 2004 paper [4]

that examined the colocalization of active genes on the same

chromosome arm fueled speculation about the possible func-

tional significance of nuclear compartmentalization. A new

report [5] now ignites interest in nuclear compartmentaliza-

tion by extending this work to coregulated foci on different

chromosomes. Both papers break new ground by combining

the recently developed ‘chromosome conformation capture’

(3C) method - a molecular method for assaying chromosome

proximity - with more established fluorescent in situ hybridiza-

tion (FISH) and immunocytochemistry techniques.

The 3C technique provides a powerful tool for dissecting the

spatial organization of chromosomes within nuclei [6]. The

3C method identifies DNA sequences that are in close molec-

ular proximity by detecting indirect linkage between them,

mediated through formaldehyde-induced DNA-protein and

protein-protein cross-links. Following treatment of intact

cells with formaldehyde, isolated DNA-protein complexes

are subjected to restriction-enzyme digestion. DNA frag-

ments held together via cross-linked DNA-protein com-

plexes have a higher probability than soluble DNA fragments

of being ligated together at low DNA concentrations. Rever-

sal of the formaldehyde cross-links is followed by detection

using PCR of the relative cross-linking frequency of two

DNA fragments, which is assumed to be proportional to

their spatial proximity in the nucleus. 

Association of linked active genes with
‘transcription factories’ 
Using a combination of bromouridine (BrUTP) incorpora-

tion to label nascent transcripts and immunodetection of



RNA polymerase II (Pol II), previous work on mammalian

cells [7,8] has typically revealed a few thousand visible foci

per nucleus in mammalian cell lines. There are estimated to

be tens of thousands of active genes per nucleus and fewer

than one RNA polymerase per active gene; on the basis of the

smaller number of foci than active genes, the authors [7,8]

proposed that the observed Pol II foci are ‘transcription facto-

ries’, each containing several clustered active genes. But the

fact that the number of foci is still in the thousands and that

they are small in size, combined with the possibility that tran-

scription could be intermittent and active genes could be

packed compactly in interphase chromatin, has suggested the

more trivial possibility that the foci arise from non-uniform

spacing of active genes along a linear DNA template. 

Osborne and colleagues [4] showed that a number of differ-

entiated mouse cell types contain significantly fewer Pol II

foci per nucleus than observed previously in certain mam-

malian cell lines [7,8]: only 100-300 were seen, correspond-

ing to one transcription factory per 20-60 megabase-pairs

(Mbp) in a typical G1-phase nucleus. The observed foci were

also considerably larger, ranging in diameter from several

hundred to one thousand nanometers. Five transcriptionally

active genes distributed within a 40 Mbp chromosome

region were examined, including the genes encoding the

�-like hemoglobin Hbb-b1 and the �-hemoglobin-stabilizing

protein Eraf (Figure 1a,b). The authors [4] found colocaliza-

tion of Hbb-b1 with one of the other four genes in 40-60% of

erythroid cells, seemingly an extraordinarily high percentage

for random intrachromosome folding. The close proximity

between several of these genes in the nucleus was confirmed

using the 3C method. If it is assumed that most active genes

are associated with transcription factories, these colocaliza-

tion percentages are consistent with an estimated one

factory per 20-60 Mbp. Indeed, the authors found that a

very high percentage of active genes were associated with the

factories, with a significant fraction of colocalizing genes

sharing a single transcription factory.

Spatial association of coregulated genes on
different chromosomes  
These results [4,7,8] suggest that gene regulation is tied to

the localization of genes to specific nuclear bodies. A natural

question is whether coregulated genes located on different

chomosomes might colocalize within the nucleus, which

would imply a still higher degree of nuclear spatial organiza-

tion. Osborne et al. [4] reported a 7% colocalization between

Hbb-b1 and the coregulated �-globin gene (Hba) located on

a different chromosome. This percentage is much higher

than the predicted 0.3-1% colocalization expected for a com-

pletely random intranuclear chromosome arrangement and

the observed number of transcription factories. 

The question has now been tackled further by Spilianakis et

al. [5], who document interchromosomal interactions
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Figure 1
Specific colocalization of genes on the same and different chromosomes,
as detected using a combination of fluorescent in situ hybridization (FISH)
and 3C technology. (a,b) A representation of part of a mouse erythroid-
cell nucleus, showing the edge of the territory of one chromosome and
two active genes Hbb-b1 and Eraf looping out from the territory. (a)
Osborne et al. [4] found that colocalization within the nucleus of these
two genes, together with other active genes (not shown) distributed over
the same 40 Mbp region of the chromosome, appears to be driven at
least in part through the shared colocalization with the same focal
concentration of RNA polymerase II (Pol II), in a ‘transcription factory’
(circles). (b) When the genes are not localized to Pol II foci, for example,
when Eraf is inactive (black), they are not colocalized. (c) Association in
naive mouse CD4+ T cells between the gene encoding the cytokine
interferon � (IFN�) and specific sequences in the TH2 locus, including the
genes encoding interleukin 5 (IL5) and the DNA-repair protein Rad50 as
well as a DNase I hypersensitive site called RHS6 [5]. In this cell type,
both gene loci are poised for rapid induction of low levels of expression.
CNS1 and CNS2 indicate conserved noncoding sequences near the IFN�
gene on chromosome 10. The genes may be associated with a shared
nuclear body represented by the oval, for instance a ‘transcription
factory’, but this has not been demonstrated [5].

Pol II
foci

Pol II
foci

Chromosome
territory

Chromosome
territory

Hbb-b1

Hbb-b1

Eraf

Eraf

Chromosome 10

Chromosome 11

CNS2

CNS1

RHS6

Rad50 
promoter

IL5

IFNγ

(a)

(c)

(b)



between two coordinately regulated gene loci. The genes

encoding the interleukins (cytokines) 3, 4 and 5 (IL3, IL4,

and IL5) all lie within the approximately 100 kilobase-pair

(kbp) TH2 locus on mouse chromosome 11, and the gene

encoding the cytokine interferon � (IFN�) is located on chro-

mosome 10. In naive (uncommitted) T cells that bear the

CD4 cell-surface marker (CD4+), both IL4 and IFN� can be

transcriptionally activated to low levels within several hours

of exposure to activating conditions, causing differentiation

into either of the two types of T helper cells, TH1 or TH2.

After this activation, the naive CD4+ T cells then differenti-

ate over several days into TH1 T-helper cells, which express

IL3, IL4 and IL5 at high levels but do not express IFN�, or -

under different conditions - into TH2 T-helper cells, which

express IFN� but not IL3, IL4 or IL5.

Using the 3C method, Spilianakis et al. [5] found a striking

colocalization of the IFN� gene with the unlinked TH2

cytokine locus in naive CD4+ T cells (Figure 1c). Three regu-

latory regions within the TH2 locus showed several-fold

higher cross-linking frequencies to the IFN� gene compared

with the cross-linking frequency between intrachromosomal

fragments separated by several kilobase-pairs within the

Gapd gene. The colocalization found using the 3C method

was largely lost after differentiation into TH1 or TH2 cells.

The authors [5] confirmed the colocalization results using

FISH: at least one IFN� allele colocalized with the TH2 locus

in 37% of naive CD4+ T cells but in only 10-13% of TH1 or

TH2 cells.

Spilianakis et al. [5] propose that the potential of naive CD4+

T cells rapidly to induce both IFN� and the TH2 cytokines at

low levels within hours of activation is related to the close

interchromosomal interactions between the two loci. To test

the functional significance of this interaction, cells were

examined from mice containing a homozygous deletion of a

DNase I hypersensitive site (RHS7) within the locus control

region of the TH2 locus, an element that is essential for

expression of TH2-specific cytokines. Previous work had

shown that deletion of RHS7 resulted in loss of intrachromo-

somal interactions between another hypersensitive site -

RHS6 - and other cis elements within the TH2 locus. As

anticipated, deletion of RHS7 also eliminated the interchro-

mosomal interaction between RHS6 and the IFN� gene and

the TH2 locus, as detected by 3C analysis. Moreover, the

rapid induction of IFN� on chromosome 10 was delayed

from 3 to 12 hours in naive CD4+ T cells lacking RHS7.

A surprising twist to these experiments, however, was that

the deletion of RHS7 nearly doubled the percentage of IFN�

and TH2 loci that colocalized as measured by FISH. Despite

this, however, the mean separation between the apparently

colocalized loci increased from 1.9 pixels in wild-type cells to

4.5 pixels in cells with RHS7 deleted, and overlapping signals

(indicating that the two loci are separated by less than one

pixel) decreased from 41% to 13%. One way to reconcile the

3C and FISH results would be to postulate that the observed

interchromosomal interactions between the IFN� and TH2

loci depend on two separate phenomena: a non-random

positioning of chromosome 10 and 11 to the same nuclear

subcompartment, together with a molecular interaction

between specific DNA sequences within the two loci that is

dependent on the locus control region. In this model the non-

random chromosome positioning would be independent of

the function of the locus control region, and perhaps even

independent of the gene activity status of the TH2 and IFN�

loci. By bringing these two loci into relatively close proximity,

however, establishment of non-random chromosome posi-

tioning would then facilitate their close molecular interaction,

which would be dependent on the IFN� locus control region.

Loss of the IFN� locus control region and gene activity might

paradoxically lead to increased percentages of chromosome

colocalization, owing to a reduced association of the active

IFN� locus with other, competing nuclear structures -

distant transcription factories for instance. 

The functional significance of gene
colocalization  
The intrachromosomal interactions demonstrated by

Osborne et al. [4] appear to be established, at least in part,

by the shared attachment of cis-linked active genes to large

foci enriched in Pol II (transcription factories). The authors

[4] propose the tantalizing hypothesis that gene activation

requires association with these Pol II foci. What they have

actually shown is that a very high fraction of active genes, as

detected by RNA FISH, colocalize with these transcription

factories in the mouse cell types examined. At the very least,

these results show that in their study most of the genes

examined become associated with these foci when transcrip-

tion is on and disassociated when transcription is off.

Formal testing of their hypothesis awaits experiments that

directly measure a correlation between the onset or cessa-

tion of transcription with either the association or the disas-

sociation of gene loci and transcription factories,

respectively. Certainly, in fibroblast-like cell types such large

transcription factories do not exist [4], and in engineered,

artificial systems transcriptional activation is observed along

the lengths of large-scale chromatin fibers [9,10]. Yet it is

striking that fibroblasts appear to be the exception among

differentiated cell types in lacking large Pol II foci. Interest-

ingly, in typical mammalian tissue-culture cell lines that do

not show large Pol II foci, a significant fraction of active

genes were previously found to be associated with interchro-

matin granule clusters (IGCs), with multiple active genes

colocalizing to a single IGC [11]. The relationship between

the transcription factories described in the differentiated

primary cells [4] with the interchromatin granule clusters

described in other studies is not yet clear. 

The origin of the interchromosomal interactions described

by Spilianakis et al. [5] is even less certain. Given that the
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long-range mobility of chromatin within interphase nuclei is

generally observed to be low, it is difficult to imagine how

two cytokine loci on different chromosomes would find each

other within the nucleus if the interchromosomal interaction

was driven solely by interactions in trans between DNA

sequences in the two loci (Figure 2a,b). But if an indepen-

dent mechanism meant that the territories of chromosomes

10 and 11 were preferentially localized to the same nuclear

compartment, the association of cytokine loci on the two

chromosomes would be facilitated (Figure 2c,d). This could

occur through a direct, trans interaction or via association

with a shared nuclear body such as a transcription factory. 

A major uncertainty involved in understanding the functional

significance of the observed colocalization [4,5] is intrinsic to

the 3C methodology itself. Does an elevated cross-linking fre-

quency reflect a stable, close molecular interaction between

two DNA fragments in a significant fraction of cells? In this

case the effects on gene regulation affected by colocalization

of coregulated loci could resemble transvection effects in

Drosophila. Transvection is a phenomenon in which gene

regulation is altered by the interaction of two alleles in trans,

for instance allowing complementation between two differ-

ent mutations. Typically, transvection is dependent on the

close pairing of homologous chromosomes present in

Drosophila. Recent data have shown interactions in trans

between regulatory regions on homologous chromosomes

[12]. In mammalian cells, where homologous pairing is gener-

ally not observed, similar interactions in trans might be facili-

tated through colocalization to a shared nuclear compartment.

Alternatively, does the elevated cross-linking frequency

instead reflect a transient molecular interaction, such as colli-

sion, that is present within a very small fraction of cells? 

In summary, Spilianakis et al. [5] have demonstrated a com-

pelling example of interactions between two coregulated

gene loci located on different chromosomes. Colocalization

was demonstrated both by cytological methods (FISH),

demonstrating proximity over a scale of several hundred

nanometers to a micrometer, and by the 3C method, demon-

strating proximity at a molecular level in an undetermined

fraction of cells. These results parallel to a certain extent the

previous demonstration of interactions between active genes

linked in cis on the same chromosome but distributed over a

large 40 Mbp region [4].

Key questions for future investigation include the following.

How general will the observation of interchromosomal inter-

actions between coregulated genes prove to be? More specif-

ically, will a large fraction of coregulated gene loci

demonstrate such colocalization, or will it be restricted to a

few select examples? Is interchromosomal interaction intrin-

sic to the interacting loci or does it require distant sequences

on the two chromosomes? Experiments using transgene loci

and/or chromosome translocations would address this issue.

Is the interchromosomal interaction mediated by direct

interactions in trans between the two loci, or is it facilitated

by colocalization to a shared nuclear compartment, as dis-

cussed above and outlined in Figure 2? Finally, there is the

fundamental question of the physiological consequences of

these interactions. How transient or stable are they at both

the cytological and the molecular level? What is the temporal

correlation between the interchromosomal interactions and

the initiation of transcription? What are the consequences of

disrupting the interaction for transcriptional regulation in

trans? Future advances in live-cell imaging should be

invaluable in addressing the latter questions.
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Figure 2
A model showing a way in which specific interchromosomal colocalization
could be facilitated by associations with a common nuclear body. Each
panel shows a mouse cell nucleus; the territories of chromosomes 10 and
11 are indicated, with loops representing gene loci on each chromosome.
Small circles represent transcription factories and NB indicates another
nuclear body. (a,b) In a one-step model there is no correlation between
the positions of the two chromosome territories in the nucleus (a), but
genes loop out from the chromosome territories and colocalize as a result
of interacting with a shared nuclear body (NB), with or without an
associated transcription factory (b). But it is difficult to imagine how loci
on two different chromosomes can find each other with the high efficiency
that is observed if their chromosome territories are randomly distributed.
(c,d) A more plausible two-step model in which the two chromosome
territories are brought into the same general vicinity of each other,
perhaps through association with the same nuclear body (c). Specific
colocalization of genes on the two chromosomes is then established (d),
perhaps by association with the same nearby transcription factory. 
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