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Background: Aerosol-borne diseases such as COVID-19 may outbreak occasionally in var-
ious regions of the world, inevitably resulting in short-term shortage and corresponding
reuse of disposable respirators.
Aim: To investigate the effective disinfection methods, reusable duration and frequency
of N95 respirators.
Methods: Based on the self-built respirator simulation test system, and under combina-
tions of experimental conditions of three N95 respirators � 0e200 nm NaCl aerosols �
three simulated breathing flow rates (15, 50 and 85 L/min) � two disinfection methods
(dry heating and ultraviolet (UV) radiation), this study continuously measured the changes
in filtration efficiency of all respirators during multi-cycles of ‘8-h simulated donning þ
disinfection’ until the penetration reached �5%.
Findings: Multi-cycles of dry heating and UV radiation treatments on the reused (i.e.,
multiple 8-h donning) N95 respirators had a minimal effect (<0.5%) on the respirator fil-
tration efficiency, and even at 85 L/min, all tested N95 respirators were able to maintain
filtration efficiencies �95% for at least 30 h or four reuse cycles of ‘8-h donning þ dis-
infection’, while a lower breathing flow rate (15 L/min) plus the exhalation valve could
further extend the N95 respirator’s usability duration up to 140 h or 18 reuse cycles of ‘8-h
donning þ disinfection’. As the respirator wearing time extended, aerosol penetration
slowly increased in a quadratic function with a negative second-order coefficient, and the
penetration increment during each cycle of 8-h donning was less than 0.9%.
Conclusion: Multi-cycles of N95 respirator reuse in combination with dry heating or UV
irradiation disinfection are feasible.
ª 2022 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
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Introduction

Since January 2020, the COVID-19 epidemic remains at the
global pandemic level. Aerial droplets and aerosols are the main
transmission routes of SARS-CoV-2 and its variants [1e5].
Therefore, respirators are a necessity and consumable item
during the epidemic. In the past two and a half years, occasional
but frequent outbreaks of COVID-19 around the world have
induced multiple unpredictable surges in demand for respirators
in various regions, inevitably resulting in initial short-term
severe shortages of respirators. In view of this fact, the World
Health Organization and the national Centres for Disease Control
of many countries have recommended appropriately extending
the use time and frequency of single-use respirators [6e9], but
have not clearly stipulated the specific disinfection methods,
reusable duration and frequency of respirators.

Previous studies revealed some disinfection methods that
can effectively inactivate micro-organisms on respirators,
including soap or hot water immersion, alcohol spraying, high-
pressure steam, dry heating, ultraviolet (UV) radiation and
vaporized hydrogen peroxide [10,11]. However, because most
current respirators use electret filters as the filtration mate-
rials, disinfection treatments in the form of aqueous solutions
or steam, such as soap or hot water immersion, alcohol
spraying and high-pressure steam, will neutralize the static
charge on the filters, resulting in a significant decrease in the
filtration efficiency of respirators [12e18]. Dry heating, UV
radiation and vaporized hydrogen peroxide are disinfection
methods that have been proven to be effective in inactivating
micro-organisms without compromising the respirator filtration
efficiency [19]. Among them, vaporized hydrogen peroxide,
which requires specialized equipment [20e22], is not as con-
venient as microwave ovens for dry heating and UV lamps for
UV radiation. Therefore, more studies have focused on the
effect of multi-cycles of dry heating and UV radiation on the
filtration efficiency of respirators in order to provide guidance
for the disinfectable frequency of respirators. At temperatures
of 75 �C, 100 �C, 77 �C, 60 & 70 �C, and 85 �C, Côrtes et al. [23],
Nguyen et al. [24], Ou et al. [14], Song et al. [25], and Liao
et al. [13] performed dry heating on N95 respirators for 45, 50,
30, 60 and 5 min, respectively. They observed no significant
changes in the filtration efficiency and structure of the respi-
rators after 5, 20, 10, 3 and 50 cycles of disinfection, respec-
tively. Viscusi et al. [26], Bergman et al. [27], Lindsley et al.
[28], Jiang et al. [29], Ou et al. [14] and Liao et al. [13] con-
ducted UV radiation on N95 respirators with 180 mJ/cm2 (40 W,
15 min), 1800 mJ/cm2 (40 W, 15 min), 0e950 J/cm2, 330 mJ/
cm2 (5 min), >1000 mJ/cm2 and >3.6 J/cm2 (8 W, 30 min),
respectively. Their results suggest that the protective per-
formance of the respirators barely decreased after continuous
1, 3, 1, 5, 10 and 10 cycles of disinfection, respectively.

Although current studies have confirmed that dry heating
and UV radiation can be repeatedly applied to disinfecting
respirators without damaging their protective performance,
these disinfection cycles were continuously performed one
after another. That is, the reported filtration efficiencies were
actually for the ‘unused þ multiple disinfected respirators’. In
summary, there is a lack of investigation on the change of fil-
tration efficiency before and after each cycle of disinfection
for reused respirators. In addition, existing research mostly
adopts a constant flow to test respirators, which neither
reflects the breathing flow pattern nor simulates the exhaled
hot and humid air [30]. In view of the above research gaps, this
study quantitatively explored the changes in filtration effi-
ciency of N95 respirators during multi-cycles of ‘8-h simulated
donningþ disinfection’. The research results were expected to
provide reference for the reusable duration and frequency of
multi-cycle disinfected respirators.

Methods

Tested respirators

Three models of N95 respirators commonly used during the
COVID-19 epidemic were tested: (1) N95 medical respirator
(certified by China GB19083-2010 [31], GB2626-2019 [32] and
US ASTM F2100-2019 [33], NIOSH 42 CFR Part 84e2019 [34]); (2)
N95 particulate respirator without exhalation valve (certified
by China GB2626-2019 [32] and US NIOSH 42 CFR Part 84e2019
[34]); and (3) N95 particulate respirator with exhalation valve
(certified by China GB2626-2019 [32] and US NIOSH 42 CFR Part
84e2019 [34]). All the three N95 respirators are made with
electret filters and have an arch structure.

Challenge aerosols

Traditional respiratory infectious diseases mainly rely on the
transmission of micron-sized droplets produced by coughing
and sneezing [35]. In contrast, with the increase in asympto-
matic infections caused by the variants of SARS-CoV-2, aerosol
transmission during normal breathing and speaking processes
have attracted more and more attention [36,37]. With aerosols
as carriers, 60- to 140-nm SARS-CoV-2 can be stably suspended
in the air for a long time [38]. As SARS-CoV-2 can survive for 3 h
in outdoor air and up to 16 h in confined spaces [39], it can be
easily inhaled into the human respiratory system to cause
infection [40e43]. NaCl aerosols are able to substitute viral
aerosols with similar particle sizes to test the respirator fil-
tration efficiency [44,45], and are currently adopted by respi-
rator testing standards in the USA, the EU and China. In this
study, NaCl aerosols with the particle size 0e200 nm were
regarded as the challenge aerosols. This particle size covers
the most penetrating particle size of electret filters
(40e70 nm) [46,47], and thus can represent the most stringent
testing conditions for respirators.

Test flow rates

Human breathing flow approximates the sinusoidal time-
varying cyclic flow [48e50], and at the same mean inhalation
flow, the aerosol penetration of a respirator measured under
the sinusoidal cyclic flow may be higher than that of the con-
stant flow adopted in the current respirator testing standards
[50e52]. In view of this, our research team developed a
breathing simulator, which can generate sinusoidal cyclic flow
and has the function of heating and humidifying the exhaled air
(for more details, see Zhu et al. [47]). In this study, three
sinusoidal time-varying cyclic flow rates with mean inhalation
flows of 15, 50 and 85 L/min and corresponding breathing
frequencies of 12, 16 and 20 breaths/min were set as the test
flow rates, respectively, and the exhaled air was set to 37 �C
and 100% relative humidity.
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Test system

Figure 1 shows the respirator simulation test system devel-
oped in this study. As can be seen, the synthetic resin made test
chamber is 2.2 m � 2.2 m � 2.2 m in size. In the chamber, an
aerosol generator (Model 8026, TSI Inc, Shoreview, MN, USA)
was used to atomize and generate NaCl aerosol at a steady flow
rate. The respirator to be tested was fully sealed on the
manikin headform with adhesive tape and placed in the centre
of the test chamber. The mouth and nose area of the headform
was connected to the self-developed breathing simulator. A
nanoparticle sizer (Model 3910, TSI Inc, Shoreview, MN, USA)
was adopted to measure the count concentration of NaCl aer-
osol inside and outside the tested respirator, respectively. For
more details about the experimental set-up, see Zhu et al.
[47].

Disinfection methods

Effective disinfection methods for respirators should
simultaneously meet the following four requirements [53]: (1)
effectively inactivate micro-organisms on the respirator; (2)
not damage the respirator filtration efficiency; (3) not affect
the respirator face seal fit; and (4) be safe for the respirator
wearer. Based on the existing research findings, this study
selected dry heating and UV radiation to disinfect the three
N95 respirators after each cycle of ‘8-h simulated donning’. On
the premise of ensuring the complete inactivation of micro-
organisms on the respirator, specific disinfection parameters
were set as follows: (1) dry heating: drying the respirator at
70 �C for 30 min, according to Xiang et al. [25] and China
National Health Commission [54]. (2) UV radiation: irradiating
both sides of the respirator for 30 min by using 20 J/cm2 UV rays
at 254 nm wavelength, based on Liao et al. [13] and Lindblad
et al. [55].
Aerosol

generator

Nanoparticle sizer

Tested respirator

Manikin headform

Respirator testing chamber (2.2 m × 2.2 m

Figure 1. Respirator sim
Testing flow chart

The experimental conditions of this study are summarized
as follows: three N95 respirators � one challenge aerosol �
three breathing flow rates � two disinfection methods. For
each combination of experimental conditions, one brand new
respirator was tested for multi-cycles of ‘8-h simulated
donning þ disinfection’ until the penetration reached �5%.
The specific testing flow chart is illustrated in Figure 2.
Results

Change of penetration during the first 8-h simulated
donning process

The aerosol penetration of three N95 respirators at three
breathing flow rates during the first 8-h simulated donning
process is shown in Figure 3. As can be observed, under all
three simulated breathing flow rates, the aerosol penetration
of all three tested N95 respirators increases linearly with the
passage of testing time. This finding, which is consistent with
several previous studies [56e60], can be explained by the fol-
lowing: First, during the simulated donning process, aerosols in
the inhaled airflow will continuously deposit on the electret
fibre. Second, the 37 �C and 100% relative humidity exhaled
airflow will also cause continuous condensation of water
vapour on the electret fibre. These two factors jointly induce
the gradual weakening of electrostatic attraction of the elec-
tret filter, resulting in the gradual increase in penetration with
the passage of testing time [61]. Furthermore, it was found
that the linear regression slope was greater for a higher
breathing flow rate, which could be attributed to the higher
weakening speed of the electrostatic attraction caused by the
higher aerosol deposition and water vapour condensation rate
Breathing simulator

 × 2.2 m)

ulation test system.



Three N95 respirators fully sealed on the manikin headform

N95 medical respirator N95 particulate respirator

without exhalation valve

Challenge aerosol

Tested at

Test flow Q(t)

Tested at

0 ~ 200 nm NaCl aerosols

Count median diameter 75 ± 20 mm

Geometric standard deviation < 1.86

Testing time

refreshed as zero

Disinfection

Dry heating at 70°C for

30 min

UV radiation with 20 J/cm2

at 254 nm for 30 min

Aerosol penetration

during continuous testing

Penetration ≥5%

Penetration <5%

and

testing time reaches 8 hours

End

15 L/min: Q(t)=�/2×15×sin(2�t/5)

50 L/min: Q(t)=�/2×50×sin(2�t/3.75)

85 L/min: Q(t)=�/2×85×sin(2�t/3)

With exhaled air

37°C and 100%

relative humidity

N95 particulate respirator

with exhalation valve

Figure 2. Testing flow chart of multi-cycles of ‘8-h simulated donning þ disinfection’ for three N95 respirators at three breathing flow
rates.
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under a higher flow rate. To be specific, for all three tested N95
respirators, the linear slopes under flow rates of 15, 50 and
85 L/min were generally smaller than 0.07, 0.085 and 0.1,
respectively. Correspondingly, the penetration increments
during the first 8-h simulated donning process are less than
0.55%, 0.65% and 0.8%, respectively. With the initial pene-
tration values smaller than 2.5% and the 8-h increment less
than 0.8%, all three N95 respirators after 8-h simulated donning
continued to guarantee filtration efficiencies >96.7%, indi-
cating that the extended use of N95 respirators over 8 h is
feasible.

It was also found that as the breathing flow rate rose, the
penetration of all three N95 respirators was significantly
promoted. Zhu et al. [46],Mahdaviet al. [48],Qian et al. [49] and
Kundaetal. [62]also reported similarfindings.This isbecause the
electret filter mainly relies on filtration mechanisms of electro-
static attraction and diffusion to capture nanoscale aerosols.
Specifically, at a higher flow rate, aerosols can pass through the
respirator filter within a shorter period of time; resultantly, the
function of electrostatic attraction and diffusion is weakened,
such thatmore aerosols penetrate into the respirator cavity [63].
In this study, the penetration values for N95 respirators under 15,
50 and85L/minduring thefirst 8-h simulateddonningprocess are
smaller than 1.5%, 2.5% and 3.3%, respectively, indicating that
the protection level and usable time of respirators are closely
related to the activity intensity.
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Influence of each cycle of disinfection on the
penetration

During multi-cycles of ‘8-h simulated donning þ dis-
infection’, the penetration value after each cycle of dis-
infection minus the corresponding value before that cycle of
disinfection, referred to as ‘penetration difference’ in this
study, was obtained and is presented in Figure 4. The pene-
tration differences for three N95 respirators donned with three
simulated breathing flow rates were all within � 0.5%, indi-
cating that dry heating and UV radiation treatments rarely
affect the filtration efficiency of ‘reused respirators subject to
multi-cycles of 8-h disinfection’. Under each combination of
experimental conditions, no clear changing trend was observed
for the penetration differences among different cycles. The
above findings agree well with previous studies related to
multi-cycles of dry heating or UV radiation on N95 respirators
[10e15], which confirms that both dry heating and UV radiation
have little influence on the charging state and structure of the
electret filter. Moreover, it was disclosed that the penetration
differences at 15, 50 and 85 L/min were within � 0.2%, � 0.3%
and � 0.5%, respectively. The reason is that for the same res-
pirator, a higher testing flow measures a higher penetration
value (see Figure 3); in other words, a higher breathing flow
rate will enlarge the ‘measured penetration differences’ and
report a greater penetration difference.
Change of penetration during multi-cycles of ‘8-h
simulated donning þ disinfection’

As presented in Figure 5, all the change curves of aerosol
penetration during multi-cycles of ‘8-h simulated donning þ
disinfection’ until the penetration value �5% could be well
fitted by quadratic functions of testing time, with correlation
coefficients R2 z 0.999. As the testing time went by, the
penetration value gradually increased at a decelerating rate.
This finding can also be confirmed by Figure 6 where the slopes
of linear regression of penetration on testing time during each
cycle of 8-h donning are illustrated (data processing method
similar to that given above and Figure 3). That is, as the number
of test cycles grew, the linear growth slopes for each 8-h
donning cycle showed an obvious downward trend. This phe-
nomenon can be explained as follows: during the respirator
donning process, the deposition of inhaled aerosols on the filter
and the wetting of filter by exhaled hot and humid air occured
simultaneously. The former weakened the electrostatic
attraction of the filter on the one hand and promoted the
mechanical filtration efficiency (including diffusion, inter-
ception, and inertial collision) on the other hand [56,57], while
the latter continuously neutralized the charge on the electret
filters [58e60]. It is well known that electrostatic attraction
and diffusion dominate the filtration of nanoscale aerosols by
electret filters [63]. Besides, during the simulated donning
process, the decay of electrostatic attraction was stronger
than the enhancement of diffusion caused by aerosol deposi-
tion. Hence, the aerosol penetration was gradually promoted
with the passage of testing time. However, as the charge on the
filter reduced and the aerosols continuously accumulated on
the filter, the electrostatic attraction was constantly weak-
ening, while the mechanical filtration mechanism, which
included diffusion, was becoming dominant [59]. Con-
sequently, the increase in aerosol penetration decelerated.

Figures 5 and 6 show that the higher the breathing flow rate,
the higher the penetration values at different moments, and
the earlier the penetration values exceed 5%. Such a result was
attributed to the following two aspects: First, under a higher
breathing flow rate, aerosols will penetrate through the
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electret filter more quickly, leaving less time for the electro-
static attraction and diffusion to function well to capture
aerosols [46,48,49,62]. Second, from the perspective of both
aerosol deposition in the inspiratory process and water vapour
condensation in the expiratory stage, a higher breathing flow
rate will speed up the charge removal rate of the electret filter,
resulting in an accelerated increase in aerosol penetration (see
the penetration increasing trend in Figure 5 and the linear
growth slopes in Figure 6). To be specific, under 15, 50 and
85 L/min, the tested N95 respirators can keep filtration
efficiencies �95% for at least about 100, 60 and 30 h, corre-
sponding to 12, 7 and 4 reuse cycles of ‘8-h simulated
donning þ disinfection’, respectively.

In addition, it was noted that under different breathing flow
rates, the increasing speed of penetration for N95 respirators
with exhalation valves was much lower than those for N95
medical respirators and N95 respirators without exhalation
valves (see Figures 4e6). To be specific, with filtration effi-
ciency �95%, under 15, 50 and 85 L/min, the N95 respirator
with exhalation valve can be used for about 36, 24 and 20 h
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breathing flow rates. UV, ultraviolet.
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longer than the N95 respirator without an exhalation valve,
corresponding to 4.5, 3 and 2.5 more reuse cycles of ‘8-h
simulated donning þ disinfection’. This finding confirms the
explanation that the 37 �C and 100% relative humidity exhaled
airflow will weaken the electrostatic attraction of the electret
filter. Because the exhaled air of the N95 particulate respirator
with exhalation valve mainly pass through the exhalation valve
[64], the corresponding weakening speed of electrostatic
attraction should be lower, resulting in a relatively slower
increase in penetration.

Guidelines for healthcare workers on disinfection and
reuse of N95 respirators

Firstly, both dry heating and UV irradiation are applicable to
disinfection of reused N95 respirators. Secondly, the respirator
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needs to be disinfected before each time of reuse, even if it is
used less than 8 h after its last disinfection. Thirdly, the face
seal fitness and breakage condition of the respirator should be
carefully checked before reuse. Lastly and most importantly,
N95 respirators with exhalation valves cannot used by health-
care workers in sterile rooms.
The main conclusions in this study are summarized as fol-
lows: (1) For N95 respirators after multi-cycles of 8-h donning,
dry heating and UV radiation treatments have a minimal effect
on their filtration efficiency (within � 0.5%). That is, both
methods are applicable to disinfection of reused respirators.
(2) As the respirator wearing time extends, aerosol penetration
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slowly increases in quadratic function with negative second-
order coefficient, and the penetration increment during each
cycle of 8-h donning is less than 0.8%. (3) N95 respirators are
able to maintain filtration efficiencies of �95% for at least 30 h
or four reuse cycles of ‘8-h donningþ disinfection’, while lower
breathing flow rate plus exhalation valve can further extend
this time duration up to 140 h or 18 reuse cycles of ‘8-h
donning þ disinfection’.

Conflict of interest statement
None declared.

Funding sources
This work was supported by the National Natural Science
Foundation of China (Nos. 51904291, 52174222, 51674252
and 51974300), the Basic Research Program of Jiangsu
Province (No. BK20190638), the Project funded by China
Postdoctoral Science Foundation (No. 2020M681781), and
the Jiangsu Planned Projects for Postdoctoral Research
Funds (No. 2020Z076).
References

[1] Dhand R, Li J. Coughs and sneezes: their role in transmission of
respiratory viral infections, including SARS-CoV-2. Am J Respir
Crit Care Med 2020;202:651e9.

[2] Wong SC, Chen H, Lung DC, Ho PL, Yuen KY, Cheng VC. To prevent
SARS-CoV-2 transmission in designated quarantine hotel for
travelers: is the ventilation system a concern? Indoor Air
2021;31:1295e7.

[3] Zhao Y, Huang J, Zhang L, Chen S, Gao J, Jiao H. The global
transmission of new coronavirus variants. Environ Res
2022;206:112240.

[4] Wong SC, Au AK, Chen H, Yuen LL, Li X, Lung DC, et al. Trans-
mission of Omicron (B.1.1.529) e SARS-CoV-2 Variant of Concern
in a designated quarantine hotel for travelers: a challenge of
elimination strategy of COVID-19. Lancet Reg Health West Pac
2022;18:100360.

[5] Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of
SARS-CoV-2: a review of viral, host, and environmental factors.
Ann Intern Med 2021;174:69e79.

[6] World Health Organization. Advice on the use of masks in the
context of COVID-19: interim guidance, 5 June 2020. Geneva:
WHO; 2020. Available at: https://apps.who.int/iris/handle/
10665/332293 [last accessed May 2022].

[7] Centers for Disease Control and Prevention. Implementing filter-
ing facepiece respirator (FFR) reuse, including reuse after
decontamination, when there are known shortages of N95 respi-
rators. Atlanta, GA: GDC; 2020. Available at: https://www.cdc.
gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-
reuse-respirators.html [last accessed May 2022].

[8] Food and Drug Administration. Investigating decontamination and
reuse of respirators in public Health emergencies. U.S FDA; 2020.
Available at: https://www.fda.gov/emergency-preparedness-
and-response/mcm-regulatory-science/investigating-
decontamination-and-reuse-respirators-public-health-
emergencies [last accessed May 2022].
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