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ABSTRACT
Obligate fungal pathogens (ascomycetes and basidiomycetes) and oomycetes are known
to cause diseases in cereal crop plants. They feed on living cells and most of them
have learned to bypass the host immune machinery. This paper discusses some of the
factors that are associated with pathogenicity drawing examples from ascomycetes,
basidiomycetes and oomycetes, with respect to their manifestation in crop plants.
The comparisons have revealed a striking similarity in the three groups suggesting
convergent pathways that have arisen from three lineages independently leading to
an obligate lifestyle. This review has been written with the intent, that new information
on adaptation strategies of biotrophs, modifications in pathogenicity strategies and
population dynamics will improve current strategies for breeding with stable resistance.

Subjects Agricultural Science, Evolutionary Studies, Genetics, Mycology, Plant Science
Keywords Obligate Pathogens, Parasitism, Virulance, Pathogenicity, Biotrophy, Evolution

INTRODUCTION
Obligate parasites, including filamentous eukaryotes and certain oomycetes, are known to
infect plants where they interact and co-evolve. Themain characteristic of obligate parasites
that differentiates them from other parasites is their inability to survive without a host. As
an adaptive measure for survival, they are known to grow asymptomatically. Symptoms are
seen during reproduction either when there is rupture of spores through the epidermis or
when conidiophores on the leaves of the host plant make entry through stomatal openings
(Fig. 1A). These obligate pathogens have modified themselves to reproduce asexually
and/or through a sexual cycle, either on the same or different host plants, as seen in some
rust fungi.

Obligate parasites influence host behavior and fitness. Usually, the modifications are
mostly to the advantage of the parasite, but sometimes the modifications do not have
consequences on the host or the parasite. However, infection by a parasite on a host
can alter trophic interactions, biodiversity, and wood webs. Hence, these parasites play an
important role in shaping the community and the ecological structure. This paper discusses
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Figure 1 Mode of infection of an obligate pathogen (Puccinia sp). (A) The dikaryotic uredospore (S)
lands on the leaf surface and produces a germination tube (GT) within 6 hours. Subsequently, it produces
an appresorium (A) over the stomatal aperture and enters into the leaf interior through the stoma (ST),
where it differentiates into a substomatal vesicle (SV). Primary infection hyphae (IH) propagate through
the leaf, and once in contact with mesophyll cells, haustorial mother cells (HMC) differentiate. These pen-
etrate the host mesophyll cell (MC) wall to form the haustorium (H). The haustorium remains separated
from the host cell cytoplasm by the extrahaustorial matrix (EHMx) and the host-derived extrahaustorial
membrane (EHM). After the establishment of the first haustorium, secondary hyphae develop, colonize
the intercellular spaces, and give rise to more HMCs and haustoria. The cycle is completed within 10–11
days when the invasive hyphae form sporogenous basal cells in the uredia (U) and thousands of new infec-
tive uredospores erupt through the leaf epidermis. Figure modified from Garnica et al. (2014). (B) Haus-
torium showing a neck ring that seals the interface between the pathogen and host plasma membrane,
disconnecting the extrahaustorial matrix from the plant and fungal apoplast and establishing a biotroph-
specific compartment Figure has been taken from Dodds (2009).

Full-size DOI: 10.7717/peerj.13794/fig-1

the evolutionary modifications of these pathogens, and it explains how they acquire and
maintain virulence. Our literature review has concluded that not all obligate pathogens
are equal. Some obligate pathogens have evolved to be irreversibly specialized pathogens
while there are others that are reversibly pathogenic because of transposable elements. The
knowledge of this evolutionary pattern of development can help lead to the production of
novel strategies to combat some of these pathogens that have impacted our ecosystem.

Characteristic features of obligate parasites are:
1. Need for a living plant tissue as a host. Several unknown factors of growth may

contribute to why obligate biotrophic pathogens are unable to grow on artificial medium
(Kemen, Agler & Kemen, 2015). To better demonstrate, let us use the example of dimorphic
smut fungi of the order Ustilaginales. This fungus exhibits yeast-like patterns of growth on
artificial media and has a biotrophic filamentous lifestyle which does not adversely affect
the host (Spanu, 2012). Rust fungi were once categorized as obligate parasites, but they
have undergone modifications with several species grown in axenic culture (Littlefield &
Heath, 1979). Rust fungi exhibit this complicated lifestyle only on living host plants.

2. Haustoria play a necessary role in the pathogenic entry of obligate parasites through
the host’s cell wall (Bozkurt, Kamoun & Lennon-Duménil, 2020). Haustoria (Figs. 1A; 1B)
are formed when specialized fungal hypha penetrate the cell wall and expand inside the host
cell (Szabo & Bushnell, 2001). Haustoria formation is characterized by invagination and
alteration of the host’s plasmamembrane. This leads to the formation of the extrahaustorial
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membrane, a membrane-like structure which surrounds the haustorial body (Kemen, Agler
& Kemen, 2015). Haustoria allow for transportation between pathogen and host and are
associated with the uptake of nutrients like sugars and amino acids. They also possess
extrahaustorial matrix which assists in the transportation of mainly effector proteins in
the cytoplasm of the host (Kemen, Agler & Kemen, 2015). The neck ring is a unique feature
of the haustoria in obligate pathogens (Fig. 1B). This ring acts as a doorkeeper between
the pathogen and the host, creating biotroph-specific compartments within the fungal
apoplast (Kemen, Agler & Kemen, 2015).

3. Impaired ability to secrete cell wall-degrading enzymes and inefficient toxin
production. Obligate biotrophs escape the host immune system and establish a smooth host
viability to complete their life cycle. They can also recognize signals of altered host cell status
as well as from the pathogen (Jones & Dangl, 2006). Rusts, which are obligate parasites,
have a very limited number of genes encoding for secreted proteins and carbohydrate active
enzymes (McDowell, 2011). These genes are known to kill the host cell and produce harmful
signals. Low gene copy number for these traits is an evolutionary adaptation allowing for
survival inside the host (Figs. 2 and 3).

The immune systems of host plants generally function by using pattern recognition
receptors (PRRs) which recognize the microbe-associated molecular patterns (MAMPs) of
potential pathogens. This serves as the plant’s primary immune system, establishing a basal
defense response in the plant which may be suppressed by effectors from plant pathogens.
Pathogen growth may then be impeded by the plant’s secondary immune system which
functions by using resistance protein (RPs). Systemic resistance may be induced in the
plant after the local primary and secondary immune responses are activated, allowing for
the host plant to acquire resistance towards future attacks by the pathogen (de Wit, 2007).
Separate pathways of defense may be activated within the plant by different infiltrating
pathogens. For example, necrotrophs may activate immune responses involving ethylene
and Jasmonic acid (JA), while biotrophs may activate immune responses involving salicylic
acid (SA). Crosstalk between these pathways may allow for the differential recognition and
response of host plants to different pathogens (Garcia-Brugger et al., 2006).

Chitin, a major component of the fungal cell wall, is known to serve as a signal for
invasion. A high number of gene families encoding chitin deacetylases are found in Rusts
and are thought to interfere with chitin surveillance (McDowell, 2011). Prior to pre-
penetration in rusts there is an upregulation of serine esterases known to exhibit cutinase
activity. Cutinase is the enzyme that helps in the attachment of uredospores of Uromyces
viciae-fabae to the cuticle of the plant. The entry of the pathogen through the stomatal
opening enhances chitin deacetylase activity. This enzyme protects fungal machinery inside
the host from degradation and also probably helps with chitin surveillance. The formation
of haustorial mother cells is associated with the synthesis of polygalacturonate lyase (PL)
(Fig. 4). Using differential hybridization, cDNA was obtained for genes that were activated
during later stages of infection. These genes were associated with structure differentiation
of Uromyces viciae-fabae. The transcripts for genes rif16 and rif21 were observed during
haustorial mother cell formation and their corresponding gene products were anticipated
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Figure 2 Predicted pattern of gene families gain and loss in representative fungal genomes. The fig-
ure represents the total number of protein families in each species or node estimated by the Dollo par-
simony principle. The numbers on the branches of the phylogenetic tree correspond to expanded (left,
black), contracted (right, red), or inferred ancestral (oval) protein families along each lineage by compari-
son with the putative pan-proteome. For each species, the number of gene families, orphan genes, and the
total gene number are indicated on the right. Image used from Duplessis et al. (2011).

Full-size DOI: 10.7717/peerj.13794/fig-2

to be useful during infection (Deising et al., 1995). These are some of the modifications
that have been employed to evade the host immune system.

4. Impaired uptake of mineral nutrients by obligate biotrophs (Duplessis et al., 2011;
Tisserant et al., 2013). It has been observed that rusts’ demand for nitrogen uptake has
been met by proteases which are associated with the digestion of extracellular plant
proteins (McDowell, 2011). Direct nutrient uptake/transfer from the host evolved over
time, allowing the pathogen to escape from competing microorganisms (Fig. 3). Millions
of years of evolution led to adaptive measures to combat competition, predation, and
mutualism, with respect to other microorganisms (Kemen, Agler & Kemen, 2015). The
microbiome also played an important role on the host environment. As a result of new
adaptations, the phyllosphere niche is affected in a number of ways. To understand how
the biology of obligate biotrophic plant parasites is influenced by the microbiome, it is
necessary to first understand how biotrophs evolved together and formed communities.

SURVEY METHODOLOGY
We systematically searched literature databases, included the following: PubMed Advanced
Search, Scopus, Institute of Scientific Information (ISI), Web of Science, and Google
Scholar. A broad range of keywords and phrases were searched, including: (1) Obligate
pathogens (2) Oomycetes evolution (3) Host microbe interaction (4) Parallel and Collateral
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Figure 3 Origin and stepwise diversification of filamentous obligate biotrophic plant pathogens. Pink
boxes indicate significant lifestyle changes of the pathogen during its evolution towards biotrophy. Red
and blue arrows indicate movement towards genetic consequences leading to the lifestyle changes. Circles
indicate other key features of biotrophy. Transparent green areas highlight the parallel evolution of the
traits. The intimate association with the plant tissue is reflected in a loss of genes for pathways highlighted
with blue arrows. Plant host signals transferred to the pathogen (purple circle) can drive further diversifi-
cation and specialization in obligate biotrophic pathogens and effector-triggered immunity. This is an ex-
ample of collateral evolution.

Full-size DOI: 10.7717/peerj.13794/fig-3

Figure 4 Expression profiles of selected genes during the infection process. Red curves represent coor-
dinated waves of expression for secreted protein genes; blue curves represent the main expression profile
for CAZyme, protease, and lipase (CPL) encoding genes; green curves represent expression for transporter
encoding genes. Figure based on a time-course transcriptomics in Duplessis et al. (2011) and Dobon et al.
(2016). Figure adapted and modified from Lorrain et al. (2019).

Full-size DOI: 10.7717/peerj.13794/fig-4
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evolution (5) Loss and gain of gene function in evolution (6) Convergent evolution
(7) Haustoria and pathogenicity (8) Genome Wide Association (GWA) studies and
pathogenicity (9) Effector proteins and virulence (10) Arms race (11) Obligate parasitism.
We heavily relied on publications in the last 15 years in our study, although we referenced a
few of the older publications for fundamental concepts. We also searched (Google images)
for diagrams and for any schematic figures to help our understanding of fundamental
concepts in the area. We did not include studies that had only abstracts available with
no full text information. Our literature search did not screen papers based on date of
publication, the impact factor of the journal, name of the journal, or author affiliation.

Evolution of pathogenicity in obligate pathogens
A characteristic feature of obligate pathogens is the ability to inhibit recognition by the host
and suppress host defensemechanisms. This characteristic feature developed independently
in distantly related clades of fungi and oomycetes (Thines & Kamoun, 2010;Kemen & Jones,
2012). Characteristic features like host entry and haustoria formation are brought about
through similar changes within the genome and the proteome. Another characteristic is
a lack of lytic enzymes found in obligate biotrophic filamentous fungi and oomycetes
(Kemen, Agler & Kemen, 2015). Similar characteristics could be the result of identical
genetic changes caused by mutations that are identical in independent decedents from a
common ancestor (parallel evolution) or by introducing an allele from a line into another
related line by hybridization (Stern, 2013) or horizontal gene transfer (HGT) (collateral
evolution) (Fig. 5). With the availability of genomic sequences, it may be argued that all of
them contribute to observed convergence. Characteristic biotrophic adaptations of obligate
parasites for existence inside plant cells are as follows.

Parallel evolution
Parallel evolution is the independent evolution, from a common ancestor, of similar
characteristics between two different species due to similar environments or other
evolutionary pressures. Parallel evolution is commonly seen in more closely related
lineages where several species handle similar challenges in the same way. In the case of
obligate parasites, similar genetic changes can be the result of similar or identical mutations
in independent lineages. In summary, parallel evolution emerges after strong selection and
suggests limited avenues for mutational adaptation to a specific environmental condition
(Bailey et al., 2017).

Here are some examples that explain parallel evolution in obligate pathogens not due
to a gain in gene function but due to gene loss. Although this is debatable if gene loss is
responsible for evolution in obligate pathogens, there are examples to validate the same.
Of interest is the obligate human pathogen Pneumocystis jirovecii, known to have acquired
obligate biotrophy through gene loss. This was validated by comparative genome analysis
(Cissé, Pagni & Hauser, 2014). Gene loss can result from insertion of transposable elements,
gene loss via deletion (sometimes after gene disruption), and is also known to drive the
evolution of obligate pathogenic bacteria (Bryant, Chewapreecha & Bentley, 2012). Host
microbe interaction is associated with effector proteins that alter the host’s metabolism and
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Figure 5 Common types of evolution in obligate pathogens. Parallel evolution (highlighted in green)
refer to mutations (X) that arise and evolve in different lineages, resulting in similar/identical phenotypes.
In collateral evolution (highlighted in orange), through hybridization (Hyb.), a mutation arises in one
lineage and spreads via hybridization to other related species. Another possible mechanism of collateral
evolution is horizontal gene transfer (HGT) (indicated as black arrow) that enables the transfer of genes
across boundaries of phylogenetic domains. Figure adapted from Kemen, Agler & Kemen (2015).

Full-size DOI: 10.7717/peerj.13794/fig-5

suppress the host defense mechanisms (Panstruga & Dodds, 2009). Gain of species-specific
variability in effector proteins increases pathogenicity (Kemen & Jones, 2012). The Effector
P 2.0 program (Effector P2.0, is a machine learning classifier for fungal effector prediction)
works on a large set of effectors and is based on an ensemble of classifiers trained on different
subsets of negative data, providing different viewpoints on classification. Effector P2.0,
available at http://effectorp.csiro.au/, hasmade a prediction that 12% of the proteins secreted
by saprophytes are effector-like (Sperschneider et al., 2018). Comparative genomic analysis
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in obligate pathogens and in saprophytes has unveiled a fascinating role of the collections
of effector molecules. Genome-wide studies on how pathogenic lifestyles were achieved
by these obligate pathogens validated more microorganism groups that were subspecies
(SSPs) specific than groups that were non-pathogenic (Seidl et al., 2015). There were a
class of effectors that were associated with the pathogenic group of microorganisms and
were probably associated with interaction with the host. However, there was another class
that was conserved within the saprophytes (Zhang et al., 2018). Hence, it can be concluded
that some effectors are specific to host microbe interaction in pathogenic species, however
there are others designated as ‘‘effector-like’’ proteins that were seen in the saprotrophic
pathogens and their function with obligate pathogens have yet to be understood.

Because the salicylic acid (SA) pathway is a common immune strategy utilized by
hosts to thwart biotrophic plant pathogens, these pathogens have adapted effectors to
prevent the accumulation of SA. Ustilago maydis and Hyaloperonospora arabidopsidis are
two examples of unrelated pathogens whose effectors Cmu1 (a chorismite mutase) and
HaRxL44 (a nuclear-localized effector) work to regulate the SA pathway within host
plants. Synthesis of the host hormone, salicyclic acid (SA), is prevented by Cmu1 via
the effector’s action of re-channeling host chorismite metabolism. The effector HaRxL44
works by shifting the plant’s immune response from the SA pathway to ethylene and
Jasmonic acid (JA) immune defense pathways, making the host plant more susceptible
to biotrophic pathogens (Mukhtar et al., 2011; Ökmen & Doehlemann, 2014). It has been
proposed that parallel evolution in obligate pathogens is the result of gene duplication and
diversification because of a gain in gene function. However, it has also been suggested that
evolution in obligate biotrophs is not due to gene loss, rather it is dependent on haustorium
development. The essential step required for biotrophy is probably a defense suppression
mechanism to facilitate efficient functioning of haustoria; subsequent loss of biosynthetic
pathways is likely to be secondary (Kemen et al., 2011) (Fig. 2).

In both fungi and oomycetes, the evolutionary pathway which allows for survival in
a living host cell is because of the loss of metabolic pathways (Kemen et al., 2011). This
may be seen through the way in which metabolic enzyme production decreased (e.g., for
thiamine and molybdopterin biosynthesis) and carbohydrate-active enzyme production
reduced (Tisserant et al., 2013). Nitrate and nitrite reductases, a nitrate transporter, or
sulfite reductase were also reduced (Fig. 3). The absence of certain pathways in obligate
biotrophs indicates that convergent loss was linked to selective advantage (Kemen, Agler
& Kemen, 2015). A possible explanation for this could be that when the same function or
metabolite was associated with the host plant, the energy cost was significantly reduced
(e.g., thiamine, molybdopterin, sulfite oxidase, nitrate oxidase) (Morris, Lenski & Zinser,
2012). Comparative genomic studies between closely related dicot-infecting smut fungi
Melanopsichium pennsylvanicum and U. maydis and other monocot-infecting smuts show
that they possess similar core eukaryotic genes, but M. Pennsylvaniancum also lacks some
secreted proteins (Kemen, Agler & Kemen, 2015). Based on the information, to adapt to
the dicot host, gene loss was more likely than gene gain (Sharma et al., 2014) only if it is
assumed that the fungus was associated with a monocot.
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In yet another example, Pneumocystis jirovecii (human pathogen) evolved to an
obligate biotroph through gene loss. Inorganic nitrogen and sulfur assimilation, thiamine
biosynthesis, and purine catabolism accounted for the majority of the functions associated
with the genes lost (Cissé, Pagni & Hauser, 2014). This example shows that gene loss is
not exclusive to plant pathogens but is also present in animal pathogens that are obligate
biotrophs.

Collateral evolution
HGT is an example of collateral evolution, and it causes a transfer of genes from fungi
to oomycete genomes. Although the exact mechanism by which this HGT occurs is
unclear, HGT has been demonstrated to be an important part of collateral evolution
between fungi and oomycetes (Savory, Leonard & Richards, 2015). In obligate pathogens,
the genes transferred encode proteins that attack or feed on plants (Richards et al., 2011).
Hemibiotrophic oomycetes are more likely to exhibit HGT than obligate biotrophic
oomycetes such asH. arabidopsidis and Albugo laibachii.H. arabidopsidis has been reported
to have 21 putative HGTs (representing 3.6% of the secretome); computational validation
was possible with only one HGT in Albugo (Richards et al., 2011). The HGTs transferred
from fungi to oomycetes encode for proteins that assist in sugar degradation, transportation,
and reorganization. HGTs from fungi to oomycetes involve genes coding for proteins that
function as catalysts in the metabolism, transport, and structural changes in sugars.
However, obligate biotrophs do not possess many plant degrading enzymes to avoid
defense activation. Because lytic enzymes are harmful for obligate pathogen sustenance, it
will not be in the best interest of the pathogen if these genes are transferred. Effectors with
no known function and origin are race-specific and usually are not functional in other
organisms.

Oomycetes that possess diverse families of Nep1-like proteins (NLPs) which are
species-specific have undergone one HGT event and experienced considerable divergent
selection (Soanes & Richards, 2014). As well as causing necrosis in certain host species,
NLPs can contribute to virulence and disease (Gijzen & Nürnberger, 2006). A comparison
between downy mildews and Phytophthora revealed NLPs are reduced in downy mildews,
with regards to Phytophthora (Baxter et al., 2010). The 12 NLP-coding genes found in
downy mildew are not responsible for necrosis (Cabral et al., 2012). In contrast to its
hemibiotrophic relative, the biotrophic pathogen’s proteins appear to have evolved over
time (Baxter et al., 2010). This also suggests a possible role in microbe–microbe interaction.
In gnotobiotic systems, the function of NLPs as environmental factors can be determined
by using downy mildew NLP-knockout mutants. By HGT, a virulence factor (e.g., NLP)
introduced between populations can give rise to identical phenotypes (collateral evolution),
however over time the development of these new functions may cause confusion regarding
the original similarity (Fig. 5).

Host jumps to escape environmental pressure
Host jumps are essential for pathogen survival in a host. The phenomenon is brought about
by effector molecules which allow for infection of and survival within another host. This
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is seen when the phylogenetic distance is short among the two hosts with similar effector
targets. This can also be seen in the hemibiotrophic lineage Proteus mirabilis (Dong et al.,
2014).

A drastic change, such as gene loss, is required if the jump is made from a monocot
plant host to a dicot plant host as in the case of Melanopsichium pennsylvanicum (Sharma
et al., 2014). A bigger jump to a host that is very distantly related happens when the
defense mechanism of the new host is suppressed in relation to the original host. When
susceptibility does not occur, natural infection can be observed in a nontraditional host.
This occurs when the pathogen silences its own defense mechanism (Cooper et al., 2008).
Host jumps happens when the immunity of the host is in question and when induced
susceptibility is a natural phenomenon. An example is spore dispersal to a dead nearby
host (Kemen, Agler & Kemen, 2015). This is an example of an environmental change that
leads to temporary infection abilities which help in host jumps by the pathogen (Antia et
al., 2003).

Compatibility of pathogens leads to susceptibility of the isolates that were not compatible
at first (Ouchi, Oku & Hibino, 1976; Heath, 1980). Several studies have confirmed this in
rust and powdery mildew fungi. If plants are co-infected, their susceptibility is limited to a
few cells away from the primary infection site. Under such conditions, reproduction may
not be possible (Kemen, Agler & Kemen, 2015). The induced susceptibility of oomycetes
between A. candida and H. arabidopsidis has been studied as well. A.candida and H.
arabidopsidis co-infect Brassica sp. naturally. When appropriately pre-infected, A. candida
greatly enhanced the disease-causing ability of compatible H. arabidopsidis, but Albugo
showed a lower multiplication rate (Singh et al., 2002). An infection with a non-sporulating
H. Arabidopsidis was caused by rapid spore formation caused by virulent A. candida (Kaur
et al., 2011). Isolates of the same species that are incompatible cannot cause susceptibility
to A. candida (Singh et al., 1999). Thus, susceptibility that is induced and not natural is
efficient among microbes that utilize the same target effectors or other resources. There
has also been evolution to limit resource competition among obligate biotrophs, perhaps
through effector mediated relationships.

Role of transposable elements (TEs)
TEs have a role in evolutionary changes that lead to pathogenicity and survival ability
(Manning et al., 2013). They are also responsible for gain and loss of gene function,
chromosomal rearrangements, and complete inactivation of genes (Biémont, 2010).
Expansion in genome size, alternative splicing and exonization, alteration of gene
expression, alteration of a regulatory network, epigenetic control, and TEs all contribute to
genome plasticity. Genome plasticity enables organisms to adapt to environmental changes.
Adaptive evolution mediated by TEs is facilitated by recombination events resulting in
genomic diversification. This is achieved through genomic changes which persist under
positive selection in obligate fungal pathogens.

TEs induce pathogenicity by their proximity with avirulence/pathogenicity associated
genes. TEs are known to gain virulence through deletion of avirulence genes, and they
promote pathogenicity by inducing nucleotide diversity. Mutations from TE insertions
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can lead to genetic variability that generates many new pathogenic variants with conferred
ability to invade previously resistant host plants (overcome host plant resistance) and
hence expand on the host range. TEs are known to alter host fitness through deleterious
insertions, driving speciation and adaptive evolution.

The occurrence of many TEs in wheat biotrophs had led to a rapid evolution of the
genome (Amselem, Lebrun & Quesneville, 2015). As an example, we have seen an expansion
of the genome size of rust fungi, often between 100 and 200 Mb (Cuomo et al., 2017). Most
genome sizes of other basidiomycete fungi are less than 50 Mb (Duplessis, Bakkeren &
Hamelin, 2014). The larger size is mainly contributed to from high amounts of repetitive
DNA referred to as TEs. A Pst race PST-130 has TEs which contribute to 17.8% of the
genome. The genome of the Chinese isolate of CYR32 has 50% TEs, hence the genome size
almost twice as large (Zheng et al., 2013; Cuomo et al., 2017). A member of the Puccinia
genus, Pucciniatriticina (Pt ), had a higher repeat content, with an average of more than
51% (Cuomo et al., 2017). The Bgt genome had even more TEs, reaching 90% (Wicker et
al., 2013).

Role of secreted proteins
Obligate biotrophic pathogens are associated with secreted proteins (SPs) that help with
escaping host immune responses (Fig. 4). Species-specific genes coding for SPs were found
in the genomes of rust and powdery mildew. The Pst genome contains 2092 SPs, which
account for 8.3% of the total number of predicted protein genes (Zheng et al., 2013). Two
Pt races produced 660 SPs (Kiran et al., 2016), while a member of the Puccinia genus,
Pgraminis f.sp. tritici (Pgt ), produces 1459 SPs (Zheng et al., 2013).

A virulent Pt isolate showedmore SPs than race-specific isolates with a narrow virulence
scope. These SPs are unique to each species of the pathogen because of the fast-evolutionary
modification of the protein. The rapid evolution of some effectors indicates their individual
pathogen specificity. As discussed previously, of the three rust fungi, 62% of SPs are unique
to that species. It has been shown that 5% of SPs are found only exclusively in the rust and
powdery mildew fungi (Spanu et al., 2010;Dean et al., 2005), indicating that each pathogen
evolved differently.

Role of haustoria
Haustoria (Fig. 1B) are associated with effector delivery and nutrient uptake (Voegele et al.,
2001). RNA transcriptomic studies of Pgt haustoria and germinated urediniospores showed
genes that were upregulated in germinated urediospores. These genes were associated with
cell proliferation, cell wall synthesis (Upadhyaya et al., 2014), and DNA replication. The
haustorium is crucial for biotrophic colonization of Pst as it enhances expression of genes
involved in ATP and TCA synthesis (Garnica et al., 2013). A total of 520 secreted proteins
(HSPs), 430 upregulated secreted proteins in haustoria, and 90 genes were identified for
Pgt (Cuomo et al., 2017). To identify specific avirulence alleles whose transcripts bind
resistance genes, the effectors must interact with their corresponding targets (Flor, 1959;
Moseman, 1959). Rust and powdery mildew produce effectors in haustoria, which are then
transferred to host cells. Novel effector haustorial proteins are described here (Elmore et
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al., 2020; Garnica et al., 2014; Link et al., 2014; Lorrain et al., 2019; Polonio et al., 2019; Tao
et al., 2017). U. fabae’s haustorium expressed the rust transferred protein 1 (RTP1), which
translocated into the cytoplasm of the host during the interaction (Lawrence, Dodds &
Ellis, 2010). Stripe Rust CYR31 race haustoriums contained 1,197 secreted proteins, 69 of
which inhibited tobacco cell death and 49 of which suppressed wheat callose deposition.
Transcriptomic studies were used to identify these proteins. Infection processes are
associated with these proteins in P. striiformis (Xu et al., 2020). It is possible to further
screen these effector proteins identified by haustorial studies for features associated with
avirulence.

Role of effectors
There have been no definitive studies determining whether rust fungi effectors play a
role in pathogenicity. In rust pathogens, there were no knockout mutants available. Small
interfering RNAs (siRNAs) obtained from pathogen dsRNA can be expressed in plants.
These siRNAs were able to enter the pathogen and silence their transcripts (Jaswal et al.,
2020), which is referred to as host-induced gene silencing (HIGS). Fungi, oomycetes, and
insects have been shown to exhibit this phenomenon. Based on this information, a Barley
stripe mosaic virus (BSMV)-mediated HIGS system was created to silence any Pst genes,
by expressing dsRNAs derived from Puccinia (Yin, Jurgenson & Hulbert, 2011). It has been
demonstrated that BSMV-HIGS inhibited the expression of haustoria-specific genes. In
plants, compromising Pst infection also led to silencing effectors (PEC6 and PSTha5a23)
(Yin, Jurgenson & Hulbert, 2011; Cheng et al., 2017). This model system helps evaluate rust
pathogen effectors via transient silencing.

The rust fungal pathogens are known to contain eight effector proteins, including
RTp1 which was transferred from rust pathogens and obtained from Uromyces fabae, four
effector proteins from M. lini, AvrP4, AvrM, AvrL567 and AvrP123, and three effectors
PGTAUSPE-10-1, Avr35 and Avr50 from P. graminis (Cheng et al., 2017; Petre, Joly &
Duplessis, 2014; Prasad et al., 2019; Salcedo et al., 2017). Two additional AVRs were seen in
P. graminis: Avr35 and Avr50. P. graminis mutants and non-mutant isolates were analyzed
using comparative genetics in order to identify AVRSr35 associates with Sr35 (wheat
resistance gene). A mobile element inserted into the AvrSr35 gene altered functional
characteristics which also included susceptibility (Salcedo et al., 2017). Another study was
able to demonstrate the interaction between the avirulence gene-encoding protein AvrSr50
secreted by haustoria cells and the immune receptor Sr50. AvrSr50 originated from a
naturally occurring mutant of P. graminis with a 2.5 megabase pair deletion in its genome.
As a result of these groundbreaking studies, susceptibility factors of pathogens have been
identified (Cheng et al., 2017). Genome-wide association studies (GWAS) and map-based
cloning have identified nonvirulent genes that have structural resemblance to RNase-like
proteins seen in wheat and rye powdery mildew pathogens (Praz et al., 2017).

Studies on effector molecules in powdery mildew detected an association between (Mla)
genes and barley mildew resistance. These genes have the functional capability to identify
effectors from a wide variety of gene families (Jaswal et al., 2020).
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Role of small RNA
It is believed that small noncoding RNA molecules, such as microRNA, regulate vital
functions in the host (Dubey et al., 2019; Kusch et al., 2018; Mueth, Ramachandran &
Hulbert, 2015; Wang et al., 2017a; Weiberg & Jin, 2015; Jaswal et al., 2020). They regulate
genes associated with defense mechanisms and immunity at different developmental
stages with a functional role similar to effector proteins. It has been shown that sRNAs
can move in the cytoplasm and silence the host defense genes of P. striiformis. This
movement happens because of the presence of extracellular vesicles (Wang et al., 2017a;
Wang et al., 2017b; Jaswal et al., 2020). Genome-wide sRNA association studies in the host
and pathogen indicated that sRNA may inhibit the host’s own effector genes and target
any genes associated with immunity, such as RLKs (receptor-like kinase) and NBS-LRR
(nucleotide binding site- leucine-rich repeat) proteins. As a result, they can interact with
the host similarly to how effector molecules do (Dubey et al., 2019; Sperschneider et al.,
2018; Jaswal et al., 2020). The presence of these molecules in wheat leaf rust is seen at
different developmental stages (resting spores, germinated spores at 16 and 24 h, and
highly infected wheat leaf) demonstrated the presence of multiple defense-related genes,
like reactive oxygen species (ROS), transcription factors (RLKs), and any resistant genes
associated with diseases (Dubey et al., 2019). In P. striiformis (Pstr) there are a wide range
of sRNAs that silence any endogenous genes in the host and genes related to defense and
immunity (Mueth, Ramachandran & Hulbert, 2015).

Role of secondary metabolites
The secondary metabolites (SMs) act as non-proteinaceous effectors that manipulate
the host with toxins (Castro-Moretti et al., 2020; Collemare, O’Connell & Lebrun, 2019;
Pusztahelyi, Holb & Pocsi, 2015). SMs also function as nonvirulent factors and suppressing
host defense mechanisms and strengthening cell wall factors (Collemare, O’Connell
& Lebrun, 2019; Lo Presti et al., 2015; Pusztahelyi, Holb & Pocsi, 2015). By inducing
penetration of the fungal cell, SMs are primarily engaged in biotrophic infection, causing
infection to take place without killing the host. There has been an increase of SMproduction
reported in genome and transcriptomic studies during different developmental stages of
pathogen development in the host (Collemare, O’Connell & Lebrun, 2019; Keller, 2019;
Rokas, Wisecaver & Lind, 2018).

Role of transporters
During infection, the transporter gene family was upregulated (Fig. 4). When rust
pathogenesis is triggered, hyphae from haustoria which feed off the plant’s carbohydrates
and amino acids at their active functional state (Ellis et al., 2009; El Gueddari et al., 2002;
Voegele et al., 2001). Membrane transporters of M. larici-populina and P. graminis f. sp.
tritici have homologs of the HXT1, AAT1, AAT2, and AAT3 transporters and H + ATPases
from the bean rust pathogen U. fabae (Duplessis et al., 2011). Whenever a pathogen
interacts with a host, all these transporters are upregulated. M. larici-populina and P.
graminis f. sp. tritici exhibit higher levels of peptide uptake due to the presence of 22 and
21 oligopeptide membrane transporter (OPT) genes, respectively. Only 5-16 OPT genes

RoyChowdhury et al. (2022), PeerJ, DOI 10.7717/peerj.13794 13/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.13794


were found in other basidiomycete fungi (Duplessis et al., 2011). OPT genes upregulated in
planta (Duplessis et al., 2011) transport peptides released by inducible proteases (aspartic
peptidase, subtilisin) once the leaf tissues are infected (Fig. 4). A reduction of the Major
Facilitator Superfamily (MFS) is observed inM. larici-populina and P. graminis f. sp. tritici
genomes when compared with other basidiomycetes (Duplessis et al., 2011). However,
many MFS transcripts are upregulated in planta, such as HXT1 homologues. In the
plant host expression of M. larici-populina and P. graminis f. sp. tritici, invertase genes
are upregulated (Duplessis et al., 2011). Host hexoses, such as sucrose transporter Srt1,
are typically used by invading rust pathogen hyphae (Voegele et al., 2001). There is no
homologue for this sucrose transporter. During the invasion of rust fungi, membrane
transporters play a critical role in providing the necessary fuel due to the high metabolic
activity (Duplessis et al., 2011). It was also noticed that auxin efflux gene expression was
much higher in rust fungi compared to other basidiomycetes (Duplessis et al., 2011). In
U. maydis, auxin synthesis gene homologs are upregulated during infection of the host
(Turian & Hamilton, 1960; Basse et al., 1996; Reineke et al., 2008). The growth of plants
depends on auxin synthesis while pathogen auxins are crucial for host signaling, defense
strategies, or plant cell wall integrity during rust infections.

Role of carbohydrate-active enzymes
In addition to proteases, lipases, and sugar-cleaving enzymes, a variety of carbohydrate-
active enzymes (CAZymes) are up-regulated (Fig. 4) in rust pathogen plants (Cantarel et al.,
2009; Duplessis et al., 2011). This suggests that the pathogen uses degradative enzymes and
fungal hyphae to penetrate and enter the host cell. Upon comparing 21 sequenced fungi, it
was found that glycoside hydrolases (GH), glycosyltransferases (GT), polysaccharide lyases
(PL), and carbohydrate esterases (CE) (Duplessis et al., 2011) are similar to those found in
the basidiomycete symbiont, L. bicolor (Martin et al., 2008), but are less numerous than
hemibiotrophs and necrotrophs (e.g., Magnaporthe oryzae), and saprotrophs (including
Neurospora crassa; Coprinopsis cinerea; Schizophyllum commune) (Ohm et al., 2010). The
biotrophU. maydis does not containmany CAZymes (100members) (Kämper et al., 2006).
The evolution of a biotrophic lifestyle in rust fungi resulted in the loss of secreted hydrolytic
GH and PL enzymes known to interact with plant cell wall polysaccharides (Duplessis et
al., 2011). Evolution to the biotrophic lifestyle also led to the loss of cellulose binding
carbohydrate-binding module 1 (CBM1) (Fig. 4). The GHs that cleave plant celluloses
and hemicelluloses are moderately upregulated (e.g., GH7, GH10, GH12, GH26, and
GH27) in comparison with biotrophs U.maydis orM. oryzae (which is the hemibiotroph).
Plants with these upregulated enzymes have also shown that presence of α-mannosidase
(GH47) and β-1,3-glucanase (GH5) transcripts (Duplessis et al., 2011) are involved with
colonization or penetration of parenchymal cells. The cell wall of a fungus is reconstructed
and altered to disguise invading hypha from the host when there is an infection (El Gueddari
et al., 2002) by chitin deacetylases (CE4), something which is also seen in P. graminis f. sp.
tritici, M. laricipopulina, and the symbiont L. bicolor (Martin et al., 2008).

RoyChowdhury et al. (2022), PeerJ, DOI 10.7717/peerj.13794 14/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.13794


Nitrate and sulfate assimilation pathway deficiencies in rust fungi
Rust fungi, like other obligate pathogens, cannot grow in vitro. Hence, M. larici-populina
and P. graminis f. sp. tritici are unlikely to carry genes normally found in saprotrophic
basidiomycetes. Several anabolic pathways have been scrutinized for possible deficiencies.
NH4+ assimilation enzymes are present. However, nitrate assimilation genes were not
present in either rust pathogen genome. Nitrate/nitrite porters and nitrite reductases were
not found in other fungis’ gene clusters associated with nitrate assimilation (Slot & Hibbett,
2007). Sulfate assimilation genes were found in M. larici-populina, but not in P. graminis
f. sp. tritici. SiR subunits, α- and β of sulfite reductase, were absent in the latter fungus,
whereas the M. larici-populina β-subunit of SiR has no transketolase domain similar to
the SiRs found in other fungal systems. Both rust fungi have dysfunctional nitrate and
sulfate assimilation pathways that can be related to obligate biotrophs. This is because
they need minimal nitrogen sources (different amino acids and ammonium ion) and there
is no uptake of sulfur from the plant system (Duplessis et al., 2011). The same metabolic
deficiencies (Fig. 3) have been discovered in different plant pathogens from different
evolutionary lineages, one belonging to the oomycete (H. arabidopsis) and the other to the
ascomycete (B. graminis) (Spanu et al., 2010; Baxter et al., 2010).

Role of signal molecules in obligate parasitism
A new hypothesis suggests signal molecules coming from the host plant helps in an
obligate biotrophic lifestyle through the regulation of metabolic gene expressions. (Fig.
3). Infection specific organs, like haustoria and appressoria (specialized structures for
nutrient uptake and entry respectively), develop in response to plant signals (Hamer &
Talbot, 1998; Tucker & Talbot, 2001). In plants, for example, rusts recognize the surface
of the cell wall, prompting hyphae to form (Staples, 2000). In Magnaporthe, hydrophobic
surfaces cause appressoria to develop (Talbot et al., 1996;Hamer & Talbot, 1998). Products
known to degrade cutin cause appressoria formation in Blumeria (Both & Spanu, 2004). It
is possible that this essential factor controls the essential metabolic machinery of biotrophs
involved in nutrient uptake and utilization. The fungus must reveal its transporters and
pumps at the exact moment, at the right locations, and at the correct intensity to survive.
Plant derived stimuli, rather than feeding structures, are essential to survival. Furthermore,
during their life cycle, it is these stimuli that catalyze the catabolic and anabolic reactions
necessary for growth and nutrition of biotrophs. At the moment, the alternative hypothesis
is supported by some direct evidence. A variety ofmetabolic genes are expressed during both
development and pathogen attack in barley powdery mildew (Both et al., 2005), as well as
functional characteristics associated with uptake in rust haustoria (Sohn et al., 2000;Voegele
et al., 2001; Jakupovic et al., 2006). In arbuscular mycorrhizal fungi, intraradical mycelium
was found to contain fatty acid synthase activity (Trepanier et al., 2005), and mycelium
associated with intraradical and extraradical growth exhibit differential expression of genes
related to nitrogenous compound metabolism (Govindarajulu et al., 2005). Based on this
new hypothesis, the expression pattern displayed during pathogen germination should be
disrupted when fungi are observed to partially grow in vitro. Another test will determine if
there are deficiencies or mutations in the regulatory elements (e.g., promoters) that control
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metabolic genes. The whole genomes of obligate and non-obligate related fungi can be
compared to unravel this information. There may be a connection between evolutionary
radiation and the spontaneous development and modifications in regulatory mechanisms
of genes which bring about a major change in the expression pattern (Gilad et al., 2006).

DISCUSSION
In summary, it can be concluded from the literature that there are adaptative features in
both fungi and oomycetes which are essential for maintaining adaptation strategies and
pathogenicity of obligate biotrophs. These include:

(i) A very large genome size which is crucial to rapid evolution. For example, two
genomes of rust fungi, M. larici-populina (89 Mbp, 16,339 proteins) and P. graminis
(101 Mbp, 17,773 proteins), exhibit minimal conservation of gene order. It is possible
that recombination between transposable elements (TEs) and TE proliferation is what
causes the dynamicity of rust genomes. It has been seen that within rust pathogen genomes
there are an increased number of gene families which encode DNA repair enzymes.
Possessing a fluid genome could allow for a pathogen which lives solely within a host to
rapidly adapt, allowing for the continuation of the pathogen’s survival within the host. A
total of 65% of P. graminis predicted proteins, and 59% of M. larici-populina predicted
proteins are not available in the Genbank database, showing that rust genomes possess
unique genes. Furthermore, lineage-specific expansions of the gene families abundantly
transcribed during infection show gene families that are specific to rusts. Future studies
should examine these rust-specific gene families to develop an deeper understanding of the
adaptations which may enhance a host-specific obligate lifestyle (McDowell, 2011).

(ii) Uptake and assimilation of organic nitrogen and sulfur from host sources. In the
case of downy mildews, these pathogens have lost enzymes which allow them to assimilate
inorganic nitrogen and sulfate. Additionally, powdery mildews are also unable to assimilate
inorganic nitrogen due to a loss of enzymes. Compared to related pathogenic ascomycetes,
the genomes of powderymildews are larger by over fourfold. Among pathogenic oomycetes,
the genomes of downy mildews are some of the largest. Both the genomes of powdery
mildews and downymildews have a high percentage of transposable and repeated elements,
as well as a high number of lineage-specific genes (McDowell, 2011).

(iii) Loss of genes to suppress host immune responses. When compared to other
necrotrophic species, downy and powdery mildews have a substantial reduction in
activators of host defense, such as reduced secreted degradative enzymes. Mechanisms
which allow the pathogen to avoid the host’s defense are pervasive, and likely necessary
among obligate pathogens. It is furthermore necessary for obligate biotrophs to maintain
the viability of their host cell throughout the pathogen’s life. The host’s defenses may be
activated not only due to signals released from the pathogen but may also be activated due
to an altered host cell status (McDowell, 2011). In rusts, genes encoding proteins which
may harm the host cell are reduced, such as genes encoding carbohydrate active enzymes
and secreted toxins. However, in rusts there is an expansion of chitin deacetylases which
help interfere with the fungal cell wall’s structural component, chitin, as chitin may activate
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the host’s defense mechanisms. These adaptations of rusts allow for their ability to remain
undetected within the tissue of their host plants (McDowell, 2011).

(iv) An array of secreted effector proteins functioning inside and outside of host cells to
build immunity and initiate survival within a host. Evidence indicates that host immunity
may be interfered with by oomycete effectors, such as can be seen in the case of downy and
powderymildewswhich contain genomes encoding for a large number of candidate secreted
effector proteins. The effecterome of P. graminis encodes for 1,106 small secreted proteins
(SSP)s, and the effecterome of M. larici-populina encodes for 884 SSPs. Interestingly, over
one-half of these SSPs are transcribed during infection of the host plant, 16% of which are
conserved between P. graminis and M. larici-populina. This may be an indication of rapid
turnover, allowing these pathogens to either evade the host’s immune surveillance or to
interact with new host targets (McDowell, 2011).

These findings can improve current strategies for plant breeding with stable resistance.

CONCLUSIONS
Genomic and transcriptomic studies have allowed us to conclude that the evolution of
biotrophy is a multistep process (Duplessis et al., 2011). Characteristic features in the
evolutionary pathway include (1) progressive development of effectors to assist in defense,
(2) attenuated activation of defense by decreasing cell wall hydrolyzing enzymes, resulting
in, (3) certain biosynthetic pathways functioning poorly if their reactants are obtained
from the host. Eventually, this process leads to irreversible biotrophy due to progressive
auxotrophy.

Information related to the obligate biotrophic lifestyle can be obtained by sequencing
the genomes of wheat stem rust fungi and poplar leaf. Scientists are unsure exactly
how nonbiotrophic progenitors evolved into obligate biotrophs. Comparisons of obligate
biotrophsM. larici-populina, and P. graminis f. sp. tritici, to other saprotrophic, pathogenic,
and symbiotic basidiomycetes did not show any alteration in the conserved regions of the
proteins of the rust fungi with different lineages. However, changes in oligopeptide
membrane transporters, auxin efflux carriers, copper/zinc superoxide dismutase, and
signaling elements may have resulted from modifications of this pathogen to a more
parasitic lifestyle (Duplessis et al., 2011). Also, the zinc finger proteins in the two fungi, seen
during plant-pathogen interaction and contributed by transcription factors, do not follow
the traditional transcriptional functioning seen in other cases (Duplessis et al., 2011).

Modifications of gene content in these pathogens largely revolves around sets of wider
gene families that have a very specific lineage. These gene families assist in structural and
functional adaptation.

Lineage-specific proteins enable accumulation of the pathogen in the host leaf,
cellular differentiation of pathogenic structures, and plant immune system regulation
(Duplessis et al., 2011). These obligate pathogens have evolved and adapted to the plant’s
immune system by producing candidate effectors like the SSPs. Gene loss and genome
compaction result in the development of bacterial biotrophs and microsporidium fungal
parasites (Haas et al., 2009; Levesque et al., 2010), but with rust pathogen genomes, it is
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different. Because of the large gene families and abundance of TEs, rusts possess one of the
largest fungal genomes. There have been no significant gene losses in M. larici-populina
and P. graminis f. sp. Tritici. However, gene losses with no major impact have been noticed,
such as in the case of nitrate and sulfur assimilation.

In rust fungi and all biotrophic pathogens, gene losses with major impact were observed,
such as a reduction in enzymes that degrade polysaccharides (Thines & Kamoun, 2010;
Holub & Beynon, 1997). It might be beneficial to understand how factors like SSPs (that
are effector like) could affect coevolution and host-pathogen interactions in agricultural
and forest ecosystems in order to have efficient parasite-control methods.
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