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Abstract

Motivation: RNA sequencing of single cells enables characterization of transcriptional heterogen-

eity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a

wide range of researches fields. However, few studies have focus on characterization of isoform-

level expression patterns at the single-cell level. In this study, we propose and apply a novel

method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression pat-

terns of isoform pairs from the same gene in single-cell isoform-level expression data.

Results: We define six principal patterns of isoform expression relationships and describe a method for

differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data

from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern

types to each of 16 562 isoform-pairs from 4929 genes. Among those, 26% of the discovered patterns

were significant (P<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-

out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-

pattern analysis were not detected by differential-expression analysis. Finally, the effects of drop-out

events and expression levels of isoforms on ISOP’s performances were investigated through simulated

datasets. To conclude, ISOP provides a novel approach for characterization of isoform-level preference,

commitment and heterogeneity in single-cell RNA-sequencing data.

Availability and implementation: The ISOP method has been implemented as a R package and is

available at https://github.com/nghiavtr/ISOP under a GPL-3 license.

Contact: mattias.rantalainen@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The emergence of single-cell RNA sequencing (scRNAseq) enables

characterization of gene expression variability on the single-cell level

(Sandberg, 2014; Wang and Navin, 2015). Prior to the advent of

scRNAseq, typical gene expression measurements were only possible

based on the average expression level over a large number of cells

(bulk-cell RNAseq), which effectively excluded the possibility to

study gene expression heterogeneity at the single-cell level.

Single-cell sequencing has been applied in a wide range of research

areas to date, including studies of circulating tumor cells (Ramsköld

et al., 2012; Sandberg, 2014), breast cancer (Aceto et al., 2014), pros-

tate cancer (Cann et al., 2012), transcriptional dynamics (Trapnell

et al., 2014), cell cycle (Buettner et al., 2015), tissue heterogeneity

(Achim et al., 2015) and cell-to-cell variation in alternative splicing

via isoform-level expression analysis (Marinov et al., 2014; Shalek

et al., 2013; Velten et al., 2015). Multiple recently published reviews
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(Hicks and Baslan, 2017; Navin, 2014; Papalexi and Satija, 2017;

Rantalainen, 2017; Tang et al., 2011; Wang and Navin, 2015) pro-

vide excellent and broad introduction to single-cell sequencing.

Transcriptional isoforms are defined as mRNA molecules of dif-

ferent length and exon composition originating from the same

locus, which code for multiple forms of the corresponding protein.

Transcriptional isoforms arise as mRNAs are produced from differ-

ent transcriptional starting sites, terminated at different polyadeny-

lation sites, or as a consequence of alternative splicing (Black,

2003; Matlin et al., 2005). There are numerous studies of alterna-

tive splicing in the context of bulk-cell RNAseq, including studies

of tissue-level regulation of isoform expression (Wang et al., 2008)

and prediction and quantification of alternative isoforms (Richard

et al., 2010; Trapnell et al., 2010).

To date, there are relatively few studies published that are

focused on characterization of isoform-level expression at the single-

cell level. Potentially novel splice junctions were discovered after

studying alternative splicing in single cells (Marinov et al., 2014;

Tang et al., 2009). Shalek et al. (2013) described bimodality in the

expression of genes and isoforms in scRNAseq data. The preference

of individual cells to express a particular isoform from multiple-

isoform genes was also investigated. However, this study was based

on a limited dataset with RNAseq data from only 18 cells. In an-

other study (Velten et al., 2015), statistical modeling was applied to

characterize 30 isoform choice variability in single cells via a

transcriptome-wide analysis of scRNAseq data from 48 single-cells

using BATSeq (Velten et al., 2015), a sequencing methodology with

a prominent 30 end sequencing bias. Welch et al. (2016) introduced

a statistical model to detect isoform usage that shows significant bio-

logical variation through the contrast of variance of isoform ratios

to technical noise. Recently, Karlsson and Linnarsson (2017) investi-

gated the diversity of single-cell mRNA in the mouse brain. They

discovered an unusual amount of isoform diversity after a conserva-

tive definition of isoform was applied.

In this study, we propose a novel method, ISOform-Patterns

(ISOP), for analysis and characterization of single-cell isoform-level

gene expression data. ISOP enables analysis of single-cell preference,

commitment and heterogeneity of isoform level expression. Based on

this method, we defined a set of six principal patterns of isoform ex-

pression relationships between isoforms from the same gene, includ-

ing isoform preference, bimodal isoform preference and mutually

exclusive expression commitment. We apply ISOP for analysis of

scRNAseq data from a breast cancer cell line (MDA-MB-231;

N¼327 cells), with replication in three independent single-cell data-

sets, with the aim of systematically characterizing the extent and na-

ture of single-cell isoform-level expression patterns. We then assess to

what extent isoform patterns arise randomly due to the distributional

properties of single-cell RNA expression, and we also demonstrate

how ISOP can be applied for differential isoform pattern (DP) ana-

lysis. Finally, we investigate the characteristics of isoform patterns

and the performance of the ISOP method in simulated datasets.

2 Materials and methods

2.1 Datasets
2.1.1 Real datasets

The primary dataset include 384 scRNAseq samples from a triple-

negative breast cancer cell line (MDA-MB-231) of which half of the

cells were treated with metformin. Specifically, the MDA-MB-231

cells were cultured in ATCC-formulated Leibovitz’s L-15 Medium

(Manassas, VA) supplemented with 10% fetal bovine serum (FBS,

Atlanta Biologicals, Flowery Branch, GA) and incubated at 37�C

without CO2. Cells were plated into six-well plates at a seeding

density of 6 � 104 cells/well and were treated with or without

1 mmol/L metformin (Sigma-Aldrich, St. Louis, MO) after 24 h of

incubation. Fresh medium and drug were replaced every 24 h. After

5 days of drug treatment, cells were resuspended and single-cells

were captured using the Fluidigm C1 system immediately. Two inde-

pendent cell culture batches were used from which 2 � 96 untreated

cells (control) were captured and 2 � 96 treated cells were captured.

Furthermore, cells were captured on two different C1 machines in

an orthogonal design in relation to the treatment groups.

Sequencing libraries were prepared using the standard Fluidigm

protocol based on SMARTer chemistry and Illumina Nextera XT.

RNA sequencing of 100 bp paired-end reads was carried out on an

Illumina HiSeq with 4.9 million reads/cell on average.

The first public dataset consists of 96 cells from HTC116 cell-

line extracted from a public dataset (Wu et al., 2014). Single-cells

were captured using the Fluidigm C1 system and sequencing libra-

ries for Illumina sequencing were prepared based on SMARTer

chemistry and Illumina Nextera XT. The 96 libraries, divided into

two pooled samples of 48 libraries were sequenced on two lanes on

a Illumina HiSeq, see further details in the original publication (Wu

et al., 2014). The second public dataset includes 305 single-cells

from a primary human myoblasts (Trapnell et al., 2014) after elimi-

nating samples with debris, without cells and those containing many

cells (bulk-cell). Single-cells were captured using the Fluidigm C1

system and sequencing libraries for Illumina sequencing were pre-

pared based on SMARTer chemistry and Illumina Nextera XT. The

last public dataset contains 96 single cells from a primary brain

tumor of a glioblastoma multiforme patient (patientID SF10282)

from a recent study (Müller et al., 2016). Single-cells were captured

and libraries prepared on the Fluidigm C1 system, libraries were

pooled for 96-plex sequencing, and sequencing was performed on

HiSeq 2500 (Illumina). Further details of the sequence preparation

and processing are referred to the original publications.

2.1.2 Simulated datasets

To determine the performance of ISOP and to further investigate the

characteristics of isoform patterns, we generated simulated single-

cell datasets with predefined distributional properties, which were

analysed using ISOP. Two simulated datasets were generated: (i)

scSim, a dataset of isoforms simulated from the whole transcriptome

using the beta-Poisson model (Vu et al., 2016) and (ii) ipSim, a data-

set of isoform pairs simulated at different levels of expression and

sparsity.

The scSim dataset contains data from 200 cells equally divided

into two groups: a control group and a treated group. A simulated

biological effect was generated as differential expression (DE) be-

tween two groups in 1% of the isoforms, all isoforms pairs were

otherwise simulated to be expressed independently of each other.

In the ipSim dataset, we investigate two scenarios of expression

relationships (expression type) between pairs of isoforms: non-

differential expression and DE, in addition to exploring different ex-

pression levels and degrees of sparsity. For convenience, we annotate

a particular simulation case by ‘X-Y’, where X and Y are the levels

of median expression (in log2 scale of read count of cells with non-

zero expression) of isoforms a and b, respectively. In particular, the

dataset includes seven levels of equivalent expression of two iso-

forms: 4–4, 5–5, 6–6, 7–7, 8–8, 9–9 and 10–10 and five types of DE

between the two isoforms: 7–6 and 7–8 for 2-fold changes, 7–5 and

7–9 for 4-fold changes and 5–10 for the largest fold changes. In each
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case of X-Y, 11 levels of sparsity of isoforms are taken into account

including 5%, 10% to 90% and 95%. Thus, there are 121 simula-

tion parameter settings defined by the combination of expression

type and sparsity levels. Data were simulated 100 times under each

parameter setting and results were collected for downstream ana-

lyses. Further details about the generation of the simulated dataset

can be found in the Supplementary Material. We applied the same

analyses for analyses of the simulated dataset as in the analyses of

the real biological single-cell datasets, including isoform-pattern de-

tection, test for non-random isoform pattern and DP test (only for

scSim).

2.2 Data preprocessing
The Fastq files from the primary dataset (MDA-MB-231) for single-

cell RNAseq were processed through MAP-RSeq pipeline (Kalari

et al., 2014) to assess the quality of reads, which includes determin-

ation of cells with no or few reads, assessment of duplicate reads, in-

spection of gene-body coverage, estimation of distance between

paired-end reads and evaluation of sequencing depth. The Fastq files

were mapped to human hg19 UCSC annotation reference using

Tophat (Trapnell et al., 2009) and Bowtie (Langmead et al., 2009)

to create bam files. In all further analyses, we used the same type of

annotation reference downloaded from igenomes http://support.illu

mina.com/sequencing/sequencing_software/igenome.html. In prac-

tice, only annotation information of chromosomes chr1 to chr22,

chrX and chrY were used to quantify isoform- and gene-level ex-

pression. Cufflinks (Trapnell et al., 2010) version 2.2.1 (quantifica-

tion-only mode) was applied to estimate the abundances of gene and

isoform expression from the bam files. For the public datasets, we

also applied Tophat (Trapnell et al., 2009) and Bowtie (Langmead

et al., 2009) with the same annotation reference for read alignments,

followed by application of Cufflinks (Trapnell et al., 2010) for

quantification of isoform level expression values.

The MDA-MB-231 dataset was subsequently preprocessed

further by excluding 57 samples corresponding to empty wells (39

samples) and atypical samples (18 outliers), which were identified

by principal component analysis. We also used SCell software (Diaz

et al., 2016) for double-checking the initial quality control

(Supplementary Fig. S1) and achieved 97% concordance in respect

to QC ‘passed’ cells. All cells from the remaining 3% contained

high coverage (>0.999) estimated by Good-Turing statistics

(Supplementary Fig. S1c) and/or high Gini-Simpson index

(Supplementary Fig. S1d). In addition, isoforms expressed in less

than 1% of samples were excluded from the further analysis.

Isoforms were considered as expressed if their read counts were � 3

in a cell. After pre-processing the isoform-level dataset contained

21 728 isoforms, of which 13 863 isoforms from 4929 genes were

multiple-isoform genes, and scRNAseq data from 327 single-cells

were available for analysis, of which 162, nearly a half of samples,

were from the metformin treated group. Gene-level expression data

in this dataset comprised 13 073 genes that were also estimated

by application of Cufflinks. The HTC116 dataset, the myoblast

dataset and the brain dataset consisted of 26 723, 25 623 and 27 124

isoforms and 5874, 5708 and 5949 multiple-isoform genes,

respectively.

2.3 Patterns of isoform expression
To characterize isoform-level gene-expression patterns in scRNAseq

data and to detect potential subpopulations of cells, log expression

differences Di;j;a;b [Equation (1)] between pairs of isoforms fa;bg of

a single gene (j) at cell i from a population of N cells ði ¼ 1::NÞ were

modeled using a Gaussian mixture model approach [Equations (2)

and (3)]. Where yi;j;a and yi;j;b represent the log expression of iso-

forms a and b in cell i, parameter wk is the mixing weight for com-

ponent k in the model and K is the total number of components in

the model. In our analyses, K was constrained to � 3. For simpli-

city, indexes relating to gene (j) and cell (i) were omitted from

Equations (2) and (3)

Di;j;a;b ¼ yi;j;a � yi;j;b; (1)

f ðDa;bÞ ¼
XK

k¼1

wkNðDa;bjlk; rkÞ; (2)

XK

k¼1

wk ¼ 1 (3)

Model selection to determine the number of components of each

mixture model was based on the Akaike information criterion scores

with the additional requirement that the smallest weight ðwkÞ had to

be>0.025, and that the standard deviation of all components was

greater than 0.01. Mixture models were fitted using a computation-

ally efficient histogram-based method implemented in the OCplus

package (Pawitan et al., 2005). Fitting of the mixture models using

the OCplus algorithm reduces data to a histogram defined by

equally spaced bins weighted by the number of data points in each

bin, here the number of bins was set to the square root of the num-

ber of data points (number of cells). Based on the mixture model ap-

proach, we define six principal isoform-pair patterns (see Section 3).

The method, ISOP, was implemented in the R package ISOP (ver-

sion 0.99.1 was used in the analyses in this study), available at

(https://github.com/nghiavtr/ISOP) under a GPL-3 license.

2.4 Test for non-randomness of isoform-pair

distributions
To test if an isoform pair distribution was significantly non-random,

we employed a permutation-based approach. For an isoform pair

fa; bg, we permuted the isoform vectors and calculate Da;b;perm,

which is the expression difference between the permuted isoforms a

and b vectors, 10 000 permutations were applied. Next, we esti-

mated the mean, EðDa;b;permÞ, from the permutations and for each

bin. The permutation-based null distribution was derived from the

v2 goodness-of-fit test of kth permuted isoform pair Da;b;permðkÞ and

EðDa;b;permÞ. The observed test statistic was derived from the v2

goodness-of-fit test between Da;b and EðDa;b;permÞ. Finally, a P-value

was computed by comparing the observed test statistic with the

permutation-based null distribution of the v2 statistic. To determine

significant (non-random) isoform-pairs, P-values were adjusted to

account for multiple testing using the method described by

Benjamini and Hochberg(1995).

2.5 DP analysis
We test whether a treatment effect (metformin exposure) was associ-

ated with the probability of cells of being clustered into a particular

mixture model component in the isoform pattern models, which

would suggest a treatment effect on the distribution of isoform pairs.

For each mixture model with more than one component, we as-

signed individual cells to components (cluster labels) based on the

estimate of the probability that cell i belongs to component k.

Subsequently, we applied a permutation test to test the association

between the cluster labels and the metformin treatment status. In the

permutation test, we permuted the metformin treatment factor
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(10 000 permutations). Next, we established a null-distribution

from the v2 statistics of v2 test between the cluster labels and the

permuted group labels. Finally, we computed the v2 statistic of v2

test between cluster labels and the true group labels and compared it

to the permutation-based null distribution to obtain a permutation-

based P-value. The P-values were adjusted for multiple testing using

the method described by Benjamini and Hochberg (1995).

3 Results

We developed and applied a method (ISOP) for transcriptome-wide

analysis of the co-variability of expression levels in pairs of isoforms

(a and b) from the same gene in scRNAseq data. ISOP utilizes a

Gaussian mixture model approach to model isoform expression dif-

ference ðDa;bÞ on a log scale (see Section 2 for details). Based on the

estimated mixture model parameters, including the number of compo-

nents and the location of the components, expression patterns of pairs

of isoforms in individual genes can be systematically characterized

and described by a small set of principal isoform expression patterns.

The isoform expression patterns can be interpreted in terms of single-

cell isoform expression preference, commitment and heterogeneity.

3.1 Principal patterns
Based on ISOP, we define six distinct patterns of isoform expression

(Fig. 1) with the following characteristics:

• I-pattern: A single-component model defines this pattern. Thus, there

is no cell-to-cell heterogeneity in the isoform pair. However, if the

mean of the mixture component is distant from zero, this indicates

that one isoform is preferred over the other isoform (preference).
• II-pattern: This pattern is an extension of the I-pattern with an

additional mixture component capturing the zero-inflation of

cells where isoform expression is not detected, or where isoforms

are expressed at close to equal amounts in both isoforms. The

II-patterns represents isoform preference in a subset of cells.

• V-pattern: A two-component mixture model defines the

V-pattern, in which the means of the two components share the

same sign. However, unlike the I-pattern, which has a unimodal

distribution in both isoforms, the V-pattern generally has a uni-

modal expression in one of the isoforms and a bimodal distribu-

tion in the other isoform. Thus, the V-pattern is defined by a

bimodal isoform preference that indicates cell-to-cell heterogen-

eity caused by prominent bimodality in one of the two isoforms.
• VI-pattern: This pattern is an extension of the V-pattern with an

additional component in the mixture model with its mean close

to zero (in analogy to how the II-pattern extends the I-pattern).

Thus, the VI-pattern represents the bimodal isoform preference

of a subset of cells in population.
• X-pattern: A three-component mixture model defines the

X-pattern. Different from the previous pattern types, the X-pattern

has two components with the location parameters (mean) of op-

posite sign and a third component accounting for the zero-

inflation. This pattern captures pairs of isoforms with mutually ex-

clusive expression [mutually exclusive isoforms (MXIs)], with sim-

ilarities to the concept of mutually exclusive exons (MXEs; Wang

et al., 2008). The X-pattern represents a mutually exclusive ex-

pression commitment that can be interpreted as an indication of

commitment of individual cells to express either one of the iso-

forms, but not both, representing a particular type of inter-cell

heterogeneity.
• XI-pattern: This is an extension to the X-pattern where the com-

ponent located close to zero accounts for both zero-inflation and

cells where the two isoforms are expressed at close to equal.

Thus, the XI-pattern represents a mutually exclusive expression

commitment in a subset of cells in the cell population.

3.2 Classification and observed frequencies of

isoform patterns
We applied ISOP for analysis of 13 863 isoforms from 4929

multiple-isoform genes in the MDA-MB-231 single-cell dataset. We

(a)

(c)

(b)

Fig. 1. Overview of the six principal isoform expression pattern types. Each panel consists of two plots: a component plot (left) displaying the typical mixture

model of Da;b for the pattern, corresponding to isoforms a and b in the isoform pair, and a pair-line plot (right) of the two isoforms. (a) The I-pattern (isoform pref-

erence of cells) and its extension, the II-pattern (isoform preference in a subset of cells). (b) The V-pattern (bimodal isoform preference of cells) and its extension,

the VI-pattern (bimodal isoform preference in a subset of cells). (c) The X-pattern (mutually exclusive expression commitment of cells) and its extension, the VI-

pattern (mutually exclusive expression commitment in a subset of cells)
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detected and assigned pattern type to 16 562 isoform-pairs (Fig. 2a).

We found that 0.2% of the isoform pairs were classified as I-pattern

and 8.1% of the pairs were classified as the related II-pattern. More

than a half (55.2%) of the I-patterns were consistent with isoform

preference, defined by the absolute mean of the mixture component

>0.5 on the log scale, marked by stars in the panel I-pattern of

Figure 3a. In contrast, the V-pattern and its extension, the VI-

pattern, had proportions in a similar range, 5.7% and 8.2%, re-

spectively (13.9% in total). The X- and XI-patterns were the most

common patterns, accounting for 77.9% of the isoform pairs, of

which 17.2% were MXIs.

We applied a permutation test (see Section 2) to assess to what

extent isoform-pair patterns were significant (non-random, adjusted

P-value � 0.05). We found 4309 (26.0%) significant isoform pat-

terns in total (Table 1). The I- and II-patterns were the least common

patterns (Fig. 2a), while they had the highest proportions of signifi-

cant isoform-pair patterns, 62.1% and 39.3% for I- and II-patterns,

respectively. The X-patterns were the second most common pattern

(Fig. 2a), while only 3.1% of these were statistically different from

the permutation-based null distribution. A total of 3, 213 (32.0%)

of the XI-pattern isoform-pairs were found to be significant, repre-

senting the most commonly observed significant isoform pattern.

Next, we investigated how expression sparsity might induce iso-

form patterns. We define sparsity of expression as the proportion of

cells where expression levels were below detection limit, so that an iso-

form with low sparsity has detectable expression levels from most

cells. We found that the X-pattern was mainly detected in isoform

pairs with high sparsity (Fig. 3a), suggesting that the great majority of

X-pattern isoform pairs are likely to arise as a consequence of sparsity,

which can be caused by, e.g. transcriptional bursting, biological cell-

to-cell heterogeneity or due to the sensitivity limitations of scRNAseq

(including transcript drop-out effects). Next, we assessed the distribu-

tion of the proportion of cells with zero detected reads in both iso-

forms in a pair, a quantity directly related to the sparsity of Da;b,

which is the quantity modeled in the ISOP mixture models (Fig. 3b). It

is evident that significant patterns (in red color) often consist of two

low sparsity isoforms, with the exception of the I- and II-patterns.

Overall, 26.0% of all isoform-pairs were found to be significant (non-

random), while a large fraction of non-significant isoform-pairs are

likely induced by sparsity in the isoform-level expression data.

To replicate these results, we applied the ISOP method for analysis

of three additional public datasets (see Section 2) and found that the

same patterns were also discovered in these datasets. There were 23712,

22763 and 20975 isoform pairs in the HTC116, myoblast and brain

datasets, respectively. Since these datasets are from diverse tissues, which

most likely have substantial differences on the molecular level, the pro-

portions of patterns are rather specific to the dataset. However, we note

that the observed isoform patterns have some concordances. For ex-

ample, the proportions of the different principal patterns in these data-

sets (Supplementary Fig. S2) were similar to the proportions observed in

the MDA-MB-231 dataset, where the X- and the XI-patterns were the

most common. The HTC116, myoblasts and brain datasets (Table 1)

had 5.1, 22.8 and 2.6% significant patterns, respectively. Similar to the

results of the MDA-MB-231 dataset, the non-random isoform-pairs that

were annotated as X-patterns in both datasets account for the smallest

proportion compared to the other patterns, 0.6% in the HTC116 data-

set, 3.0% in the myoblast dataset and 0.0% in the brain dataset.

3.3 Association of isoform patterns with genomic

features
We then assessed if isoform patterns were associated with different

transcription start site (TSS), the number of annotated isoforms of the

(a) (b) (c)

(d) (e) (f)

Fig. 2. ISOP analysis of the MDA-MB-231 dataset. (a) Proportion of isoform patterns and % of isoform patterns within each category that are significant (in paren-

theses). (b) Frequency of patterns with isoforms with the same and different transcription start site (TSS). (c) Proportion of patterns as a function of the total num-

ber of annotated isoforms in the corresponding gene. (d) Proportion of patterns stratified by chromosome. (e) Proportion of patterns stratified by gene

expression level. (f) P-value distribution from the test of association between component label and treatment group
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gene, chromosome location and average expression level. In the fol-

lowing analyses, we merge I, V and X patterns with their correspond-

ing extension patterns because the principal and extended patterns

represent the same characteristics of the isoform patterns (isoform

preference, bimodal isoform preference or mutually exclusive expres-

sion commitment). We observed that the number of isoform pairs

originating from the same TSS is more than twice as common (2.38

times, across all patterns) compared with pairs originating from differ-

ent TSS, compared to a ratio of 1.63 times observed in the reference

transcriptome (Fig. 2b). Thus, across all detected patterns, isoform

pairs from the same TSS are more frequently observed than those orig-

inating from different TSS. The number of isoforms in each gene posi-

tively correlates with the proportion of the X-pattern (r¼0.92, top

line), negatively correlates with the proportion of I-pattern and V-pat-

tern (r ¼ �0:82 and r ¼ �0:94, bottom line and middle line)

(Fig. 2c). Hence, genes with many isoforms tend to have a higher pro-

portion X-patterns and lower proportion I- and V-pattern. There was

no association between pattern type and the chromosome on which

the gene is located (Fig. 2d). Next, we investigated to what degree the

different isoform patterns were associated with gene-level expression.

It is worth noting that the average gene expression has a strong correl-

ation with the variance of gene expression (Supplementary Fig. S3),

with higher average expression levels generally has a lower variance.

Thus, the average gene expression also reflects the information of the

variance of gene expression. We grouped genes into three groups:

low, medium and high expression defined by quartiles of average gene

expression (<1st quartile, >1th quartile and <3rd quartile, >3rd

quartile). Most isoform pairs belonged to the high expression group

(45.6%) or the medium expression group (46.8%); while only a small

proportion (7.6%) of these are from low expression group (Fig. 2e).

To investigate the relationship between gene features, including

TSS, number of annotated isoforms of gene, mean of gene expression

and gene length with isoform patterns, we performed multivariate

analysis. Particularly, we applied logistic regression to observe the as-

sociation of X-pattern versus I-pattern (and V-patterns) in the rela-

tionship with these gene features. Under the null hypothesis of no

association between the gene characteristics and the pattern type,

what we observe is a realization of random permutation of the pattern

type. This means that we can compare the observed associations—as

estimated by the logistic regression—against the reference distribution

generated by permuting the pattern type a large number of times. For

predictor i, the P-value for the predictor is computed as

P-value¼number of abs(coefficient of predictor i in permuted data)

� abs(observed coefficient of predictor i) divided by the number of

permutations K. In practice, we use K¼10 000. Note that the validity

of the permutation test depends only on the exchangeability of pattern

type under the null hypothesis of no association, so we do not assume

independence of the isoform pairs. The results (Supplementary Table

S1) show that all these gene characteristics have significant associ-

ations with pattern types, except TSS, which had no association

(P-value¼0.181) in X-pattern versus V-pattern.

Finally, we analysed the effects of principal isoforms (Rodriguez

et al., 2015), which encodes for the main protein isoforms detected

in proteomics experiments on isoform patterns. The information of

principal isoforms available from the APPRIS database (Rodriguez

et al., 2015) was downloaded and utilized in this study. We found

that most of the isoform pairs with a V patterns (59%) included a

principal isoform (Supplementary Table S2). This proportion is sig-

nificantly smaller compared with the I patterns (36%) and X pat-

terns (33%). Thus, the non-principal isoforms tend to have mutually

exclusive expression commitment (X patterns).

3.4 Isoform patterns provide a novel way to assess

biological effects in scRNAseq data
Next, we tested for associations between a treatment (metformin ex-

posure) and proportion of cells in each mixture model component

(see Section 2 for details). An association between a treatment effect

(a)

(b)

Fig. 3. Sparsity of isoform expression in principal isoform expression pattern

types. (a) Pairwise sparsity of isoform a and b in each individual pair and pat-

tern type. Each point presents a single isoform-pair pattern, while the sparsity

of the two isoforms in the pair is indicated on the x- and the y-axes. Blue

points and red points represent non-significant and significant isoform-pairs.

The star points indicate I-patterns with isoform preference. The contour line

presents the two-dimension densities of non-significant isoform pairs using

the density smooth function of OCplus package (Ploner et al., 2006). The

lower density region indicates the region has a high proportion of significant

isoform-pairs. (b) Empirical distribution of the shared sparsity of the two iso-

forms (directly related to the sparsity of Da;b ) in isoform pairs across pattern

types. The red part of the histograms corresponds to the portion of significant

(non-random) isoform-pairs
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and the proportion of the cells in each mixture component would in-

dicate an effect of the treatment on the isoform-level expression pat-

tern. Figure 2f displays the distribution of empirical P-values from

the association tests, suggesting an enrichment of low P-values. A

total of 80 isoform pairs were defined as significant (adjusted

P-value � 0.05) from 54 genes. We define these genes as DP genes

to distinguish them from DE genes. Details of DE analysis to dis-

cover DE genes are provided in the Supplementary Material. Of

these isoform pairs, 19 (23.8%) were found to be significant and

non-random (adjusted P-value � 0.05) in respect to the distribution

of Da;b, using the previously described permutation test. However,

non-significant results in respect to the distribution of Da;b does not

provide evidence that excludes the possibility of true treatment ef-

fects on the proportion of treated cells in the mixture components in

these patterns, only that the overall distribution of Da;b could have

occurred by chance or beem induced by, e.g. sparsity. This observa-

tion is confirmed again in the simulated datasets in the next section.

A total of 37 (68.5%) of the DP genes had at least one of the two

isoforms differently expressed and five of these DP genes were from

isoform pairs (9.3%) with two DE isoforms. Furthermore, 17 DP

genes (31.5%) did not have either of the two isoforms differentially

expressed. The DP unique genes were: NABP1, SMN2, BTN3A3,

CLIC1, CEP85L, ERLIN2, CDK1, TMEM136, DAZAP2, PMP22,

SPECC1, ACTG1, NFIC, TNPO2, NFATC2, CDC45 and BCAP31.

We further investigate the functional interpretation of genes and iso-

forms from pattern types and DPs using gene set enrichment analysis

(GSEA). Here, we used the Reactome database (Croft et al., 2011)

to discover pathways (gene sets) associated with the DP genes and

DE genes separately. The results show that the most significant path-

ways for both DP and DE genes were related to cell-cycle gene sets

such as Mitotic G2-G2/M phases(R) and cell cycle checkpoints(R).

These findings are consistent with other studies, which have re-

ported that metformin regulates the cell-cycle functions via inhibit-

ing cell proliferation (Pierotti et al., 2013). It is also marked that

CK1 and CDC45 from the 17 DP genes are the cell-cycle genes of

the G2/M phases, these genes were not discovered in conventional

DE analysis. Thus, the 17 DP genes consolidate the discovered path-

ways from the DE genes. GSEA analysis was subsequently applied

to the sub-groups of DP genes in each pattern type. Since the major-

ity of the DP genes had an X-pattern, the group of X-pattern genes

was found to have similar results as in the analysis of all DP genes.

Due to small size, the sets of DP genes from the V- and I-patterns do

not report significant results. The details of all the resulted gene sets

are given in the Supplementary Material.

3.5 Isoform pattern analysis in simulated datasets
Next, we investigated the performance of ISOP and the characteris-

tics of isoform patterns through simulated datasets. We first ana-

lysed data from the scSim dataset with the objective of evaluating to

what extent patterns arise randomly, to validate the permutation

test and to ascertain if differentially expressed isoforms are captured

by the DP test. A total of 38 026 isoform patterns were analysed in

the scSim dataset. Among those, 853 isoform patterns contained at

least one pre-defined DE isoforms from multiple-isoform genes. In

total, 264 out of 326 (81%) of DE isoforms were included in the set

of isoform patterns. The proportions of the isoform patterns are

visualized in Supplementary Figure S2d. Similar to the real datasets,

the I- and the XI-patterns were the least common (1.07%) and the

most common (42.9%). The proportions of the other patterns vary

around the ranges of 10–17%. Supplementary Figure S4 presents

the P-value distributions from the non-randomness test of real data-

sets and simulated datasets. As expected under the null (independ-

ently expressed isoforms in each isoform pair analysed), the

distribution of P-values from the simulated dataset is uniformly dis-

tributed, indicating that the simulated dataset does not contain an

increased presence of non-random patterns, also suggesting that the

applied test operates as expected. Comparing to those from real

datasets with the significant numbers of non-random patterns

(Supplementary Fig. S4), significant isoform patterns in the real

datasets indicate (non-random) biological information in the data.

Supplementary Figure S5 displays the P-value distribution of DP

analysis from the simulated dataset. We discovered 256 DP isoform

patterns (adjusted P-values � 0.05) where 244 (95%) of these con-

tain at least one pre-defined DE isoform. 92 of 326 (28%) pre-

defined DE isoforms from multiple-isoform genes were included in

DP isoform patterns. Thus, DP analysis will capture biological sig-

nals (in this simulation, DE isoforms) with a high specificity in the

simulated dataset under the expected false discovery rate. However,

other types of biological signals can be capture through DP analysis

as well, which is also revealed in the analysis of the real datasets. It

is worth noting that the adjusted P-values of the non-randomness

tests of all the DP isoform patterns are high (from 0.76 to 1.00),

indicating none of them passes the non-randomness test.

In the second simulation study, we evaluated the effect of expres-

sion and sparsity (zero inflation) on detection of isoform patterns

and to what extent the permutation-based test perform as expected

under the null. For each expression type of two isoforms in the

ipSim dataset, we collected the frequencies of the six patterns de-

tected in each case from 100 repetitions to observe the distributions

of patterns vs sparsity of isoforms (see the contour maps in

Table 1. Patterns with significant (non-random) isoform-pairs with adjusted P-value (Adj.pval) � 0.05 in MDA-MB-231 dataset and the pub-

lic datasets

Patterns I II V VI X XI Total

MDA-MB-231 Adj.pval � 0.05 18 524 201 265 88 3213 4309

Total 29 1333 936 1361 2851 10052 16 562

Percentage (%) 62.1 39.3 21.5 19.5 3.1 32.0 26.0

HTC116 Adj.pval � 0.05 44 312 110 26 17 704 1213

Total 1589 7195 2832 1059 2635 8402 23 712

Percentage (%) 2.8 4.3 3.9 2.5 0.6 8.4 5.1

Myoblast Adj.pval � 0.05 76 1239 214 253 122 3294 5198

Total 197 6981 989 1525 4039 9032 22 763

Percentage (%) 38.6 17.7 21.6 16.6 3.0 36.5 22.8

Brain Adj.pval � 0.05 33 208 61 6 0 239 547

Total 1793 7053 3136 328 2958 5707 20 975

Percentage(%) 1.8 2.9 1.9 1.8 0.0 4.2 2.6
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Supplementary Figs. S6–S17). Similar to Figure 3, the x- and y-axes

of each contour map indicate the level of sparsity of two isoforms.

The heat colours range from red to white expressing the levels of

frequency from low (0) to high (100). The results reveal that the

I-pattern is rarely emerging in the simulated dataset (only found in

case 5–5). The X-pattern consistently locates in the top-right of the

figure, and when the sparsity of the two isoforms are higher than

0.50. In general, if two isoforms have similar expression levels, the

regions of the patterns slightly change by the increase/decrease of

the expression levels (Supplementary Figs. S6–S12). However, the

regions of the patterns are significantly distorted if the difference be-

tween the expression levels of two isoforms is increased

(Supplementary Figs. S13–S17). Thus, these investigations show that

even under the null assumption of no biological effects, patterns also

arise as a function of stochastic expression patterns and especially

the degree of sparsity of the two isoforms. However, the uniform

distribution of the P-values from non-randomness tests shows that

we do not detect significant patterns at a higher rate than expected

under the null assumption (Supplementary Fig. S18).

4 Discussion and conclusion

A unique property of single-cell transcriptomic profiling is the abil-

ity to characterize cell-to-cell heterogeneity in cell populations. Our

objective was to investigate cellular heterogeneity in isoform-level

gene expression based on scRNAseq profiling. We proposed a novel

method, ISOP, using a mixture model to model and categorize iso-

form pairs into principal isoform expression patterns.

We described six principal patterns of isoform expression, which

can be interpreted in terms of isoform preference, bimodal isoform

preference and mutually exclusive isoform expression commitment.

Each pattern type represents a specific expression relationship be-

tween a pair of isoforms from the same gene. The I-pattern charac-

terizes isoform preference in the cell population of one isoform over

the other isoform. The V-pattern expresses a bimodal isoform pref-

erence indicating cell-to-cell heterogeneity associate with one level

of expression of one isoform and two levels of expression of the

other isoform in the cell population. The X-pattern describes a

mutually exclusive expression commitment pattern of the cells to

express either one of the isoforms, but not both. The II-, VI- and

XI-patterns are extensions of I-, V- and X-patterns, respectively,

where a subset of cells display the pattern. The type of isoform pref-

erence of cells reported in previous studies (Shalek et al., 2013;

Velten et al., 2015) can be accounted for by the I-pattern, V-pattern

or their respective extensions. Isoform commitment, as defined

by mutually exclusive isoform expression (the X-pattern and

XI-pattern) was the most common patterns observed, assigned to

77.9% of the isoform pairs. We showed that a large proportion

(26.0%) of isoform pair patterns were found to be statistically sig-

nificant (non-random), while remaining patterns (74.0%) might

have been stochastically generated, mainly as a function of the spars-

ity (zero inflation) or the degree of bimodality in the isoform expres-

sion distribution. Such sparsity can arise due to transcriptional

bursting, biological heterogeneity or transcript drop-out effects or

other technical limitations inherit to scRNAseq. The isoform pat-

terns were also not found to be associated with the underlying rela-

tive similarities of individual cells, or that the patterns are broadly

coherent across cells (see details in section 3 of the Supplementary

Document).

We also outlined how the ISOP method can be applied to test for

biological effects related to the principal isoform expression

patterns, which was represented by a small molecule perturbation

effect (metformin exposure) in the primary dataset. DP analysis pro-

vides a novel approach to detect isoform-related effects that may not

have been discovered through conventional DE analysis. We dis-

covered 54 significant DP genes, of which 31.5% were associated

with isoforms that were not DE. Thus, significant DP genes consti-

tute novel information that augments traditional DE analyses.

In addition, we investigated the performances of the ISOP

method in the analyses of simulated datasets. It was found that DP

analysis in the simulated dataset captured the information of pre-

define DE isoforms under expected false discovery rate. In addition

to the DE effects, DP analysis will also capture other types of biolo-

gical effect in isoform level single-cell expression data, which will

not be captured by conventional DE analyses. Our simulations also

demonstrated that isoform patterns can arise as a consequence of

stochastic patterns in respect to expression levels and sparsity levels

of isoform pairs. However, the simulation studies confirm that ran-

dom patterns arising under the null (i.e. no biological effect) does

not lead to an inflated rejection of the null hypothesis beyond the

expected rate. Thus, significant patterns as indicated by the non-

randomness tests in the real datasets (Supplementary Fig. S4) are ex-

pected to indicate real biological effects.

Our study has some limitations. First, the analysis is focused on

the set of annotated isoforms only and we indirectly assume that an-

notations are correct. Second, the present study did not have

External RNA Control Consortium spike-ins that could be used to

establish levels of technical noise in the data. Furthermore, many al-

gorithms have been proposed for quantification of isoform level

gene expression from RNAseq data (Bray et al., 2016; Patro et al.,

2014; Suo et al., 2014;Trapnell et al., 2010) and are all based on

slightly different assumptions. In our analyses, we applied the widely

used Cufflink software for isoform expression estimation. Isoform-

level gene expression quantification is inherently more challenging

than gene level quantification, particularly in scRNAseq analysis

where there are limited number of RNAseq reads from each cell,

and one would expect a degree of variability associated with the

quantification algorithm applied. Supplementary Figure S19 shows

the distribution of the isoform patterns are largely similar across dif-

ferent methods; Kallisto (Bray et al., 2016) and Sailfish (Patro et al.,

2014) had higher concordances with each other than with Cufflinks.

Furthermore, we make the assumption that the expression differ-

ences between pairs of isoforms on a log scale can be approximated

by a Gaussian mixture model. Finally, in this study, we have focused

on modeling pairwise isoforms expression patterns, while commit-

ment of cells in sets with more than two isoforms is also interesting

and biologically relevant, something that is of interest to explore fur-

ther in future studies.

In conclusion, ISOP provides a novel approach for characterizing

isoform-level expression in single-cell populations. ISOP also intro-

duces a novel approach to discover DP genes associated with biolo-

gical effects, which is complementary to conventional analysis of

DE. Although isoform expression patterns can arise as a function of

sparseness in expression patterns, we found that more than a quarter

of the patterns in our dataset were found to be non-random, suggest-

ing common occurrence of isoform-level preference, commitment

and heterogeneity in single-cell populations.
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