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Paulina Kościelniak † , Wojciech Bierza and Iwona Szarejko

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences,
University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland;
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Abstract: Jasmonates modulate many growth and developmental processes and act as stress hormones
that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a
need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins,
and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that
are responsible for the precise regulation of the movement of water and other substrates between
cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced
genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we
hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented
study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis
efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h)
in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of
barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf
weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA
(500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the
extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead
to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of
fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore,
methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was
associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2,
HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the
cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in
the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen
content in the leaves decreases. Our research provides tips on physiological role of the individual TIP
subfamily members of aquaporins under methyl jasmonate action.

Keywords: jasmonate; methyl jasmonate; aquaporins; tonoplast intrinsic proteins; photosynthesis
efficiency; Oxygen-Evolving Complex; HvMYC2; nitrogen content; gene expression analysis; barley

1. Introduction

Jasmonates modulate many growth and developmental processes of plants including root,
shoot and leaf growth, trichome and tuber formation, fruit ripening, leaf senescence pollen maturation

Int. J. Mol. Sci. 2020, 21, 4335; doi:10.3390/ijms21124335 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-9507-6790
https://orcid.org/0000-0001-9479-0813
https://orcid.org/0000-0002-5401-6572
https://orcid.org/0000-0001-8116-6624
https://orcid.org/0000-0002-1789-5512
http://dx.doi.org/10.3390/ijms21124335
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/12/4335?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 4335 2 of 22

and formation of secondary metabolites such as alkaloids and taxol [1–3]. Moreover, jasmonates act
as stress hormones that play an important role in plant response to biotic and abiotic stresses [4–6].
It was postulated that the adaptive responses to environmental challenges are connected with the
jasmonate-mediated changes in gene expressions [7]. In most plants, jasmonic acid (JA) and its derivates
are synthesised from α-linolenic acid, although some plants may use a 16-carbon fatty acid as an initial
substrate [8]. JA biosynthesis pathway is initiated in chloroplasts, then is continued in the peroxisome
and finally in the cytosol [9]. Jasmonic acid and its derivates, such as jasmonyl isoleucine (JA-Ile),
methyl jasmonate (MeJA) and other oxylipins, are collectively referred to as jasmonates [5] and among
them MeJA was first isolated from the jasmine flower (Jasminum grandiflorum) [10]. The bioactive
form in plants is represented by conjugate of JA with isoleucine (JA-lle) that acts as a ligand for JA
receptor [11,12]. The biological activity of MeJA was only apparent when MeJA was converted to JA
followed by its conjugation to JA-Ile [13].

Jasmonate signal transduction is a complicated process and its most important components are:
JA receptor COI1 (Coronatine Insensitive 1) [14], JAZ proteins (Jasmonate ZIM domain proteins) that
act as negative regulators in JA-induced gene expression [15–17], co-repressor TPL (Topless), adaptor
protein NINJA (Novel Interactor of JAZ) [18] and JAR1 (Jasmonoyl Isoleucine Conjugate Synthase 1)
that is an essential enzyme in generating JA-Ile—the ligand of the receptor [19]. Under stress conditions,
the presence of bioactive JAs leads to the degradation of JAZ proteins, which allows the release of
positively acting transcription factors, such as MYC2, that bind to JA-responsive elements in promoters
of JA-responsive genes, thereby initiating their transcription [18,20]. The degradation of JAZ proteins
leads to the release of JAs pathway inhibition. On the contrary, in the absence of bioactive JAs, the JAZ
proteins block the MYC2 activity by recruiting the general corepressors TPL and TPL-related proteins
through interaction with the NINJA, thereby blocking transcription of JA-responsive genes [20]

The high throughput transcriptome methods, such as microarray and RNA-seq analysis
conducted in Arabidopsis (Arabidopsis thaliana), dahurian larch (Larix gmelinii), gentian (Gentiana
macrophylla) and bilberry (Vaccinium myrtillus) enabled a massive screening of numerous genes
induced by jasmonate treatment [21–25]. Genes upregulated by MeJA application in Arabidopsis were
categorised as involved in jasmonate biosynthesis, disease and wounding responses, oxidative
stress responses, senescence, primary and secondary metabolism, amino acid metabolism and
cell-wall modification. In contrast, the expression of genes involved in photosynthesis, such as
genes encoding ribulose bisphosphate carboxylase/oxygenase, chlorophyll a/b-binding protein and
light-harvesting complex II were downregulated. Furthermore, transcript levels of abscisic acid
induced genes involved in cold/drought-stress response, e.g., RD22 (dehydration-induced protein); PIP5K
(phosphatidylinositol-4phosphate 5-kinase) was reduced, which suggests the antagonistic interaction
between the jasmonate and abscisic acid signalling pathways [21]. In contrast to this research, in
the MeJA treated bilberry (Vaccinium myrtillus), two important genes in ABA signalling pathway
were found to be upregulated: PYL ABA-receptor and ABF (ABA-responsive element binding factor) [25].
In addition to transcriptome studies, the power of mutants for investigating jasmonate biosynthesis and
signalling pathways have been clearly shown in many studies, which were reviewed by Browse [26].

The transduction pathways induced by jasmonates signal in response to abiotic and biotic stresses
include cross-talks with many plant hormones: abscisic acid, auxin, ethylene, gibberellin and salicylic
acid [9,27]. The role of jasmonates in plant tolerance to cold and freezing, salt, drought, heat and
flooding stresses has been studied extensively [28–32]. Drought stress led to a rapid and transient
increase in endogenous JA level in Arabidopsis and citrus (Citrus L.) [33,34]. The endogenous JA
content increased after salt treatment in Arabidopsis [35] and tomato (Lycopersicum esculentum) [36].
Furthermore, the application of exogenous JA can efficiently mitigate the damage caused by abiotic
stresses in plants. In most experiments that mimic jasmonate-mediated gene activation, JA or MeJA
were used for exogenous application [21]. It was observed that MeJA treatment enhanced drought
tolerance in rice (Oryza sativa) [32], soybean (Glycine max) [37] and broccoli (Brassica oleracea) [38].
Exogenous supply of MeJA to an ornamental plant Malus crabapple (Rosaceae) was protective to ozone



Int. J. Mol. Sci. 2020, 21, 4335 3 of 22

stress-induced toxicity [39] or reduced effect of cadium-induced injury in rice seedlings [40]. It has
also been reported that MeJA treatment increased postharvest chilling tolerance in fruits of tomato
(Lycopersicon esculentum) [41], avocados (Persea americana) [42], blood orange (Citrus sinensis) [43] and
pomegranate (Punica granatum) [44]. Exogenous MeJA improved salt tolerance in almond (Prunus
dulcis) [45] and sea-lavender (Limonium bicolor) [46]. In barley (Hordeum vulgare), jasmonic acid-mediated
adaptation to salinity stress was reported and characterised [47,48].

Aquaporins, which belong to the membrane intrinsic protein (MIP) family, form channels in cell
membranes and perform various functions, of which the water channel function is best described [49].
Aquaporins have been classified into five subfamilies referred to as plasma membrane intrinsic proteins
(PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic proteins (NIPs), small and basic
intrinsic proteins (SIPs) and the uncategorised X intrinsic proteins (XIP) [50]. The amino acid sequences
of all aquaporins contain four positions in which amino acids form so-called aromatic/arginine (ar/R)
selectivity filter, and based on its structure the substrate or substrates transported by the aquaporin are
predicted [51]. The tonoplast intrinsic proteins (TIP) that are located mainly in the tonoplast facilitate
the rapid osmotic equilibration between a vacuole and a cytosol [52]. TIPs are responsible for the precise
regulation of the movement of water but also substrates other than water, such as ammonia, formamide,
hydrogen peroxide, urea and glycerol [53]. The transports of these substrates were predicted by
bioinformatic analysis and some of them were also proved experimentally. It was found that barley
HvTIP1;1, HvTIP1;2 and HvTIP2;3 were capable of transporting water when they were expressed in
yeast [49]. In turn, experiments with in vitro expression of Arabidopsis AtTIP1;1, AtTIP1;2, AtTIP2;1
and AtTIP4;1 in yeast or oocytes showed that they are capable of transporting urea and thus they
might play a role in equilibrating urea concentration between different cellular compartments [54,55].
Furthermore, the expression of AtTIP2;1, AtTIP2;3 and TaTIP2;2 from wheat (Triticum aestivum) were
found to transport ammonia when they were expressed in yeast or oocytes [56–58]. In barley (Hordeum
vulgare), 11 members of TIP subfamily have been identified [53] and seven of them exhibited significant
expression changes in leaves of drought-exposed plants [59].

Barley is one of the most important crop species that ranks fifth in worldwide production
(tonnes) and area harvested (ha) [60]. It is grown in many regions across the world and in more than
100 countries [61]. Barley grains are used as human food, animal feed and a raw material for the
malting and brewing industry. Due to the fact that barley genome sequence has been assembled [62]
and that this species is well adopted to the extreme environmental conditions, barley can serve as a
model crop in studying plant response to abiotic stresses [63].

In our previous studies on the role of aquaporin genes in drought stress response in barley,
we identified two cis-regulatory elements (G-box: CGTCA and TGACG) in the promotor regions of
eight HvTIP genes [59]. These motifs are characteristic for the methyl jasmonate-induced genes [64–66];
thus, we hypothesised that HvTIPs could be involved in response to the jasmonate signalling. To the
best of our knowledge, no studies have been carried out on the impact of methyl jasmonate on the
aquaporin expression in plants. Such a study could lead to identification of new targets regulated by
this phytohormone, which might be involved in the maintenance of water and/or nitrogen homeostasis,
and contribute to the growth inhibition caused by MeJA.

The interactions between plant aquaporins and photosynthesis has been described mainly for PIP
(plasma membrane intrinsic protein) subfamily in different plant species [67,68]. The role of aquaporins
during photosynthesis proved their function in transporting water and CO2 across the membrane of
chloroplasts and thylakoids [69]. Some of TIP subfamily members are localised not only in tonoplast,
but also in chloroplast and thylakoid membranes. Such a location was detected for TIP1;1, TIP1;2
and TIP2;1 in Arabidopsis [70–72]. It was also shown that overexpression of citrus (Citrus limonia)
gene CsTIP2;1 in transgenic tobacco (Nicotiana tabacum) led to improvement of photosynthetic capacity
under drought stress [73].

In the present study, we examined the effect of exogenous methyl jasmonate on the expression
profiles of tonoplast intrinsic protein (TIP) genes in barley. First, we determined the influence of
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methyl jasmonate on growth parameters and photosynthesis efficiency of barley seedlings exposed
to different MeJA doses in hydroponic solution. To confirm the physiological data, we analysed the
expression profiles of genes encoding the extrinsic proteins of Oxygen-Evolving Complex (OEC) and
the HvMYC2 gene that encodes a key transcription factor involved in jasmonate response. The analysis
of transcription activity of eight HvTIPs after MeJA treatment indicated that jasmonates induce
the expression of specific HvTIPs which might be engaged in ammonia and urea remobilisation in
barley leaves. We discuss the role of MeJA-responsive aquaporins in regards to water and nitrogen
homeostasis under stress conditions pointing at the need for further studies, preferably using mutants
and/or overexpression lines, to elucidate the exact roles of individual TIPs.

2. Results

2.1. Methyl Jasmonate Treatment Led to Growth Reduction of Barley Seedling

To analyse the effect of exogenous methyl jasmonate (MeJA) on barley seedling growth and
physiology, we applied a five-day treatment of spring barley cv. “Sebastian” with different
concentrations of MeJA in a hydroponic system (Figure S1). Control seedlings were grown
simultaneously in a 1

2 Hoagland’s solution without supplement of the phytohormone. All applied
MeJA concentrations (15, 150, 500, 750 and 1000 µM) caused a significant reduction of barley seedling
growth, noticeable in all analysed parameters: length of the first leaf, length of the first leaf sheath,
root length and dry leaf weight (Figure 1). Among these parameters, the length of the first leaf sheath
and dry leaf weight showed the highest reduction already after treatment with 150 µM (63% and 68%
reduction, respectively). This concentration of MeJA led also to approximately 50% reduction of other
growth parameters, i.e., leaf and root length, while the higher MeJA concentrations did not cause
further growth reduction, except for the first leaf sheath length (Figure 1). This growth parameter can be
pointed out as the best indicator of MeJA influence on barley seedling growth in hydroponic solution.

Figure 1. Growth parameters of barley seedling cv. ‘Sebastian’ after MeJA treatment. The parameters
are presented as the absolute values (in centimetres or grams) and as a percentage of control, where
100% is the value for the seedling growth parameters without MeJA (control). Each of the values
presented are the means ± SD, ten plants per one biological replication, three biological replications
were used. Statistically significant differences between different MeJA concentrations were assessed
using a one-way ANOVA followed by the Fisher Least Significant Difference (LSD) test (p < 0.05) and
are indicated by different letters.
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2.2. Methyl Jasmonate Treatment Reduced the Efficiency of Photosynthesis in Barley Seedlings

In addition to seedling growth parameters, we analysed the effect of all applied concentrations
of methyl jasmonate on photosynthesis efficiency. The chlorophyll a fluorescence (ChIF) analysis
was used to compare the response of barley seedlings to MeJA treatments. We applied the JIP-test
to track changes in fluorescence kinetics [74]. Four phases occur typically in the analysis: O, J, I and
P. The O-J (0–3 ms) phase reflects the gradual reduction of the photosystem II (PSII) acceptor side.
The J-I (3–30 ms) phase describes a reduction of the plastoquinone (PQ) pool. The I-P (30–200 ms)
phase is connected to the final reduction of the electron acceptors of the photosystem I (PSI): PC
(plastocyanin), P700 (photosystem I), the Fe/S (iron-sulfur) clusters and Fd (ferredoxin) [75]. Higher
MeJA concentrations induced changes in photosystem designated by occurrence of additional peak—a
K-band. In the case of the OJIP curve analysed after 1000 µM of MeJA treatment, the K-band became
dominant (Figure 2A,B).

Figure 2. The effect of different concentrations of MeJA on the photosynthesis efficiency in seedlings
of barley cv. ‘Sebastian’: (A) OJIP induction curves after treatment with MeJA; and (B) differences in
the relative variable fluorescence of the O-P-normalised induction curves (∆Vt) after MeJA treatment.
The values are presented as the means ± SD, ten plants per one biological replication, three biological
replications were used. The ∆Vt curves were constructed by subtracting the normalised fluorescence
values (between O and P) recorded in control conditions from those recorded after MeJA treatment.



Int. J. Mol. Sci. 2020, 21, 4335 6 of 22

Differences between the applied concentrations of MeJA were most distinguished when the
performance index per absorption (PIABS) was analysed. PIABS provides quantitative information
about the general state of plants and their vitality. PIABS is characterised by the following parameters:
the absorption of light energy (ABS), trapping of excitation energy (TR) and conversion of excitation
energy to electron transport (ET) [75]. Interestingly, the lowest MeJA concentration (15 µM) led to an
18% increase of the PIABS parameter when compared to control plants (Table 1). Additionally, 15 µM of
MeJA caused a 10% increase in the number of active reaction centres per illuminated cross-section
(RC/CS) compared to the control plants. On the contrary, the PIABS was profoundly lower after five
days of seedling treatment with the highest MeJA concentrations, 750 and 1000 µM. The PIABS was
32% and 65% lower in seedlings treated with these doses compared to the seedlings grown in control
conditions (Table 1). RC/CS was also 29% and 64% lower after treatment with 750 and 1000 µM MeJA
compared to control plants. The values of parameters in a cross-section of the leaf area such as ABS/CS,
TR0/CS, Et0/CS and DI0/CS decreased after treatment with 500, 750 and 1000 µM of MeJA. The highest
concentration caused a vast decrease in these parameters—54% on average (Table 1). Taken together,
these results indicate a strong influence of MeJA on the action of the photosynthetic apparatus in
barley seedlings after treatment with the higher concentrations of phytohormone, 500–1000 µM for
five days. We selected the concentration of 500 µM of MeJA that caused a strong growth reduction
(Figure 1), a noticeable effect on the photosynthesis efficiency (Table 1) and a K-band occurrence during
fluorescence kinetics analysis (Figure 2A,B) for further molecular analysis.

To gain more insight into the influence of MeJA on photosynthesis efficiency, we analysed changes
in expression of genes encoding the extrinsic proteins of Oxygen-Evolving Complex (OEC). Changes in
the expression level of OEC proteins might be the reason for the occurrence of the K-band in analysis
of fluorescence kinetics in response to MeJA treatment (Figure 2A,B). We identified four potential
barley orthologues of Arabidopsis genes encoding OEC proteins, namely HvPsbO, HvPsbP, HvPsbR
and HvPsbQ (Photosystem II subunit O, P, R, Q) (Table S1), and analysed their expression profile after
treatment of barley seedlings with 500 µM for different periods of time (4–120 h).

There were significant changes in the expression level of the studied genes in response to the
applied MeJA treatment (Figure 3). Interestingly, we observed a similar expression profiles of all
analysed genes: an increase of the expression level already after 4 h MeJA treatment (from three to six
times) that remained at the same level after 24 and 72 h and finally declined after a longer exposure to
MeJA (120 h). After a prolonged treatment with MeJA (120 h), the expression of three genes, namely
HvPsbO, HvPsbP and HvPsbQ, returned to the level observed in control conditions while HvPsbR
expression reduced two-fold compared to the control (Figure 3). The downregulation of HvPsbR gene
expression might lead to the reduced activity of OEC.
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Table 1. Selected parameters related to photosynthesis efficiency measured in leaves of barley seedlings after MeJA treatment. Means ± for the SE are presented for
each of the analysed parameters. Statistical analyses were performed using a two-way ANOVA (p < 0.05) followed by the Fisher Least Significant Difference (LSD) test
(p < 0.05) to assess the differences between different concentrations of MeJA. Statistically significant differences (p < 0.05) are indicated by different letters (a–d).
A decrease of a parameter value in relation to the control is indicated in blue and an increase in yellow. ABS/CS, absorption energy flux per cross-section (CS) of leaf
area; TR0/CS, trapped energy flux per CS; ET0/CS, electron transport flux per CS; DI0/CS, dissipation energy flux per CS; RC/CS, number of active reaction centres per
illuminated CS; PIABS, performance index on absorption basis (based on [74]).

MeJA (µM)/
Parameter ABS/CS % of

Control TR0/CS % of
Control ET0/CS % of

Control DI0/CS % of
Control RC/CS % of

Control PIABS
% of

Control

control 1317.95 ± 9.38a 100 1032.96 ± 7.514a 100 578.89 ± 6.29ab 100 284.98 ± 2.22a 100 696.73 ± 6.83a 100 2.57 ± 0.052a 100
15 1341.43 ± 11.58a 101.8 1054.76 ±1 0.09a 102.1 615.81 ± 6.85b 106.4 286.67 ± 2.17a 100.6 764.54 ±1 0.70b 109.7 3.02 ± 0.075d 117.5

150 1271.83 ± 15.11ab 96.5 991.28 ± 12.05ab 96.0 552.62 ± 9.08a 95.5 280.54 ± 3.29a 98.4 665.40 ± 12.29a 95.5 2.44 ± 0.064a 94.9
500 1182.33 ± 13.89b 89.7 929.00 ± 11.81b 89.9 484.25 ± 9.61e 83.7 253.33 ± 3.12d 88.9 632.91 ± 13.47a 90.8 2.28 ± 0.074a 88.7
750 1008.83 ± 59.38d 76.5 782.01 ± 50.14d 75.7 387.58 ± 29.43d 67.0 226.82 ± 9.55c 79.6 498.45 ± 37.33c 71.5 1.74 ± 0.145c 67.7

1000 625.83 ± 58.18c 47.5 458.09 ± 48.44c 44.3 205.96 ± 25.63c 35.6 167.74 ± 10.30b 58.9 248.57 ± 29.66c 35.7 0.91 ± 0.116b 35.4
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Figure 3. Expression of the genes encoding extrinsic proteins of Oxygen-Evolving Complex in leaves of
barley seedlings treated with 500 µM methyl jasmonate. The relative expression level was assessed in
relation to control plants grown without MeJA solution. The statistical analysis was performed using a
one-way ANOVA followed by the Fisher Least Significant Difference (LSD). Statistically significant
differences (p < 0.05) are indicated by different letters.

2.3. Analysis of the HvMYC2 Gene Expression after Methyl Jasmonate Treatment

To confirm that our experimental conditions induce the jasmonate signalling pathway, we analysed
the expression profile of the HvMYC2 gene, a homologue of Arabidopsis MYC2 encoding a key regulator
in the jasmonate signal transduction. Barley seedlings were exposed to 500 µM MeJA for 4, 24, 72
and 120 h. At all investigated treatment points, the HvMYC2 gene was upregulated, with a level of
expression 6–7 times higher after 24 and 72 h treatment, compared to the untreated control (Figure 4).
The prolonged treatment (five days) resulted in a similar transcription activity of HvMYC2 as the 4-h
treatment, i.e., higher than in control plants but significantly lower than after 24- or 72-h treatments.

Figure 4. Expression of the HvMYC2 gene in the leaves of barley seedlings after 500 µM methyl
jasmonate treatment. The relative expression level was assessed to control plants grown without
MeJA solution. The statistical analysis was performed using a one-way ANOVA followed by the
Fisher Least Significant Difference (LSD). Statistically significant differences (p < 0.05) are indicated by
different letters.

2.4. Changes in the Expression Profiles of the HvTIP Genes after Methyl Jasmonate Treatment

Based on in silico analysis of promoter regions of tonoplast intrinsic protein (TIP) genes, we assumed
that their expression might be regulated by jasmonate-inducted signalling pathway [58]. We selected
eight HvTIP genes that are expressed in barley at the seedling stage: HvTIP1;1, HvTIP1;2, HvTIP2;1,
HvTIP2;2, HvTIP2;3, HvTIP3;1, HvTIP4;1 and HvTIP4;2. Among TIPs encoded by these genes,
three (HvTIP1;1, HvTIP1;2 and HvTIP2;3) were experimentally proven as transporting water [48].
Moreover, based on the key structural features of the amino acid sequences of analysed HvTIPs, it
was postulated that they could transport also other substrates, such as hydrogen peroxide (HvTIP1;1,
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HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP3;1), ammonia (HvTIP2;1, HvTIP2;2 and HvTIP2;3)
and urea (HvTIP1;1, HvTIP1;2 and HvTIP4;2) [52]. Only for HvTIP4;1 the transported substrate has
not been predicted.

To determine whether exposure to MeJA affects HvTIP genes expression, we analysed their
transcription profile after 500 µM MeJA treatment for 4, 24, 72 and 120 h. We identified different
expression patterns of HvTIP genes after MeJA treatment. The expression of four genes, namely
HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2, increased compared to the control plants for all or at least
two treatment periods (Figure 5). Among the upregulated genes, three, namely HvTIP1;2, HvTIP2;2
and HvTIP4;2, are potentially involved in urea or ammonia transport, while for HvTIP4;1 the substrate
has not been determined. The transcriptional activity of only one gene, HvTIP4;2, increased constantly
during the treatment and after 120 h achieved the highest, six times upregulated, expression level.
However, the greatest increase in transcriptional activity was observed for the HvTIP2;2 gene whose
expression was more than 40-fold higher after 72-h MeJA treatment and 20-fold higher after 120-h
exposure, compared to the control seedlings (Figure 5). On the contrary, among genes whose expression
decreased at some time points compared to control plants were: HvTIP1;1, HvTIP2;1, HvTIP2;3 and
HvTIP3;1. HvTIP3;1 is predicted to transport only H2O2 while HvTIP2;1 can also transport ammonia
and HvTIP1;1 and HvTIP2;3 transport water. Only for one of the downregulated genes, HvTIP2;3,
the constant decline of expression, related to the time of MeJA exposure, was observed (Figure 5).
This experiment shows that methyl jasmonate-induced signalling pathway modulates expression
of HvTIPs in barley seedling, which is in line with the in silico analysis of their promotor regions.
The examined HvTIP genes showed changes in the profile and the range of expression, suggesting
that individual HvTIPs may play an important and different function in processes regulated by
methyl jasmonate.

Figure 5. Expression profiles of HvTIP genes in leaves of barley seedlings treated with 500 µM MeJA
in a mini-hydroponic system. The chosen potential substrate or substrates transported by HvTIPs
were indicated [52]. The underlined substrate has been experimentally proven for barley HvTIPs [49].
The relative gene expression level in MeJA treated plants was normalised to the control plants grown
in a 1

2 Hoagland’s solution. The statistical analysis was performed using a one-way ANOVA followed
by the Fisher Least Significant Difference (LSD) test. Statistically significant differences (p < 0.05) are
indicated by different letters.
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2.5. Nitrogen Content in Leaves of Barley Seedlings after Methyl Jasmonate Treatment

Four aquaporin genes upregulated by MeJA treatment at all or two investigated time points,
namely HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2, are potentially involved in transport of nitrogen
compounds, urea and ammonia through tonoplast, while HvTIP4;1 has not been characterised.
To confirm that methyl jasmonate induces changes in nitrogen homeostasis, we examined the nitrogen
content in barley leaves after MeJA treatment. Using two different parameters, Total Kjedahl Nitrogen
(TKN) method and Nitrogen Balance Index (NBI), we demonstrated that MeJA-treated seedlings
exhibited the reduced nitrogen content compared to control plants. The NBI parameter showed 36%
and TKN method 11% decrease in the leaf nitrogen content after 120-h exposure to 500 µM MeJA
(Figure 6). The induction of HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2 by MeJA might suggest their
role in ammonia and urea remobilisation from the vacuole.
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Figure 6. Nitrogen content in barley leaves after treatment with 500 µM MeJA for five days measured
using: (A) Total Kjedahl Nitrogen method (TKN); and (B) Nitrogen Balance Index (NBI). Data are
presented as the means ± SD for three biological replications, 0.5 g leaf tissue and 10 seedlings per
replication in the Kjedahl and NBI method, respectively. Statistically significant differences between
the control conditions and the MeJA treatment were assessed using a one-way ANOVA followed by
the Fisher Least Significant Difference (LSD) test (p < 0.05) and are indicated by different letters.

3. Discussion

Photosystem II (PSII) is one of the most sensitive elements of the photosynthetic machinery and
is highly responsive to stress conditions [76,77]. The JIP-test provides much information about the
maintenance of the photosynthetic apparatus under various growth conditions. The induction of the Chl
a fluorescence transient results in polyphasic rise, which is called an O-J-I-P fluorescence transient [74].
Our results prove that, after treatment with higher concentrations of MeJA, the photosynthesis efficiency
generally decreased. We identified appearance of a K-band during analysis of fluorescence kinetics in
response to MeJA concentrations from above 500 µM MeJA. This additional K-band has previously been
detected in the heat-stressed leaves of potato [78], in the drought-stressed leaves of barley [75,79,80]
and in the ABA-treated seedlings of barley [75]. It was suggested that the K-band is related to the
destruction of the Oxygen-Evolving Complex (OEC), which further leads to the imbalance between the
electron flow leaving the reaction centre (RC) towards the acceptor side and the electron flow coming
to the RC from the donor side [74]. As a consequence of this impairment, the disintegration of the
Mn cluster in the absence of the extrinsic proteins occurs [81]. We proved that treatment with 500 µM
of MeJA for five days led to both the appearance of the K-band and the downregulation of one of
the OEC genes, HvPsbR. This is in line with a hypothesis of Strasser et al. [74] because the decreased
transcriptional activity of this gene might result in the impairment of the OEC action. It was also
confirmed in the study on Chlamydomonas reinhardtii in which the downregulation of PSBR expression
diminished the efficiency of oxygen evolution and the extent of nonphotochemical quenching and had
an impact on the stability of the oxygen-evolving complex [82]. In turn, the studies in Arabidopsis
showed that psbR mutants exhibited PSII conformational changes, a slower electron transfer and a
lower PSII activity [83]. It was concluded that the lack of the PsbR protein modifies both acceptor-
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and donor-side of the PSII complex [84]. Furthermore, the functional defects observed in the psbR
mutant were due to the defective assembly and/or binding of the PsbP and PsbQ components to the
Photosystem II complex in the absence of the PsbR protein [85]. Complete elimination of PsbQ has a
lesser effect on PSII function, but plants lacking PsbR or both PsbR and PsbQ are characterised by clear
defects in PSII activity [86]. In barley, the downregulation of genes encoding the OEC proteins has been
shown after exposure to drought stress [75]. Severe and mild water deficit caused reduction of HvPsbO
expression in both roots and leaves of drought-stressed barley plants [87,88]. The microarray-based
screening of the jasmonate-responsive genes in Arabidopsis thaliana showed downregulation of genes
involved in the chloroplast constitution and photosynthesis [21]. Among them, AtPsbQ1 (At4g21280)
was identified.

The phytochemical activity under stress conditions is primarily regulated via the deactivation of
the PSII reaction centres [89]. We demonstrated that treatment with 750 and 1000 µM of MeJA for 120 h
(five days) led to the decrease in the number of active reaction centres per illuminated cross-section
(RC/CS). Generally, the use of 500 µM and higher concentrations of MeJA led to the decrease of the
following parameters: absorption energy flux per cross-section (ABS/CS), trapped energy flux per
CS (TR0/CS), electron transport flux per CS (ET0/CS) and dissipation energy flux per CS (DI0/CS).
This clearly indicates the reduced efficiency of photosynthesis. The same OJIP parameters were reduced
in barley (Hordeum vulgare) by drought stress [90]. The drought mainly limited the number of active
PSII reaction centers, which further led to reduce amount of trapped energy per leaf cross-section [90].
Another study in barley performed using OJIP test showed the exact pattern of changes in response
to drought and rapid dehydration [75]. The drought stress caused decrease in a value of parameters
derived from the fast chlorophyll a fluorescence kinetics and the rapid dehydration resulted in a
similar pattern of OJIP curve as early drought stress [75]. The phenomenological energy fluxes for
absorption (ABS/CS), trapping (TRo/CS) and electron transport (ETo/CS) were reduced in zoysiagrass
(Zoysia japonica) when the plants were subjected to cold stress [91]. In turn, salinity stress decreased only
the electron transport flux per cross section (ETO/CS) in sorghum (Sorghum bicolor) [92]. Furthermore,
the macronutrient deprivation in maize (Zea mays) had an impact on the same OIJP parameters and
decrease in ABS/CS, TR0/CS, ET0/CS and DI0/CS values were observed [93]. Interestingly, in our study,
the lower concentration (15 µM) of MeJA applied for 120 h caused a 10% increase in the value of
RC/CS compared to the control plants. We also observed upregulation of all HvPsb genes after a
shorter exposure (4 and 24 h) to 500 µM MeJA. Although the different treatments (concentration ×
time) cannot be directly compared, it is worth noting that the dependence of photosynthesis activity
on the MeJA dose used in the exogenous MeJA application was observed in many studies [27,94]. At a
concentration of 100 µM MeJA or higher, downregulation of genes involved in photosynthesis and
decrease of photosynthesis activity were detected when MeJA was applied as a spray or added to
hydroponic culture [21,95]. On the contrary, at a concentration of 50 µM or lower, often combined
with abiotic stress treatments, elevation of the net photosynthetic rate or photosynthetic pigments
were observed [96,97]. It is well known that the level of phytohormones including jasmonic acid
varies according to the tissue type, development stage and external stimuli [36,98–101]. The highest
levels of JA have been reported in the fruit, flowers and young leaves, whereas much lower levels
have been found in the roots and mature leaves [98,99,102]. The detail analysis of jasmonate content
performed in soybean (Glycine max) revealed a range of 50–2000 ng/g of fresh weight, depending on
the organ, and a five-fold increase in the JA levels after dehydration [99]. In our study, we added
different concentrations of MeJA to a 1

2 Hoagland’s medium in which the barley seedlings were grown,
so the phytohormone first had to be transported from the roots to leaves. Jasmonate can move readily
in plants in the liquid phase or the vapor phase and can diffuse through the membranes [103,104].
To choose MeJA concentrations for molecular studies, we were looking for MeJA doses that would
turn on the jasmonate signalling. We tested the expression profile of HvMYC2 gene which encodes the
key transcription factor that binds to JA-responsive elements in promoters of JA-responsive genes, and
thus plays a crucial role in the JA signal transduction process. The lower MeJA concentration (i.e.,
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150 µM for 4- and 24-h treatment, data not shown) did not affect HvMYC2 expression, while, after 4-h
treatment with 500 µM, the HvMYC2 transcript level increased three-fold.

It should also be noted that there are large discrepancies among the methods and range of doses
which have been used for exogenous treatment with MeJA. Among applied methods of treatment
there are: hydroponic systems, spraying the plants, floating leaf pieces in phytohormone solution and
irrigating plants with phytohormone solution. For example, in Hordeum vulgare, the cut pieces of leaves
were floated in 45 µM of MeJA solution for 24–72 h [105]. In Glycine max, 50 µM MeJA was used for
leaf spraying of mature plants [106]. In Brassica napus, 100 µM was applied for eight-day treatment of
mature plants in hydroponic solution [96], while in Citrus, mature plants grown in perlite were supplied
with 1000 µM solution [34] and in Brassica oleracea seedlings were sprayed with 5000 µM [107].Under
our experiment conditions the expression of HvMYC2 gene was upregulated, indicating that jasmonate
signalling was turned on. This basic helix-loop-helix transcription factor has a key position in the
signal transduction process that regulates response to jasmonates [108,109]. Studies in different plant
species demonstrated that MYC2 transcription was induced by MeJA treatment, e.g., in apple (Malus x
domestica) [110] and yew-tree (Taxus sp.) [111].

Total Kjeldahl Nitrogen method is often used as reference method for N determination in
plants [112]. Nitrogen Balance Index (NBI) used for N estimation is a not destructive method based on
fluorescence measurement. It evaluates the ratio of chlorophyll to polyphenols. The chlorophyll and
the polyphenols content in plant leaves are inversely dependent on the nitrogen status [113].

In our experiment, the exogenous treatment with MeJA caused reduction of nitrogen content
in barley leaves. The reduction in nitrogen uptake as an immediate consequence of MeJA treatment
has been described previously in Brassica napus and it was concomitant with a remobilisation of
endogenous N from leaves to roots [95]. In our experiments, this reduction was associated with
increased expression of three HvTIP genes that are predicted to transfer nitrogen compounds (urea or
ammonia) between vacuole and cytoplasm. Among all investigated HvTIP genes, the highest increase
in transcriptional activity was observed for the HvTIP2;2 gene whose expression was more than 40-fold
higher after 72-h MeJA treatment, compared to the control seedlings. This isoform is postulated to
transport ammonia based on bioinformatic analysis in barley [53]. The function of the wheat aquaporin
TaTIP2;2 was analysed in yeast. The results suggest that NH3 is not transported in file with water,
but through a separate pore in a tetramer conformation [58]. The expression level of another gene,
HvTIP4;2, which is postulated to transport urea, increased constantly during exposure to MeJA and
reached six-fold upregulation after 120-h treatment. Furthermore, the increase of expression level after
MeJA treatment at different treatment points was detected for two other HvTIP genes: HvTIP1;2 and
HvTIP4;1. Urea is one of the possible substrates transported by HvTIP1;2 isoform, while the substrate
for HvTIP4;1 has not been predicted in barley. However, Arabidopsis homologue of HvTIP4;1 was
shown capable of transporting urea [54]. The increase in expression level of HvTIP1;2, HvTIP2;2,
HvTIP4;1 and HvTIP4;2 after MeJA treatment might lead to vacuolar unloading of ammonia and urea
from vacuole to cytoplasm in response to decreased nitrogen content in leaves observed in our study.
The repression of nitrate uptake by roots and, consequently, the reduced level of nitrogen in leaves was
observed in rice (Oryza sativa) and tomato (Solanum lycopersicum) after MeJA treatment [114,115].

Water is the most important substrate whose transport is facilitated by aquaporins. There are three
TIP proteins in barley, which are proved to be involved in water transport by in vitro experiments:
HvTIP1;1, HvTIP1;2 and HvTIP2;3 [49]. Treatment with a high dose of MeJA (500 µM × 120 h) led
to downregulation of the expression of two of them—HvTIP2;3 and HvTIP1;1—and the same effect
was observed under drought stress [59]. The reduced expression of water-transporting aquaporin
genes under drought stress could lead to the decrease in water permeability of membranes in order to
avoid water loss. MeJA treatment led to the same effect as drought treatment even for plants which
were grown in hydroponic culture. It should be noticed that the prediction of cell location for these
two aquaporins (HvTIP2;3 and HvTIP1;1) is dual—they may be located in the tonoplast as well as in
plasma membrane [53].
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Contrary to HvTIP2;3 and HvTIP1;1 genes, the expression profile of the third water-transferring
aquaporin gene (HvTIP1;2) differed after MeJA and drought treatment. Under drought stress, a strong
downregulation of the HvTIP1;2 was detected [59], while its expression increased after MeJA treatment.
It should be noted that all three water-transporting aquaporins are also predicted to transport nitrogen
compounds (urea or ammonia) and hydrogen peroxide. The similar profile of HvTIP2;3 and HvTIP1;1
genes after drought and MeJA treatments and different profile of HvTIP1;2 indicate that not all
aquaporin genes involved in drought response are related to the MeJA pathway.

HvTIP3;1 encodes an isoform that is predicted to transport hydrogen peroxide only [53]. H2O2 is a
relatively long-lived molecule compared with other reactive oxygen species (ROS) [116]. It is potentially
harmful at high concentrations because of its high reactivity. It is known that MeJA treatment and
drought lead to the generation of ROS [117–120]. Each subcellular compartment in plants including
vacuole contains its own set of ROS-producing and ROS-scavenging proteins and TIP could be a part
of this mechanism [119]. Under drought stress, expression of HvTIP3;1 gene rose 5000 times compared
to the optimal water conditions [59], while after MeJA treatments its activity decreased. Other HvTIP
genes that are postulated to transport H2O2 also showed different expression profiles after drought and
MeJA treatment suggesting that different aquaporins are involved in response to MeJA and drought
induced oxidative stresses. Two pairs of genes, HvTIP4;2 and HvTIP2;3 as well as HvTIP2;1 and
HvTIP4;1, had opposite patterns of expression under MeJA treatment. Interestingly, the opposite
patterns of expression were also detected under drought stress for HvTIP2;1 and HvTIP4;1 [59].

4. Materials and Methods

4.1. Plant Material

This research was performed using the two-row spring barley cultivar “Sebastian”. This variety
was created in Sejet Plant Breeding company in Denmark as a cross “Visksa” × “Lux”. “Sebastian”
variety is characterised by its high yield potential, high biomass production, good brewery traits,
resistance to lodging, susceptibility to mildew (Blumeria graminis f.sp. hordei) and a moderate
susceptibility to scald (Rynchosporium secalis) and leaf rust (Puccinia hordei). It also has good resistance
to net blotch (Pyrenophora teres) [121].

4.2. Treatment with Methyl Jasmonate (MeJA) Using a Mini-Hydroponic System

The mini-hydroponic system was used to studying the effect of methyl jasmonate (MeJA, Sigma
Aldrich Cat. No. 392707) on seedling growth. The mini-hydroponic setup consisted of a 1.2 L
opaque plastic container, which was covered with a lid containing 24 holes and air distributors with
12 outlets with a non-return valve attached to an air pump (Figure S1). A half-strength Hoagland’s
nutrient solution was used as the medium for the treatment with MeJA and pH was adjusted to 5.8.
The composition of this solution was described elsewhere [122]. The seeds were surface sterilised by
soaking in the 1% sodium hypochlorite for 15 min followed by rinsing them in sterile water three times
for 5 min. Then seeds were placed on three filter papers that had been soaked with 5 mL of sterile
water in Petri dishes, sealed with parafilms and kept for imbibition at 4 ◦C for 24 h in the dark, and
then transferred to 21 ◦C in the dark for next 48 h and another 48 h in the light at the same temperature.
Five-day-old seedlings with roots and leaves were transferred into the holes of a plastic container lid
covered with filter paper, 24 seedlings per container. The roots of the seedlings were immersed in
the medium. One container was assumed to be one biological repetition with three repetitions per
treatment. Five different concentrations of MeJA were used to investigate seedling growth (15, 150,
500, 750 and 1000 µM), and a medium without the phytohormone supplement was used in the control
(Figure S1). After five days of growth, the following parameters were analysed: leaf, root, distance
between seed and unrolled part of the first leaf and the dry mass of a leaf after drying at 60 ◦C for
24 h. Ten seedlings per one biological repetition were analysed. The experiments were conducted in a
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growth chamber with controlled conditions: light intensity 250 µM m−2 s−1, temperature 20 ◦C/18 ◦C
(day/night) and photoperiod 16/8 h.

4.3. Physiological Analyses

4.3.1. Chlorophyll a Fluorescence (ChIF) and Nitrogen Balanced Index (NBI) Analyses

The chlorophyll a fluorescence parameters were measured using a Plant Efficiency Analyzer (Pocket
PEA fluorimeter, Hansatech Instruments Ltd., England) as was previously described [75,80,123,124]
after five days of seedling growth in the mini-hydroponic system described above at the following
concentrations of methyl jasmonate: 15, 150, 500, 750 and 1000 µM (Figure S1). Leaves from ten
plants from each of the three plastic containers were measured. One container was assumed to be
one biological repetition. The abbreviations of the parameters that are used in the text are as follows:
RC, the specific energy fluxes per reaction centre; CS, the specific energy fluxes per cross-section;
ABS, the flux of the photons that were absorbed by the antenna pigments and that created excited
chlorophyll; Fv/Fm, the maximum quantum efficiency of Photosystem II; PIabs, the Performance Index
for the photochemical activity; ET0/CS, electron transport flux per CS; TR0/CS, trapped energy flux
per CS; ABC/CS, absorption energy flux per CS; DI0/CS, dissipation energy flux per CS; and RC/CS,
number of active reaction centres per illuminated cross-section [74,75,125].

The Nitrogen Balanced Index (NBI) was measured with a Dualex Scientifc (Force-A, France) sensor
after five days of seedlings growth in medium with 500 µM methyl jasmonate (MeJA) and without
the phytohormone supplement, i.e., the control growth conditions (Figure S1). The NBI index is the
ratio of chlorophyll content to flavonoid content. Leaves from ten plants from each of the three plastic
containers were measured. One container was assumed to be one biological repetition.

4.3.2. Nitrogen Content Analysis

The nitrogen content in the plant tissue was analysed using the Total Kjeldahl Nitrogen method
(TKN) [126] after five days of seedlings growth in a medium with 500 µM of methyl jasmonate (MeJA)
and without the phytohormone supplement (i.e., the control growth conditions) in three biological
repetitions (Figure S1). The leaves of the seedlings were cut and dried at 90 ◦C for three days. For each
biological repetition, 0.5 g of the tissue was ground with an electric mill. To achieve this amount of
tissue, the dried leaves of plants from 2–4 containers were polled, for the control growth or MeJA
treatment conditions, respectively. After grinding, the plant material was dried for 24 h at 105 ◦C before
the analysis. Then, 100 mg of the dried and homogenised samples were mineralised in H2SO4 with a
catalyst at a temperature of 420 ◦C using a DKL42 Fully Automatic Digestion Unit (VELP Scientifica,
Italy). The mineralised samples were distilled using a UDK129 Distillation Unit (VELP Scientifica, Italy)
after adding 38% NaOH. During the distillation, the ammonium that had been obtained from most of
the transformed nitrogen species evaporated as ammonia and then condensed in a 4% H3BO3 solution.
Lastly, the distillates were titrated with 0.02 N HCl using a Tachiro indicator. A certified reference
material (Hay Powder BCR® 129, Institute for Reference Materials and Measurements, Belgium)
was used for the quality assurance of the analytical data. The N concentration is presented as the
g N kg−1d.w. The results are shown as the means ± SEs. The statistical significance of the differences
was determined using a one-way ANOVA followed by the Fisher Least Significant Difference (LSD)
test. Differences in the p-values < 0.05 were considered to be statistically significant. Statistica v. 13.1
(Dell Inc., USA) was used for the statistical analyses.

4.4. In Silico Analysis of HvTIP and the Oxygen-Evolving Complex (OEC) Genes in the Barley Seedlings

The members of the TIP gene subfamily in barley are already known [53]. The members of the
HvTIP gene subfamily that are expressed in barley leaves at seedling stage growth were identified
in our previous study [59]. The potential barley orthologues of Arabidopsis genes encoding the
extrinsic proteins of the Oxygen-Evolving Complex (OEC) in the barley genome was identified
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using EggNOG 4.5.1—the database of the orthologous groups and functional annotations [127] (http:
//eggnogdb.embl.de/#/app/home). For a search in database, we used the Arabidopsis gene IDs and we
identified barley MLOC numbers. Next, the MLOC number identified was used to search the Monocots
Plaza database 4.5 (https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots/). Then,
the identified sequences were used to perform a BLAST analysis against the barley genome sequence
(reference) deposited in Ensemble Plants (https://plants.ensembl.org/Hordeum_vulgare/Info/Index) in
order to identify the HORVU number for each gene. The Ensembl Plants Hordeum vulgare (IBSC_v2)
was used.

4.5. qPCR Analysis of the HvMYC2 Gene, the Genes Encoding the Oxygen-Evolving Complex (OEC) and the
Tonoplast Intrinsic Protein (HvTIP) Genes

The relative expression of HvMYC2, the HvTIP genes and genes encoding the extrinsic proteins of
the Oxygen-Evolving Complex (OEC) were assessed using quantitative real-time RT-PCR (RT-qPCR)
(Table S2) The total RNA was extracted from each barley sample using a TriPure Isolation Reagent
according to the manufacturer’s protocol (Roche Life Science), which is based on the method of
Chomczynski [128]. Before reverse transcription, 1 µg of the total RNA was treated with RNase-free
DNase I (Fermentas) for 30 min in order to degrade any residual genomic DNA. Next, a RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific) was used to synthesise the first-strand cDNA.
The cDNA that was obtained was then diluted 1:5 with ddH2O and was used as the template for
the quantitative PCR. The 10 µL of qPCR reaction mix contained 2.5 µL of diluted cDNA, 1 µL of
the primer pair mixture (5 µM) and 5 µL of 2 ×Master Mix (LightCycler 480 SYBR Green I Master;
Roche). The RT-qPCR reactions were performed at 95 ◦C for 5 min followed by 45 cycles of 95 ◦C for
10 s, 58 ◦C for 20 s and 72 ◦C for 10 s. The value of the relative expression level was normalised to
a reference gene ADP (ADP-ribozylation factor 1, accession no. AJ508228.2). The transcript level of
the HvMYC2, genes encoding the extrinsic proteins of the Oxygen-Evolving Complex and the HvTIP
genes in the leaves after 4, 24, 72 and 120 h of growth in the medium with 500 µM of MeJA, and
the medium without the phytohormone supplement was calculated using the formula: Ct target
gene – Ct reference gene (Figure S1). To analyse the expression after MeJA treatment, the relative
expression of each gene at a given time point was determined as the fold change of its expression
under the treatment conditions relative to its expression under the control conditions according to the
delta-delta Ct method [129]. Three biological replications were used to analyse the gene expression
using a sample of one seedling per replication. Each sample was analysed in two technical replicates.
The relative expression data were analysed using the LinReq software tool [130], Statistica (13.1; Dell)
and a one-way ANOVA followed by the Fisher Least Significant Difference (LSD); differences in the
p-values < 0.05 were considered to be statistically significant.

5. Conclusions

Exogenous treatment with a high dose of methyl jasmonate (MeJA, 500 µM for 120 h) reduced
photosynthesis efficiency in barley seedlings. The decrease of PSII parameters was associated with
downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex.
This, in turn, might lead to the impairment of OEC action, which was manifested by appearance of a
K-band during analysis of fluorescence kinetics.

Methyl jasmonate treatment caused reduction of nitrogen content in barley leaves, associated
with increased expression of four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and
HvTIP4;2) predicted to transport nitrogen compounds from vacuole to cytosol. Upregulation of
nitrogen-transporting HvTIPs may lead to vacuolar unloading of ammonia and urea, which both could
be remobilised when nitrogen content decreased in barley leaves.

Drought and MeJA treatment led to the changes in expression profile of specific HvTIPs involved
in water transport, indicating that activation of some aquaporin genes transporting water may be
associated with MeJA pathway.

http://eggnogdb.embl.de/#/app/home
http://eggnogdb.embl.de/#/app/home
https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots/
https://plants.ensembl.org/Hordeum_vulgare/Info/Index
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Changes in expression of all investigated HvTIPs in response to MeJA treatment are related
to the presence of cis-regulatory elements in their promotor regions which are recognised by the
jasmonate-related transcription factors.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/12/
4335/s1: Figure S1. The mini-hydroponic system used to study the effect of methyl jasmonate (MeJA) treatment on
seedling growth: Table S1. Potential orthologues of the Arabidopsis genes encoding the extrinsic proteins of the
Oxygen-Evolving Complex in the barley genome; Table S2. Primers that were used in the qRT-PCR.
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Abbreviations

ABA abscisic acid
ABS/CS absorption energy flux per CS
APQ aquaporins
ChIF chlorophyll a fluorescence
CS cross-section
DI0/CS dissipation energy flux per CS
ET0/CS electron transport flux per CS
MeJA methyl jasmonate
MIP membrane intrinsic proteins
NBI nitrogen balanced index
OEC oxygen evolving complex
PIABS performance index per absorption
PSI photosystem I
PSII photosystem II
PsbO/P/R/Q photosystem II subunit O, P, R, Q
RC reaction center
RC/CS number of active reaction centers per illuminated cross-section
ROS reactive oxygen species
TIP tonoplast intrinsic proteins
TR0/CS trapped energy flux per CS
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93. Sitko, K.; Żaneta, G.; Szopiński, M.; Zieleźnik-Rusinowska, P.; Rusinowski, S.; Pogrzeba, M.;
Daszkowska-Golec, A.; Kalaji, H.M.; Małkowski, E. Influence of short-term macronutrient deprivation
in maize on photosynthetic characteristics, transpiration and pigment content. Sci. Rep. 2019, 9, 14181.
[CrossRef]

94. Hristova, V.A.; Popova, L.P. Treatment with methyl jasmonate alleviates the effects of paraquat on
photosynthesis in barley plants. Photosynthetica 2002, 40, 567–574. [CrossRef]

95. Rossato, L.; MacDuff, J.H.; Laine, P.; Le Deunff, E.; Ourry, A. Nitrogen storage and remobilization in Brassica
napus L. during the growth cycle: Effects of methyl jasmonate on nitrate uptake, senescence, growth, and
VSP accumulation. J. Exp. Bot. 2002, 53, 1131–1141. [CrossRef]

96. Yoon, J.Y.; Hamayun, M.; Lee, S.-K.; Lee, I.-J. Methyl jasmonate alleviated salinity stress in soybean. J. Crop.
Sci. Biotechnol. 2009, 12, 63–68. [CrossRef]

97. Parmoon, G.; Ebadi, A.; Jahanbakhsh, S.; Hashemi, M.; Moosavi, S.A. Effect of exogenous application of
several plant growth regulators on photosynthetic pigments of fennel plants. Not. Sci. Biol. 2018, 10, 508–515.
[CrossRef]

98. Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 569–589. [CrossRef]

99. Creelman, R.A.; Mullet, J.E. Jasmonic acid distribution and action in plants: Regulation during development
and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 1995, 92, 4114–4119. [CrossRef] [PubMed]

100. Šimura, J.; Antoniadi, I.; Široká, J.; Tarkowská, D.; Strnad, M.; Ljung, K.; Novák, O. Plant hormonomics:
Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018, 177, 476–489. [CrossRef]

101. Ronzan, M.; Piacentini, D.; Fattorini, L.; Federica, D.R.; Caboni, E.; Eiche, E.; Ziegler, J.; Hause, B.; Riemann, M.;
Betti, C.; et al. Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or
arsenic exposure. Environ. Exp. Bot. 2019, 165, 59–69. [CrossRef]

102. Osadchuk, K.; Cheng, C.-L.; Irish, E.E. Jasmonic acid levels decline in advance of the transition to the adult
phase in maize. Plant Direct 2019, 3, e00180. [CrossRef]

103. Farmer, E.E.; Ryan, C.A. Interplant communication: Airborne methyl jasmonate induces synthesis of
proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 1990, 87, 7713–7716. [CrossRef] [PubMed]

104. Seo, H.S.; Song, J.T.; Cheong, J.-J.; Lee, Y.-H.; Lee, Y.-W.; Hwang, I.; Lee, J.S.; Choi, Y.D. Jasmonic acid carboxyl
methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 2001,
98, 4788–4793. [CrossRef] [PubMed]

105. Wierstra, I.; Kloppstech, K. Differential effects of methyl jasmonate on the expression of the early
light-inducible proteins and other light-regulated genes in barley. Plant Physiol. 2000, 124, 833–844.
[CrossRef] [PubMed]

106. Anjum, S.A.; Xie, X.; Farooq, M.; Wang, L.; Xue, L.; Shahbaz, M.; Salhab, J. Effect of exogenous methyl
jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. Afr. J.
Biotechnol. 2011, 10, 9640–9646.

107. Del Amor, F.M.; Cuadra-Crespo, P. Alleviation of salinity stress in broccoli using foliar urea or
methyl-jasmonate: Analysis of growth, gas exchange, and isotope composition. Plant Growth Regul.
2011, 63, 55–62. [CrossRef]

108. Kazan, K.; Manners, J.M. MYC2: The master in action. Mol. Plant 2013, 6, 686–703. [CrossRef]
109. Breeze, E. Master MYCs: MYC2, the Jasmonate Signaling “Master Switch”. Plant Cell 2019, 31, 9–10.

[CrossRef]
110. An, J.-P.; Li, H.-H.; Song, L.-Q.; Su, L.; Liu, X.; You, C.-X.; Wang, X.; Hao, Y.-J. The molecular cloning and

functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol. Biochem. 2016,
108, 24–31. [CrossRef]

111. Yanfang, Y.; Kaikai, Z.; Liying, Y.; Xing, L.; Ying, W.; Hongwei, L.; Qiang, L.; Duanfen, C.; Deyou, Q.
Identification and characterization of MYC transcription factors in Taxus sp. Gene 2018, 30, 1–8. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0127200
http://dx.doi.org/10.1007/s10867-016-9428-1
http://dx.doi.org/10.1038/s41598-019-50579-1
http://dx.doi.org/10.1023/A:1024356120016
http://dx.doi.org/10.1093/jexbot/53.371.1131
http://dx.doi.org/10.1007/s12892-009-0060-5
http://dx.doi.org/10.15835/nsb10410356
http://dx.doi.org/10.1146/annurev.pp.44.060193.003033
http://dx.doi.org/10.1073/pnas.92.10.4114
http://www.ncbi.nlm.nih.gov/pubmed/11607536
http://dx.doi.org/10.1104/pp.18.00293
http://dx.doi.org/10.1016/j.envexpbot.2019.05.013
http://dx.doi.org/10.1002/pld3.180
http://dx.doi.org/10.1073/pnas.87.19.7713
http://www.ncbi.nlm.nih.gov/pubmed/11607107
http://dx.doi.org/10.1073/pnas.081557298
http://www.ncbi.nlm.nih.gov/pubmed/11287667
http://dx.doi.org/10.1104/pp.124.2.833
http://www.ncbi.nlm.nih.gov/pubmed/11027731
http://dx.doi.org/10.1007/s10725-010-9511-8
http://dx.doi.org/10.1093/mp/sss128
http://dx.doi.org/10.1105/tpc.19.00004
http://dx.doi.org/10.1016/j.plaphy.2016.06.032
http://dx.doi.org/10.1016/j.gene.2018.06.065


Int. J. Mol. Sci. 2020, 21, 4335 22 of 22

112. Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.;
Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages,
disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [CrossRef]

113. Cartelat, A.; Cerovic, Z.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.;
Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen
deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [CrossRef]

114. Gómez, S.; Ferrieri, R.A.; Schueller, M.; Orians, C.M. Methyl jasmonate elicits rapid changes in carbon and
nitrogen dynamics in tomato. New Phytol. 2010, 188, 835–844. [CrossRef] [PubMed]

115. Wu, X.; Ding, C.; Baerson, S.R.; Lian, F.; Lin, X.; Zhang, L.; Wu, C.; Hwang, S.-Y.; Zeng, R.; Song, Y. The roles
of jasmonate signalling in nitrogen uptake and allocation in rice (Oryza sativa L.). Plant Cell Environ. 2019,
42, 659–672. [CrossRef] [PubMed]

116. Bienert, M.D.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta
(BBA) Biomembr. 2006, 1758, 994–1003. [CrossRef]

117. Zhang, L.; Xing, D. Methyl jasmonate induces production of reactive oxygen species and alterations in
mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell
Physiol. 2008, 49, 1092–1111. [CrossRef] [PubMed]

118. Soares, A.M.D.S.; De Souza, T.F.; Jacinto, T.; Machado, O.L.T. Effect of Methyl Jasmonate on antioxidative
enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Braz. J. Plant Physiol.
2010, 22, 151–158. [CrossRef]

119. Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress
combination. Plant J. 2017, 90, 856–867. [CrossRef]

120. Ho, T.-T.; Murthy, H.N.; Park, S.-Y. Methyl Jasmonate Induced Oxidative Stress and Accumulation of
Secondary Metabolites in Plant Cell and Organ Cultures. Int. J. Mol. Sci. 2020, 21, 716. [CrossRef]

121. Szurman-Zubrzycka, M.E.; Zbieszczyk, J.; Marzec, M.; Jelonek, J.; Chmielewska, B.; Kurowska, M.M.;
Krok, M.; Daszkowska-Golec, A.; Guzy-Wrobelska, J.; Gruszka, D.; et al. HorTILLUS—A rich and renewable
source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum
vulgare L.). Front. Plant Sci. 2018, 9. [CrossRef]

122. Daszkowska-Golec, A.; Skubacz, A.; Kurowska, M.; Słota, M.; Swiergolik, D.; Szarejko, I. Methods for the
simple and reliable assessment of barley sensitivity to abiotic stresses during early development. In Barley;
Harwood, W.A., Ed.; Springer: New York, NY, USA, 2019; Volume 1900, pp. 127–151. ISBN 978-1-4939-8942-3.

123. Kwasniewski, M.; Daszkowska-Golec, A.; Janiak, A.; Chwialkowska, K.; Nowakowska, U.; Sablok, G.;
Szarejko, I. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain
plant functions under water-deficiency conditions. EXBOTJ 2016, 67, 1079–1094. [CrossRef]

124. Daszkowska-Golec, A.; Skubacz, A.; Sitko, K.; Słota, M.; Kurowska, M.; Szarejko, I. Mutation in barley
ERA1 (Enhanced Response to ABA1) gene confers better photosynthesis efficiency in response to drought as
revealed by transcriptomic and physiological analysis. Environ. Exp. Bot. 2018, 148, 12–26. [CrossRef]

125. Kalaji, H.M.; Kalaji, H.M.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.; Łukasik, I.;
Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under
abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [CrossRef]

126. Egli, H. Kjeldahl Guide; BUCHI Labortechnik AG: Flawill, Switzerland, 2008.
127. Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.;

Sunagawa, S.; Kuhn, M.; et al. EggNOG 4.5: A hierarchical orthology framework with improved functional
annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, 286–293. [CrossRef]

128. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell
and tissue samples. Biotechniques 1993, 15, 532–537. [PubMed]

129. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2−∆∆CT method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

130. Ramakers, C.; Ruijter, J.M.; Deprez, R.H.L.; Moorman, A.F.M. Assumption-free analysis of quantitative
real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s130810823
http://dx.doi.org/10.1016/j.fcr.2004.05.002
http://dx.doi.org/10.1111/j.1469-8137.2010.03414.x
http://www.ncbi.nlm.nih.gov/pubmed/20723074
http://dx.doi.org/10.1111/pce.13451
http://www.ncbi.nlm.nih.gov/pubmed/30251262
http://dx.doi.org/10.1016/j.bbamem.2006.02.015
http://dx.doi.org/10.1093/pcp/pcn086
http://www.ncbi.nlm.nih.gov/pubmed/18535010
http://dx.doi.org/10.1590/S1677-04202010000300001
http://dx.doi.org/10.1111/tpj.13299
http://dx.doi.org/10.3390/ijms21030716
http://dx.doi.org/10.3389/fpls.2018.00216
http://dx.doi.org/10.1093/jxb/erv498
http://dx.doi.org/10.1016/j.envexpbot.2018.01.003
http://dx.doi.org/10.1007/s11738-016-2113-y
http://dx.doi.org/10.1093/nar/gkv1248
http://www.ncbi.nlm.nih.gov/pubmed/7692896
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1016/S0304-3940(02)01423-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Methyl Jasmonate Treatment Led to Growth Reduction of Barley Seedling 
	Methyl Jasmonate Treatment Reduced the Efficiency of Photosynthesis in Barley Seedlings 
	Analysis of the HvMYC2 Gene Expression after Methyl Jasmonate Treatment 
	Changes in the Expression Profiles of the HvTIP Genes after Methyl Jasmonate Treatment 
	Nitrogen Content in Leaves of Barley Seedlings after Methyl Jasmonate Treatment 

	Discussion 
	Materials and Methods 
	Plant Material 
	Treatment with Methyl Jasmonate (MeJA) Using a Mini-Hydroponic System 
	Physiological Analyses 
	Chlorophyll a Fluorescence (ChIF) and Nitrogen Balanced Index (NBI) Analyses 
	Nitrogen Content Analysis 

	In Silico Analysis of HvTIP and the Oxygen-Evolving Complex (OEC) Genes in the Barley Seedlings 
	qPCR Analysis of the HvMYC2 Gene, the Genes Encoding the Oxygen-Evolving Complex (OEC) and the Tonoplast Intrinsic Protein (HvTIP) Genes 

	Conclusions 
	References

