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Abstract
Rapid increases in data volumeandvariety pose a challenge to safe drugprescription for health
professionals like doctors and dentists. This is addressed by our study, which presents inno-
vative approaches in mining data from drug corpus and extracting feature vectors to combine
this knowledgewith individual patient medical profiles.Within our three-tiered framework—
the prediction layer, the knowledge layer and the presentation layer—we describe multiple
approaches in computing similarity ratios from the feature vectors, illustrated with an exam-
ple of applying the framework in a typical medical clinic. Experimental evaluation shows
that the word embedding model performs better than the adverse network model, with a F
score of 0.75. The F score is a common metrics used for evaluating the performance of clas-
sification algorithms. Similarity to a drug the patient is allergic to or is taking are important
considerations for the suitability of a drug for prescription. Hence, such an approach, when
integrated within the clinical work-flow, will reduce prescription errors thereby increasing
patient health outcomes.

Keywords Feature vector · Similarity ratio · Word embedding · Adverse network model ·
Personalised drug prescription
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1 Introduction

The increasing amount of data available to medical professionals for diagnosing diseases and
developing treatment plans for their patients raise the importance of having suitable tools
to harness such data and transform them into meaningful information. Such tools are also
useful for evidence-based decision making within the healthcare domain [14]. Health-care
professionals can no longer solely rely on pen and paper as more and more data are in digital
form. The skill to click, copy and paste is becoming more crucial than the ability to hold a
pen, flip and clip papers. X-ray films are replaced by digital X-ray. Treatment notes written on
cards are replaced by digital notes. Lead used in pencil is progressively replaced by silicon
used in electronic devices for writing and drawing notes. Wooden furniture for storage is
being replaced by digital media. Hence a decision support system is important for the health
practitioner to deliver the service efficiently [10].

In terms of drug prescription, not only more information is to be stored and retrieved
from digital media, the number of drugs that doctors need to handle is also increasing as
more and more patients are taking multiple drugs. Within dental clinics, antibiotics are
often used to resolve infections especially after surgical procedures such as placement of
dental implants and gum treatment [26]. To manage anxiety which usually occurs before
surgery [9], anxiolytic drugs are also commonly used. Reducing and relieving pain with
analgesic medications are also important procedures within the clinical work-flow of any
health institution [22].

Although there are many studies that examine drug–drug interactions (DDI) [3,4,32],
they do not associate them with the patients medical profile to facilitate individual drug
prescription. Although our system is similar to that proposed by Casillas et al. [5] in terms
of using information from the patient, the unique approach adopted in this paper goes one
step further in using such information to support the decision-making process for doctors at
point-of-care within the clinical work-flow. An additional presentation layer is introduced,
providing an important interface between the user and the knowledgemined frombio-medical
sources. In addition, within the predictive layer, we propose multiple approaches to deduce
the similarity ratio between drugs in a drug-pair to assist doctors in prescribing drugs at point-
of-care, in order to find the combination of approaches that yields the best performance. This
is in contrast with only a single network model approach in our previous work [11].

Knowledge obtained from data mining performed on open source datasets to predict the
relationship between drugs in a drug-pair is used to give prescription support to the health
practitioner. Feature vectors will be built from the text corpus to allow computing of the
similarity ratio, with the assumption that a drug-pair safe for consumption will have a higher
similarity ratio compared to an unsafe pair. These multiple methods for building the feature
vectors reside within the prediction layer of our three-tier framework.

Experimental results show that the word-embedding model performs better than the
adverse network model. Performance is also better than the baseline model. This model
is easily utilised in predicting a drug’s suitability for prescription by considering the patients
drug allergies to avoid allergic reactions, and the drugs the patient is currently taking to avoid
adverse DDI.

This studywill help provide strategies in research agenda and priorities, includingmethod-
ologies for knowledge reasoning and inference in the context of a medical clinic. Research
outcomes of this project, especially in this climate of increasing poly-pharmacy, will help
reduce the risk of prescribing drugs that may cause the patient to suffer an adverse reaction
and thus improve healthcare quality. This system which delivers information on interacting
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drug-pairs based on the patient’s drug profile will also benefit those who are involved in
clinical education and research relating to drug dispensing, such as medicine, nursing and
pharmacy.

Traditionally, chemical structures and drug targets were used to decide if a drug-pair is
interacting. By using data mining and feature extractions from text corpus, this paper con-
tributes significantly in the way useful information on drugs interactions can be obtained.
Moreover, we will also show in this study how such information can be applied for person-
alised decision support in the area of drug prescription within a medical clinic.

The efficient approach in the design of the clinical decision support system (CDSS) with
consideration of the medical profile of the patients result in the following significant contri-
butions:

• advancement in the design of clinical decision support systems by using similarity ratio
of a drug-pair;

• attributes like adverse interactions and side effect of a drug can be used to construct
feature vectors for computing similarity ratios;

• by hierarchically representing the drug-pairs within the context of a CDSS, paths linking
the common drugs within the set of interacting drugs can be used to arrive at a similarity
ratio;

• results support the hypothesis that similar drug-pairs have a higher similarity ratio com-
pared to that of dissimilar pairs;

• provide a platform for further research on data mining and machine learning methods
within the medical domain which will transform the clinical work flow of the health-care
industry.

The rest of the paper is organised as follows: Sect. 2 discusses the related work in data
mining and how our model differs in the way the drug–drug relationship is detected and
deployed for use. The multi-model framework is described in Sect. 3, while Sect. 4 describes
the experiment and Sect. 4.6 discusses the results, with a description on how the model can
be applied in a medical clinic. Finally Sect. 5 presents the conclusions obtained.

2 RelatedWork

Word embedding is a method to represent the semantic and syntactic similarities between
words. It has found application in many areas including sentiment analysis [27] and sentence
classification [33]. Inspired by deep neural network models, word embeddings have drawn
the interest and attention of many researchers.

The ability to predict context words has motivated many studies to use this model for
obtaining the similarity of drugs within drug-pairs. A recent work by Wang et al. [30] used
this approach to extract information on DDI from biomedical corpus, by capturing the core
meaning of the sentences in the text and incorporating the syntactic contexts into the embed-
dings. [36] examined the ability of word2vec in deriving semantic relatedness and similarity
between biomedical terms in journal articles. It is interesting to note that models trained on
specific text like abstracts yielded better results that those trained with the main text of the
articles. [17] attempted to use word embeddings to capture semantic information of words for
the DDI classification. [35] also used word embeddings to exploit the syntactic information
of a sentence to extract DDI. Both systems delivered promising performance, despite neither
being customised to the patient’s individual drug profile.

123
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There has been growing interest in comparing text and computing similarity between
entities by representing them in a graphical model. For example, in Palma et al.’s model, the
semantics similarity between drugs is used to predict drug target interactions [20]. Based on
the hypothesis that similar targets interact with the same drugs, and similar drugs interact
with the same targets, a heterogeneous graph was constructed with edges that include the
drug–target interaction as well as drug–drug and target–target similarity edges.

[12] also proposed a framework to compute the similarity between two objects by repre-
senting them and their relationship as a graph.With the objects as nodes and their relationship
as edges, this framework assumes that two objects are similar if the objects related to them
are also similar. For example, two publications are considered similar if the papers cited by
each publication are also similar. The directed graph G used to represent such a framework
with nodes V and edges E can be formally defined as G = (V, E) where the nodes V represent
the objects and the edges E represent the relationship between the objects. If Ii (v) represents
individual incoming objects and Oi (v) individual outgoing objects, then the similarity score
between any two nodes A and B is given by:

s(A, B) = C1

|O(A)||O(B)|
|O(A)|∑

i=1

|O(B)|∑

j=1

s(Oi (A), Oj (B)) (1)

In another model with special emphasis on Heterogeneous Information Networks (HIN)
[29], similarities between two entities can be found by considering the number of paths
between them. Nodes and edges are defined in this HIN as G = (V , E) where the nodes
are the set of entities A and edges are the set of links R between the items in the entities.
The entity type mapping is given by φ = V → A and the relation type mapping given by
ψ = E → R. The similarity between two entities A and B is defined as:

s(A,B) = 2.# paths between A and B

#circles with entity A + #circles with entity B
(2)

In yet another attempt to represent entities in a directed graph, Shi et al. focused on an
approach which also assigns weights to the relations between the entities [25]. Hence, this
method of representation becomes appropriate for a recommender system. Besides weigh-
tage, this method also assigned attributes to the links between the entities. For example, users
a and b may have a common liking for moviem1 (Fig. 1), as well as other movies, so we can
say that m1 is in a direct neighbourhood of a.

Although there has been much research on DDI using different techniques, there is no
system that uses DDI information to facilitate drug prescription within a CDSS, notwith-
standing the absence of a complete source of information on potential DDI [1]. A CDSS that
conforms to our recommendations of a personalised system, which considers the drugs the
patient is taking and is allergic to, will contribute to the productivity and efficiency of med-
ical treatment, with practitioners more readily adopting such a system within their clinical
work-flow [10]. Therefore, a CDSS which integrates with drug knowledge bases to identify
adverse drug events and advises on drug suitability before prescription will appear helpful to
the health practitioner. With timely and accurate DDI information embedded within a CDSS,
more comprehensive treatment options can be made available to patients and practitioners,
thus contributing to a more positive treatment experience, better oral health outcomes and
job satisfaction for the medical practitioner.
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Fig. 1 Objects and relations in an information network, taken from [25]

Fig. 2 Three-tier framework

3 The Proposed Framework

A three-tier framework was proposed to allow ease of design and portability across differ-
ent fields in medical diagnosis and prescription support (Fig. 2). This framework consisted
of the knowledge layer, the prediction layer and the presentation layer. Such a framework
allowed each layer to be developed and maintained independently, while at the same time
ensuring the inter-layer interfacing conformed to standards.

For example, by using theword embedding approach in building feature vectors, the output
from the prediction layer can be fed into other neural networks to accomplish other tasks.
In addition, this framework supports our unique approach of personalised drug prescription.
The following sections describe the functions of each layer.
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Table 1 Co-occurrence matrix Scientist Research Risk Factor Covid-19

Scientist 0 0 0 0 0

Research 0 0 1 1 0

Risk 0 1 0 1 0

Factor 0 1 1 0 1

Covid-19 0 0 0 1 0

3.1 Knowledge Layer

The knowledge layer consists of the biomedical text which describes the properties of the
drugs. The text comprises of a bag of words from which relevant information was extracted
at the data mining layer for computing similarity ratio within a drug-pair.

In our study, the text from DrugBank was used as it has the advantage of having each drug
described with different properties from different perspectives. It contains a comprehensive
corpus of information to suit both patients (under the heading “Overview” and healthcare
professionals (under the heading “Professionals” while information on side-effects are found
under the heading “Side-effects”. An updated knowledge base is also important for the system
to be perceived as useful and adopted by the user [13]. All this information is collectively
stored in the drug taxonomy T , defined as a 3-tuple T := 〈D,R,HR

D
〉, where

– D = {d1, d2, . . . , d|D|} is the domain set of drugs;
– R = {r+, r−, r0} is a set of semantic relations, where r+(di , d j ) means that the effects

of drugs di and d j are advantageous; r−(di , d j ) means that the effects of drugs di and
d j are adverse; r0(di , d j ) means that the effects of drugs di and d j are not related.

– HR

D
is the taxonomical structure constructed by all d ∈ D linked by r ∈ R.

This layer contains important information relating to DDI and provides the ground truth in
deciding if a drug-pair has an adverse relationship.

In order to construct the knowledge base for use by the models during the experiment,
textual data that describes each drug within drugBank is extracted by parsing through drug-
Bank from the different properties for use in the knowledge base. The collection of these
drug properties then goes through the pre-processing stage. This is to ensure that non-paltry
terms are not omitted in the subsequent assembling of patterns of words for building features
of the drugs. At this stage, stopwords were removed and words converted to their root form
through stemming which enhanced the reliability of the data [23]. With these words being
collected, patterns of each word can be constructed to allow similarity ratio to be computed
in the models residing in the Prediction Layer during the experiment.

Take for example the sentence “Scientists are still researching risk factors for COVID-19”
found in the drugBank repository of documents. After going through the process of removing
stopwords and transforming appropriate words to their root form, the words in the sentence
are reduced to “scientist”,“research”, “risk”, “factor” and “COVID-19”.

A co-occurrence matrix with these keywords can be constructed so that each word can be
represented as a pattern of binary digits. The placement of the binary digits depends on the
rule dictating the contextual distance before and after each word. Hence Table1 shows the co-
occurrence matrix which indicates the occurrence of the words together within a contextual
distance of two words before and after each target word. It can be seen that for the target
word “factor”, within a context distance of two, each of these words “research”, “risk” and
“covid-19” occurred once as indicated in the row beginning with “factor” in Table1. Thus,
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Table 2 Features of conceptual framework

Presentation layer Prediction layer Knowledge layer

• Efficient mapping of
user requirements

• Efficient choice of
programming
approach

• Bio medical data
data sources, drug
taxonomy

• User-friendly
interface

• Implementation of
data mining

• Drug properties

• Algorithm design

Fig. 3 User interface

the row matrix for “factor” can be represented as
[
0 1 1 0 1

]
. With each word in the textual

description of the drugs in the bio-medical database being represented as a co-occurrence
matrix, a knowledge base associated with each drug can be constructed. This will facilitate
subsequent building of the drug model to determine their similarity ratio.

3.2 Presentation Layer

The presentation layer is important as it serves as an interface between the computing layer
and the user. A well-designed user-friendly interface will help users adopt such a system
in their clinical work-flow. As highlighted in Table2 for the three layers in the framework,
user requirements in the presentation layer need to be efficiently mapped onto the prediction
layer to enable useful and relevant information to be extracted for further computing of the
similarity ratio.

The presentation layer also distinguishes our system from many other decision support
systems as it contains the patient’s personalized information.

In this system, patient p was defined as a 2-tuple p := 〈D,D−〉, where

– D ⊂ D is the set of drugs that p is currently taking, where |D| <= θD;
– D− ⊂ D is a known set of drugs that p is allergy to,where |D−| <= θD− andD−∩D = ∅.
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Besides, the presentation layer also presents the results from the prediction layer. Hence
this layer is important as a supporting tool to doctors in deciding whether the drug to be
prescribed is safe for the patient.
The drug to be prescribed is also stored in this layer. Such information is needed in the
prediction layer for extraction of feature vectors. In order to maintain user-friendliness,
which is crucial for clinical adoption of the system, it is important for this layer to present
the results in a user-friendly manner.
Based on the results transmitted from the prediction layer, the service at this layer will
then advise the user if the drug in question is safe for prescription. This approach allows
the presentation layer to crystallise the results in a meaningful and friendly manner. This
will allow a prescription similar to Fig. 3 to be presented to the user.

3.3 Prediction Layer

From the drug taxonomy T , text for each drug was extracted, cleaned and stored in order to
provide information on the underlying properties of a drug-pair. The flexibility and robustness
of the three-tier framework allowed the calculation of drug-pair similarity using various
approaches.

As individual drugs and the adverse relationship between themcanbe logically represented
in a networkof nodes and edges, the adverse networkmodel is used in computing the similarity
between drugs within a drug-pair. In fact, such an information network allows rich structure
and semantic information to be stored which enables further research associated with data
mining [24].

Besides the adverse networkmodel, the word embedding approach is also used to compute
the similarity ratio of a drug-pair. This method of finding the similarity between a drug
pair is adopted due to its increasing popularity in machine learning. In tasks involving word
similarity, recent trends also suggested the use of word embeddingmodels as they outperform
other traditional models like the count-based distributional models [16].

3.3.1 Adverse Network Model

In the adverse network model, drugs and their relationships are represented by a graph
G = (V , E). Basically, we adapt Jeh et al.’s model of measuring similarity based on theoret-
ical foundations [12]. In our model, we represent all drugs as nodes in a network to enable us
to compute their proximity in terms of the number of shared entities between the drug pair.

For a given nodeA,O(A)denotes the set of out-neighbors and the number of out-neighbors
of node A is |O(A)|. Similarity between node A and node B will be given by:

s(A, B) = C1

|O(A)||O(B)|
|O(A)|∑

i=1

|O(B)|∑

j=1

s(Oi (A), Oj (B)) (3)

Suppose the set of interactive drugs is defined as Ar = {a1, a2 . . . ak}, where r is the
attribute of the relationship with the vertex drug. The items in A were also the subset of
out-neighbours of drug d1, denoted as O(d1). Individual drugs in A which interact with d1
were then denoted by Oi (d1)(1 ≤ i ≤ |O(d1)|). Hence, Oi (d1) ∈ {Ar }.

Referring to Fig. 4, if we consider the out-neighbours, drug v1 will have a set of interacting
drugs O(v1), where the number of drugs a1, a2, a3 . . . ak that adversely interacts with drug
v1 is k = |O(v1)|.
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Fig. 4 Graph of interactive drugs
with drug v1

Path connecting two nodes indicates the relationship between the two drugs in a drug-pair.
Adapting [25]’s notation, the path from drug d1 to the set of interactive drugs A with ratings
r is denoted by d1

r−→ A, which can also be written as d1(r)A, where r is the relationship
between d1 and A. Thus, d1(1)A shows drug d1 has minor interaction with the drugs in set
A.

3.3.2 Word Embedding Model

The second framework used the skip-gram model, which is commonly utilised for learning
word embeddings by predicting context words given a target word as the input to the model.
With the context words, feature vectors were then extracted throughword embeddings, which
transform the words into vectors. Since it is expected that a larger set of common terms is
used to describe a pair of drugs that are similar in function, it follows that the similarity
between drugs in a drug-pair can be measured by finding words that are most related to each
drug in the drug-pair.

Such an approach to machine learning has already made major impact in many areas
such as medical imaging, speech recognition and natural language processing where a large
amount of data is involved, and is very relevant considering the constant increase of drug-
related biomedical information [31]. Interest in word embedding has also resulted in studies
on the influence of domain type and size on their performance [15].

One of the reasons for its popularity lies in the fact that analogical linguistic relationships
among words can be easily discovered through word embedding. Interest in word embedding
has intensifiedwithMikolov et al.s introduction of a simplified architecture, which eliminates
the non-linear hidden layer, allowing training on much larger datasets than was previously
possible [18].

Instead of using the set of interactive drugs as in the previous model, data from the text
corpus was used in this model to compute the similarity within a drug-pair. With the help
of Word2Vec, tokens were then built by iterating through the sentences in the text corpus,
specifying parameters such as minimumword frequencies and the size of the feature vectors.
Word2Vec is used as it has been reported to be the most efficient ones for learning vector
representations of words [19]. While Word2Vec is not strictly a deep neural network, the
output vector that it produces in numerical format within the deep learning models can be
easily understood by other deep networks making it very suitable for use in such works.

Assuming wc is the context word and wt is the target word, the goal of the skip-gram
model is to maximise the log-likelihood of obtaining the output context word given the input
target word, ie,.

J = logP(wc|wt ) (4)

where J is the objective function.
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Suppose uwt is a target embedding vector forwt and vwc is a context embedding vector for
the context word wc, then P , the conditional probability in the neural probabilistic language
model can be defined as:

P(wc|wt ) = exp(vTwcuwt )∑W
w=1 exp(v

T
wcuwt )

(5)

Taking the log on both sides of Eq.5 above,

logP(wc|wt ) = log
exp(vTwcuwt )∑W

w=1 exp(v
T
wcuwt )

(6)

Since J = log P (from Eqs. 4), 6 becomes:

J = logexp(vTwcuwt ) − log
W∑

w=1

exp(vTwcuwt ) (7)

In order to avoid expensive computation of softmax for the whole vocabulary, negative
sampling is commonly used. Then the objective function J becomes:

J ′ =
∑

wt ,wc∈D
logQθ (D = 1|wt , wc) +

∑

wt ,wc∈D′
logQθ (D = 0|wt , wc) (8)

With the probability ofwt andwc being observed is Qθ (D = 1|wt , wc) and the probability
of not being observed is Qθ (D = 0|wt , wc), D and D’ is the observed data and unobserved
data respectively and θ word embeddings.

Once the text corpus has been trained by Word2Vec, the output vector for any name of a
drug can be conveniently obtained through built-in Java methods included in Word2Vec. For
example, given a keyword, the output vector comes in an array of numbers, and the size of
such arrays depends on the number of nearest neighbours specified in the experiment. The
more frequently the combination of words occurred in the training sample, the more likely
the word would be selected. The layer size determined the size of the output feature vectors.
Thus, if the vocabulary size of the corpus was k, and the number of terms in the text corpus
was n, the input vector would be a single row vector [1 x k] containing 0 at all positions
within the vector except the nth position which would be a 1. With a layer size of m, the size
of the hidden layer used by Word2Vec is [k x m]. In this way, the word vector produced for
each word would be the product of the matrix [1 x k] and [k x m] producing a single row
vector of size m.

4 Experimental Evaluation

The performance of our novel approach was evaluated by individual testing of each model,
as well as combined testing in a sensitivity study. The same training set used for all the
experiments consisted of positive and negative drug-pairs according to the drug taxonomy.
The positive set contained drug-pairs that do not adversely interact with one another whereas
the negative set contained pairs which adversely react with one another and should not be
prescribed together. A similarity ratio above a threshold value of 0.5 implies the model is
making a correct prediction.
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4.1 Similarity Ratio

The similarity ratio used in the experiment is based on the cosine similarity between two
feature vectors. If feature vectors of drug di and drug d j are given by:

−→
di = {a1, a2, a3 . . . an}
−→
d j = {b1, b2, b3 . . . bn}

(9)

where a1, a2 . . . an are the vector components of drug di and b1, b2 . . . bn are the vector
components of drug d j .

Their dot product will be

−→
di .

−→
d j =

n∑

k=1

akbk = a1b1 + a2b2 + . . . anbn (10)

and the geometric definition is given by

−→
di .

−→
d j = ‖−→a ‖‖−→b ‖cosθ (11)

Rearranging gives

cosθ =
−→
di .

−→
d j

‖−→a ‖‖−→b ‖
(12)

The angle θ represents the similarity between two documents represented by vectors
−→
di

and
−→
d j . Depending on the model used during the experiment, various ways are used to obtain

the feature vectors
−→
di and

−→
d j . If both documents contain similar terms, their feature vectors

will be similar. In other words, the angle θ1 between the two vectors in the vector space will
be small, as both are heading closely in the same direction.

Conversely, if the drug-pair di and d j contains more dis-similar terms, then the vectors
will be heading at a larger angle resulting in a smaller cosine similarity since cos θ2 is lesser
than cos θ1 when θ2 is larger than θ1. In fact, if there are totally no common terms, the two
vectors are said to be perpendicular to each other or orthogonal which result in zero similarity
ratio since cos 90◦ is zero.

4.2 Experimental Design

The training set consisted of sample drug-pairs that were either similar (true positive) or
dissimilar (true negative) according to the drug taxonomy.

4.2.1 Adverse Network Model

During the experiment, matrix Mr for drugs d1 and d2 was created to indicate the positional
match in the adverse drugs for d1 and d2 with interaction rating r where number of columns
in Mr = |Ar |.

If Oi (d1) is found in Ar at position u, then the uth column in matrix Mr will be updated as
r ,Mr (1, u) ←− r . For example, Table3 shows the rowmatrices for the case of an interaction
between drug pair v1 and v2 at a rating of 3. Adverse drug with v1 is found at position u = 5
and adverse drug with v2 is found at position 4 and position 5.
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Table 3 Row matrix Mr at r = 3 Column u 1 2 3 4 5 6

Drug v1 3

Drug v2 3 3

The vectors obtained for drug v1 and v2 are Fr
1 = {a1, a2 . . . ap} and Fr

2 = {b1, b2 . . . bp}
respectively where

au =
{
r , if Oi (v1) == Ar [u]
0, otherwise

bu =
{
r , if Oi (v2) == Ar [u]
0, otherwise

(13)

Hence the similarity ratio between drug v1 and drug v2 can be obtained:

Sr (v1, v2) =
∑p

i=1 ai × bi√∑p
i=1 a

2
i ×

√∑p
i=1 b

2
i

(14)

With the similarity ratio results, a threshold of θ = 0.5 was used to predict if the drug-pair
is similar. A value of 0.5 or higher from the experiment meant the drug-pair was considered
similar, while a value below 0.5 meant the drug-pair was considered dissimilar. The models
performance can be measured by counting the number of correct predictions.

4.2.2 Word Embedding Model

Since the aim is to discover the similarity between two drugs, it would be interesting to
explore alternative measures in building feature vectors. In this system, feature vectors were
obtained through an artificial neural network approach. By using the skip-gram model from
Word2Vec [18], a predictive model was constructed for learning word-embeddings from the
raw corpus that described the properties of the drugs. Since the problem domain aims to
extract related words to determine the extent of similarity from biomedical text, word2Vec
was relevant to our experiment. Given a keyword, for example, the drug name, this method
formulated a feature vector that best predicts a window of surrounding words that occur in
some meaningful context. Such semantic similarity also conforms to the important criteria
for selecting good word pairs ([34])

When training the dataset, the parameters required by word2Vec were the word frequency
(the minimum number of times a word must appear in the corpus), layer size (the number of
desired features in the word vector) and window size (the number of words before and after
the word to extract for the training sample).

With this model, word vectors were constructed by sending a keyword. During the exper-
iment, keywords associated with the nearest neighbour of the drug name were retrieved from
the model. Similarity ratio between each set of vectors produced from the keywords could
then be computed. To observe the behavior of this approach, the model was constructed
with individual properties of the drug (“Overview”,“Professional” and “Side Effects”) while
varying the number of nearest neighbours.

With each model, word2vec(Ov), word2vec(Pr) and word2vec(Se) trained from the
text corpus “Overview”, “Professional” and “Side Effects” respectively, various keywords
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Table 4 Size of dataset for used
for building word2Vec model

Overview Professional Side-effects

154,645 196,352 53,644

could be obtained. Hence, each keyword was represented by a word vector of numbers, the
size of which depended on the layer size as explained in Sect. 3.

In each model, word vectors were constructed from different combinations of keywords
associated with the drug name. For example, if d11, d12, d13 were the three nearest keywords
for a given drug d1, a word vector would be obtained from the specified model by combining
the three word vectors from the respective three keywords.

4.3 Data Preparation

Drug pairs used in the experiment were extracted from DrugBank, an unique resource con-
taining a comprehensive corpus of information relating to various properties of drugs relevant
to both end-users and professionals. It is maintained in collaboration with the US Food and
Drug Administration (FDA). This corpus contains 6811 drug entries including 1528 FDA-
approved small molecule drugs, providing free, independent, peer-reviewed, and up-to-date
information at both consumer and professional levels.

In order to prepare data for the experiment, textual data fromDrugBank is downloaded and
cleaned by removing stopwords with words converted to their root form through stemming.
Table4 shows the number of tokens for each attribute of the drug used for the experiment.
For the word embedding model, these tokens are further used to build the binary model to
be used for the experiment.

4.4 Baseline Model

Our work was evaluated against other works to highlight how adoption of this novel approach
results in superior performance. The work of [28] predicted DDI by parsing biomedical text
for syntactic and semantic information on biological entities such as induction and inhibition
of enzymes by drugs. These relations were then mapped with the general knowledge about
drug metabolism and interactions to derive the DDI. The work by [32] developed various
prediction models to leverage on text mining and statistical inference techniques.

One of the models used include the popular DET model used to capture the relation
between drugs and other entities. Using plate notations [2] Fig. 5 shows the generative process
represented as aBayesianmodel.Adummydocumentwith subject section and content section
is built for each drug found in theMedline corpus, assuming total number of drugs isD drugs.
Hence total number of documents isD, with each document d conveyed by diseases. Nd refers
to the total number of disease words w occuring in d. Total number of topics is K and ad is
the observed set of drugs, with A referring to the total number of drugs.

Each drug x and topic z is a probabilistic distribution over topics (parameterised by θ ) and
diseases (parameterised by ϕ) respectively. λ is the observable parameter which controls the
drugs sampling.

Just like our work, DrugBank was also used. However, one of the methods in their prepa-
ration of data was to represent each drug by a vector of drug targets. The values in each vector
are either 1 or 0, depending on whether the drug target is associated with the given drug. In
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Fig. 5 Drug-entity model ([32])

our work, we chose to construct feature vectors of tf*idf from textual information related to
the properties of each drug.

4.5 PerformanceMeasuring Schemes

Precision, recall andF-measurewere used to evaluate the performance of ourmodel. Precision
indicated how accurately the model predicted drug-pairs as similar, while recall indicated
how accurately similar drug-pairs were predicted. Accuracy was also used to measure the
percentage of correct predictions combining both the similar and dissimilar predictions.

4.6 Results and Discussions

With the unique three-tier conceptual framework where knowledge is extracted from the
knowledge base and delivered to the prescription layer, the ensuing results demonstrate our
model’s efficiency and robustness. Not only was the algorithm able to compute the similarity
of the drug-pair based on the hypothesis that a drug-pair is similar if the cosine similarity
ratio between the drug-pair is high, but such information can also be adopted as a decision
support tool for the health professional in drug prescription.

4.6.1 Model Performance

Table5 shows the results obtained from individual models by running the experiment with
the two sets of drug-pairs.

The word embedding model had a higher F score in predicting positive drug-pairs, hence
leading to the higher recall rate of 0.85 compared to 0.61 for the adverse network model.
In contrast, it had the lower precision rate (0.67 against 0.94), which measured the fraction
of positive records that were accurately predicted. This was due to an increase in the false
predictions (number of false positives). As the true positives increase, the number of positive
pairs that were not correctly predicted (false negatives) decreases, resulting in an increase in
the recall rate. When common paths for those drugs in adverse interaction with the original
set of interactive drugs are included, the F score dropped drastically compared to the case
when radius = 1 where only the set of interactive drugs with the vertex was considered. As
expected, the performance deteriorated when additional attributes of adverse interactions,
such as minor and moderate interactions, were introduced. However, due to fewer possible
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Table 5 F score distribution

Threshold Adverse network Word Embedding

r = 1 r = 1 r = 2 r = 2 w = 2 w = 4 w = 4
(Major) (All) (Major) (All) L = 16 L = 16 L = 8

0.1 0.55 0.61 0.52 0.70 0.67 0.63 0.65

0.2 0.51 0.55 0.45 0.59 0.67 0.64 0.65

0.3 0.57 0.42 0.41 0.49 0.67 0.71 0.66

0.4 0.68 0.44 0.40 0.44 0.66 0.74 0.68

0.5 0.74 0.43 0.47 0.36 0.64 0.75 0.71

0.6 0.74 0.43 — 0.35 0.61 0.71 0.70

0.7 0.71 0.41 – 0.38 0.51 0.62 0.74

0.8 0.68 0.39 – 0.34 0.31 0.36 0.60

0.9 0.67 0.39 – – – – –

AUC 0.85

AUC 0.61

AUC 0.36
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Fig. 6 Comparing AUC for different models

pathswhen onlymajor interactions are considered, the threshold occurs sooner, where beyond
that, therewere no true positives obtained in the experiment, which explains the unavailability
of F score when the cut-off was over 0.6. With the word embedding model, F score was at a
maximum at a layer size of 16. Performance deteriorated when the layer size was decreased
since important information from the drug corpus was lost. Window size also affected the F
score. Since the number of words before and after the target word was decreased, the quality
of the training model is adversely affected, hence the drop in performance with a smaller
window size.

Since the precision does not factor in the correct negative predictionswithin the drug-pairs,
(the true negatives, TN), we attempt to assess this performance by plotting the true positive
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Table 6 Effect of proximity and nodes properties on performance of the adverse network model

Property Promixity Recall Precision Accuracy F score

Major only 1 0.61 0.94 0.82 0.74

2 0.34 0.75 0.60 0.47

Combined 1 0.30 0.74 0.57 0.43

2 0.34 0.38 0.37 0.36

Table 7 Influence on performance by training parameters

Window size Layer size Recall Precision Accuracy F score

2 8 1.00 0.49 0.52 0.66

2 16 0.98 0.49 0.53 0.66

4 8 0.98 0.56 0.63 0.71

4 16 0.85 0.67 0.74 0.75

rate tpr against the false positive rate fpr to obtain the receiver operating characteristic (ROC)
curve ([7]). With this plot, the area under curve (AUC) can be used to further determine the
performance of the model in a more comprehensive manner. A higher AUC indicates a better
performance ([6]). The AUC for the word embedding model is 0.85 compared with that
for the network model which is 0.61 (Fig. 6). When minor and moderate interactions were
also included in considering the number of common paths within the drug-pair, it was noted
from the ROC that the AUC was less than 0.5. This is due to the noise introduced into the
experiment with the additional paths, which does not aid performance.

4.6.2 Sensitivity Study

Experimental parameters were varied to find the combination that yielded the best perfor-
mance. These parameters included the proximity distance from the root node and the property
of the relationship between the nodes in the adverse network model. Word size and layer size
were also varied in the word embedding model. As shown in Table6, the adverse network
model performed best by only considering themajor relationship between nodes in the imme-
diate neighbourhood of each drug in the drug-pair. This was the setting used in comparing
the performance of the two models in Sect. 4.6.1.

Table7 shows the performance of the word embedding model with varying window sizes
and layer sizes. Changing the window size affected the performance significantly.

Since a smaller number of words before and after the target word was used during training,
it is expected that the probability of a word match with the drug-pair during the experiment
would lower, hence the drop in performance. Changing the layer size had minimal impact on
the performance. The model performed best at a window size of 4 and a layer size of 16.

4.6.3 Drug Prescription Scenario Using Our Model

The framework described in this paper can be easily used in a typical clinical environment
to assist the health practitioner in drug prescription at point-of-care. This will ensure the drug
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Fig. 7 Using the model in a clinical settings

is not in adverse relationship with what the patient is taking, as well as dissimilar to the drugs
that the patient is allergic to.

As illustrated in Fig. 7, such a clinical decision support system consists of two tests. The
first test is to ensure the drug to be prescribed is not in adverse relationship with the drug the
patient is currently taking. Based on the relationship among drug pairs in the drug taxonomy,
the system will search for any adverse relationship between the drug to be prescribed and
each drug that the patient is currently taking.

The second test is to ensure the drug to be prescribed does not belong to the same class
as the drug that the patient is allergic to. If the drug to be prescribed is either in adverse
relationship with the drug that the patient is currently taking or belongs to the same class as
the drug that the patient is allergic to, the system will advise the user through the presentation
layer that the drug is not suitable and will thus recommend an alternative drug. On receiving
the suggestion of the alternative drug, it is then for the user to decide whether this is an
appropriate drug to prescribe after further consideration of the duration and dosage of the
patient’s current drugs.

5 Conclusions

In this paper, a three-tiered conceptual framework is described which enables the similarity
ratio of a drug-pair to be computed using feature vectors constructed from bio-medical text.
This similarity ratio can then be used to decide if a drug-pair is suitable for prescription. Two
different approaches were used to obtain the feature vectors, the word embedding model
and the adverse network model. Experimental results showed better performance with the
word embedding approach. We have also shown how our framework can be adopted at
point-of-care within a CDSS for safe drug prescription by considering the patient’s personal
medical profile. Other extensions to the models can also be explored. One of these tools is
Glove [21], an approach combining the local word embedding method ofWord2Vec with the
global statistics of matrix factorisation techniques. As Semantic Web allows the data to be
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represented in a different format [8], it will be exciting to see the performance of the models
by leveraging such technology with the data from DrugBank. Besides DrugBank, it will
be interesting to conduct the experiment with alternative data repositories such as PubMed
(http://www.pubmed.gov/) and compare the results to evaluate if it is more efficient. In order
to optimize the performance of the experiment, it is proposed that individualmodels described
in this paper be amalgamated to form an ensemble model.

With the breakthrough in using similarity ratios within a personalised CDSS, our work
will provide further motivation in developing other approaches for determining the similarity
ratio of a drug-pair and to extend the use of such a system to pharmaceutical domains.

References

1. Ayvaz S, Horn J, Hassanzadeh O, Zhu Q, Stan J, Tatonetti NP, Vilar S, Brochhausen M, Samwald M,
Rastegar-MojaradM,DumontierM,BoyceRD (2015)Toward a complete dataset of drug–drug interaction
information from publicly available sources. Biomed Inform 55:206–217

2. Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
3. Bokharaeian B, Diaz A, Chitsaz H (2016) Enhancing extraction of drug–drug interaction from literature

using neutral candidates, negation, and clause dependency. PLoS ONE 11(10):1–20. https://doi.org/10.
1371/journal.pone.0163480

4. Bui Q, Sloot P, vanMulligen E, Kors J (2014) A novel feature-based approach to extract drug–drug
interactions from biomedical text. BioInformatics 30(23):3365–3371

5. Casillas A, Prez A, Oronoz M, Gojenola K, Santiso S (2016) Learning to extract adverse drug reaction
events from electronic health records in spanish. Exp Syst Appl 61:235–245

6. Chen L, Fang B, Shang Z, Tang Y (2018) Tackling class overlap and imbalance problems in software
defect prediction. Software Quality Journal 26(1):97–125

7. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
8. Gheisari M, Movassagh A, Qin Y, Yong J, Tao X, Zhang J, Shen H (2016) Nsssd: a new semantic

hierarchical storage for sensor data. In: Proceedings of the 2016 IEEE 20th international conference on
computer supported cooperative work in design, CSCWD 2016, pp. 174–179. Institute of Electrical and
Electronics Engineers Inc

9. Goh EZ, Beech N, Johnson NR (2020) Dental anxiety in adult patients treated by dental students: a
systematic review. J Dent Educ. https://doi.org/10.1002/jdd.12173

10. GohWP, Tao X, Zhang J, Yong J (2016) Decision support systems for adoption in dental clinics: a survey.
Knowl Based Syst 104:195–206

11. Goh WP, Tao X, Zhang J, Yong J, Qin Y, Goh EZ, Hu A (2018) Exploring the use of a network model in
drug prescription support for dental clinics. In: The 5th international conference on behavioral, economic,
and socio-cultural computing, 12–14 Nov 2018, Kaohsiung, Taiwan

12. Jeh G,Widom J (2002) Simrank: A measure of structural-context similarity. In: Proceedings of the eighth
ACMSIGKDD international conference on knowledge discovery and datamining, KDD ’02, pp 538–543.
ACM, New York, NY

13. Khalilfa M (2014) Clinical decision support: strategies for success. Proc Comput Sci 37:422–427
14. Lafta R, Zhang J, Tao X, Li Y, Tseng VS, Luo Y, Chen F (2016) An intelligent recommender system

based on predictive analysis in telehealthcare environment. Web Intell 14:325–336
15. Lai S, Liu K, He S, Zhao J (2018) How to generate a good word embedding? IEEE Intell Syst 1–1
16. Levy O, Goldberg Y, Dagan I (2015) Improving distributional similarity with lessons learned from word

embeddings. Trans Assoc Comput Linguist 3:211–225
17. Liu S, Tang B, Chen Q, Wang X (2016) Drug–drug interaction extraction via convolutional neural net-

works. Comput Math Methods Med 2016:1–8
18. MikolovT, ChenK,CorradoG,Dean J (2013) Efficient estimation ofword representations in vector space.

In: Bengio Y, LeCun Y (eds) 1st International conference on learning representations, 2013, Scottsdale,
Arizona, USA, May 2–4, 2013, Workshop Track Proceedings

19. Naili M, Chaibi AH, Ghezala HHB (2017) Comparative study of word embedding methods in topic
segmentation. In: Procedia computer science 112, 340–349. Knowledge-based and intelligent information
& engineering systems: proceedings of the 21st international conference, KES-2017 6-8 September 2017,
Marseille, France

123

https://doi.org/10.1371/journal.pone.0163480
https://doi.org/10.1371/journal.pone.0163480
https://doi.org/10.1002/jdd.12173


Feature-Based Learning in Drug Prescription System for… 1721

20. Palma G, Vidal ME, Raschid L (2014) Drug-target interaction prediction using semantic similarity and
edge partitioning. In: Mika P, Tudorache T, Bernstein A, Welty C, Knoblock C, Vrandečić D, Groth P,
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