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Full structural ensembles of intrinsically disordered
proteins from unbiased molecular dynamics
simulations
Utsab R. Shrestha1, Jeremy C. Smith1,2 & Loukas Petridis 1,2✉

Molecular dynamics (MD) simulation is widely used to complement ensemble-averaged

experiments of intrinsically disordered proteins (IDPs). However, MD often suffers from

limitations of inaccuracy. Here, we show that enhancing the sampling using Hamiltonian

replica-exchange MD (HREMD) led to unbiased and accurate ensembles, reproducing small-

angle scattering and NMR chemical shift experiments, for three IDPs of varying sequence

properties using two recently optimized force fields, indicating the general applicability of

HREMD for IDPs. We further demonstrate that, unlike HREMD, standard MD can reproduce

experimental NMR chemical shifts, but not small-angle scattering data, suggesting chemical

shifts are insufficient for testing the validity of IDP ensembles. Surprisingly, we reveal that

despite differences in their sequence, the inter-chain statistics of all three IDPs are similar for

short contour lengths (< 10 residues). The results suggest that the major hurdle of generating

an accurate unbiased ensemble for IDPs has now been largely overcome.
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Intrinsically disordered proteins (IDPs) exhibit biological
function without folding spontaneously into a unique three-
dimensional (3D) structure1. IDPs are abundantly present in

all proteomes and play major roles in signaling, transcriptional
regulation, and regulation of phase transitions in the cell via
processes that may involve high-affinity interactions and recog-
nition of partners by folding upon binding1–6. About 50–70% of
the proteins in the human genome associated with cancers, dia-
betes, cardiovascular, and neurodegenerative diseases have a
minimum of 30 residues that are intrinsically disordered, making
IDPs possible drug targets1. In addition, IDPs are an essential part
of plant immune signaling components and also mediate
plant–microbe interactions7.

Understanding the function of a protein requires a determi-
nation of its 3D structure8. IDPs adopt highly dynamic structural
ensembles, which are commonly characterized by nuclear mag-
netic resonance (NMR)9, small-angle X-ray/neutron scattering
(SAXS/SANS)10,11, single-molecule fluorescence resonance
energy transfer12, hydrogen-exchange mass spectrometry13, and
circular dichroism14,15. However, the information content of the
applied experimental techniques is insufficient to obtain the
ensemble of 3D conformations an IDP adopts16. The experi-
mental observables often represent averages over the ensemble
and the data are typically sparse, providing too little information
to unambiguously determine the 3D ensemble.

Molecular dynamics (MD) simulation can in principle provide
the missing information and furnish a complete atomic resolution
description of IDP structure and dynamics2. Recent optimizations
of the protein and water potential energy functions2,17–28 have led
to accurate simulation of short disordered peptides and model
systems18,19,29–32. However, the simulations are not always con-
sistent with the experiment, either because of inadequate sam-
pling or shortcomings of the force fields2,19,22,24,30,33,34.

A common and successful approach to determine an IDP
configurational ensemble is to force the MD results to match
existing experiments, either by biasing the MD potential35,36 or
by a posteriori reweighting the ensemble of the MD
population37,38. One challenge for these methods is degeneracy,
that is, distinct 3D conformations may yield the same observable,
which may lead to overfitting. Bayesian maximum entropy
optimization approaches, which aim to perturb the MD ensemble
as little as possible, have been employed to avoid
overfitting35,38,39. However, these approaches always require a
prior experimental measurement and do not afford a predictive
understanding of IDPs.

Recently, by enhancing the configurational sampling of MD
simulations using Hamiltonian replica-exchange MD (HREMD)
the configurational ensemble of an IDP was generated that is in
quantitative agreement to SAXS, SANS, and NMR measurements
without biasing or reweighting the simulations40,41. HREMD
improves sampling by scaling the intraprotein and protein-water
potentials17,20 of higher-order replicas, while keeping the poten-
tial of the lowest rank replica unscaled42–45 so as to represent the
physically meaningful interactions of the system. However, only
two IDPs40,41 were studied and the general applicability of this
approach has not been established.

Here, we report that HREMD produces configurational
ensembles consistent with SAXS, SANS, and NMR experiments
for three IDPs with markedly different sequence characteristics:
Histatin 5 (24 residues) and Sic 1 (92 residues), both of which
have an abundance of positively charged residues, and the N-
terminal SH4UD (95 residues) of c-Src kinase, which contains
positively and negatively charged residues mixed over the
sequence. The HREMD results are in agreement with experi-
mental data on both local and global properties when employing
either of two force fields (Amber ff03ws20 with TIP4P/2005s20

and Amber ff99SB-disp17 with modified TIP4P-D17, hereafter
termed as a03ws and a99SB-disp, respectively). In contrast,
standard MD simulations of equivalent computational cost as
HREMD generate ensembles consistent only with NMR chemical
shifts, but not with SAXS. Further, the HREMD ensembles of
IDPs are found to be described by a theoretical semiflexible
polymer chain model quantifying the stiffness and strength of
interaction with the solvent. We suggest “best practices” in
achieving accurate and efficient IDP sampling using HREMD and
discuss differences in the size between Sic 1 and SH4UD. The
results demonstrate quite clearly that the recently optimized force
fields are reliable and that the current major impediment to
accurate simulation of IDPs is sampling. HREMD is therefore the
present tool of choice for obtaining atomic-detailed IDP
ensembles.

Results
HREMD ensembles in agreement with SAXS, SANS, and NMR.
We conducted HREMD simulations of three IDPs with varying
amino acid composition (Supplementary Note and Supplemen-
tary Fig. 1), employing two force fields: a03ws20 and a99SB-
disp17. Each replica of HREMD simulation is 500 ns long (Sup-
plementary Tables 1–4). For comparison, we also conducted
standard MD, that is, without enhancing the sampling, of the
same cumulative length as the HREMD (Supplementary
Tables 1–4). The cumulative lengths of standard MD simulations
for Histatin 5, Sic 1, and SH4UD are 5, 8, and 10 μs, respectively.
The histograms of a radius of gyration (Rg) show the IDPs adopt
a continuum of collapsed to extended structures (Fig. 1a–c).

The global, ensemble-averaged properties of IDPs such as Rg,
shape, and chain statistics can be derived using small-angle
scattering. We calculated the ensemble-averaged theoretical SAXS
and SANS curves from the simulation trajectories, by taking into
account explicitly the protein hydration shell and without
reweighting, and compared them directly to the experiments.
We found an excellent agreement of the HREMD-generated
ensembles with SAXS and SANS measurements for both force
fields (SAXS in Fig. 1d–f and SANS in Supplementary Fig. 2),
whereas the standard MD simulations were found to deviate from
the experiments, except for Sic 1 with a03ws. The agreement
between simulation and experiment was quantified by the χ2

value as defined in Eq. (5) and listed in Supplementary Table 5. χ2

calculated from HREMD converges in ~100 ns for Histatin 5, but
in ~300–400 ns for the larger Sic 1 and SH4UD (Supplementary
Fig. 3).

The histograms of Rg show that standard MD simulations
sample more compact structures than does HREMD with the
same force fields. Moreover, the histograms of Rg from all the
independent standard MD runs are different from each other
(Supplementary Fig. 4), suggesting lack of convergence between
the MD runs due to inadequate sampling. Therefore, for the IDPs
studied here, poor agreement with experiment arises primarily
from insufficient sampling rather than from shortcomings of the
force fields.

NMR chemical shifts (CS) provide information on the local
chemical environment of protein atoms and reflect structural
factors such as backbone and side-chain conformations. The
ensemble-averaged NMR secondary CS (ΔCS) calculated from all
the simulations (force fields and sampling methods) are in a good
agreement with the experimental values (Fig. 2a–c and Supple-
mentary Figs. 5–8). The quality of agreement is determined from
the root mean square (RMS) error defined in Eq. (6) for each
backbone atom (Fig. 2d–f), which is of the order of predicted
RMS errors of SHIFTX248 (viz, 1.12, 0.44, 0.52, 0.17, and 0.12 p.p.
m. for NH, Cα, Cβ, HN, and Hα atoms, respectively48). However, a
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slightly better agreement between calculated and experimental
ΔCS was obtained using a99SB-disp (Fig. 2d–f). Importantly, the
agreement was not improved by enhancing the sampling by
HREMD. Moreover, we found that the standard MD ensembles
are consistent with NMR CS but not with small-angle scattering
experiments. This indicates that CS alone may be an insufficient
criterion to test the validity of IDP ensembles.

Both force fields and sampling methods predict nearly the
same transient secondary structure elements. Transient helices,
which are considered to be biologically relevant51–53, were found
proximal to known phosphorylation residues of Sic 147 and to
known lipid-binding or phosphorylation residues in SH4UD50,54.
In contrast, the propensity of each secondary structure element is
found to depend on both the force fields and sampling methods
(Supplementary Figs. 9 and 10). The IDPs we studied mostly
showed a high propensity for coils that lack secondary structure,
consistent with the lack of long-range contacts found in the
simulations (Supplementary Fig. 11).

Polymer properties. We estimated the stiffness of the protein
backbones by calculating the orientational correlation function

C sð Þ ¼ <ni � niþs> ð1Þ
where s ¼ ji� jj is the pairwise residue separation (sometimes
called contour length), and ni is the unit vector connecting Cα atoms
of two consecutive residues (Fig. 3a). The steeper the decay of C(s),
the lower the stiffness of the chain. C(s) is similar for the three IDPs
for s < 5, exhibiting an exponential decay C sð Þ ¼ e�s=k, where k is
the number of Cα atom pairs corresponding to the persistence length
(lp). lp provides the maximum size of a protein segment over which
the structural fluctuations are correlated. In other words, it is the
measure of stiffness of a polypeptide chain. Here, we approximate lp
= k × 0.38 nm, where 0.38 nm is the distance between two con-
secutive Cα atoms in proteins55. We obtain k= 1.6 and lp= 0.61 ±
0.02 nm for all IDPs, in close agreement to a value of lp= 0.40 ±
0.07 nm reported for unfolded (hCyp, CspTm, R15, and R17) and
disordered (IN and ProTα, variants ProT53 and ProT54) proteins55.
A power-law decay (~s−3/2) is found for Sic 1 at 5 < s ≤ 13, whereas

correlations decay more rapidly and vanish for s > 5 for Histatin 5
and SH4UD. Therefore, Sic 1 is the stiffest.

The statistics of internal distances (“scaling properties”) of
polymers in dilute solution can be characterized using the Flory
scaling law given by Eq. (2):

Rs ¼ R0s
υ ð2Þ

where Rs is the average intraprotein pairwise distance between the
Cα atoms of residues i and j at separation s= |i− j|, the prefactor
R0 is a constant and ν is the Flory exponent. Balanced polymer-
solvent and intrapolymer interactions give rise to Gaussian coil
and ν= 0.5, while a self-avoiding random walk with ν= 0.588 is
predicted when the polymer–water interactions are favored.
Interestingly, we found two different power-law regimes are
needed to fit the data56,57 (Fig. 3b–d). At short contour lengths
(s ≤ 10), all three IDPs show common behavior. Although the
scaling law (Eq. (2)) is formally valid only for large chain lengths
s, we fit the data for s < 10 with Eq. (2) to demonstrate that the
IDPs have similar local chain statistics, evidenced by similar fits
with ν ≈ 0.70 and prefactor of R0 ~ 0.4 nm (R0 is similar to
the average distance between two consecutive Cα atoms). On the
other hand, at longer residue separations (s > 10) the Rs of the
three IDPs deviate. Histatin 5 and SH4UD with ν ≈ 0.43 and 0.40,
respectively, adopt more collapsed global conformations than
self-avoiding random walk. In contrast, Sic 1 (ν ≈ 0.60) remains
stiff even at longer residue separations.

Discussion
IDPs present a new paradigm for understanding flexibility–function
relationships in biology1,58–60. Currently, it is not possible to
determine the ensemble of the 3D structures that an IDP adopts
from either experiment or simulation alone. The number of
experimental observables is considerably smaller than the number
of the IDP’s configurational degrees of freedom, making model
reconstruction from experimental data a highly underdetermined
problem. For MD simulations, although improved molecular
mechanics methods perform well for small model disordered
peptides2,19,29,31,32, it has been necessary to bias or reweight the

Fig. 1 Comparison of experiemntal and calculated global structural properties of IDPs. a–c The histograms of Rg of a Histatin 5, b Sic 1, and c SH4UD
obtained from MD simulations. The inverted triangles indicate the average Rg of each simulation. d–f The SAXS profiles calculated from simulations (using
SWAXS46) are compared to experiments for d Histatin 531, e Sic 147, and f SH4UD41. Insets: SAXS data are zoomed at low-q values to show the differences
in intensity for different force fields and sampling methods. In all cases, the color code indicates the force fields, a03ws20 or a99SB-disp17, and sampling
methods, standard MD or HREMD (Supplementary Tables 1 and 2). HREMD results are from the lowest rank replica of the simulations shown by the bold-
italics font in Supplementary Table 2. SANS data of SH4UD are shown in Supplementary Fig. 2.
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MD results to achieve consistency with experiments35,36,38,39,61–63.
The reason MD has not always been accurate was unclear: it could
have been deficiencies in the force fields, insufficient sampling,
or both.

Here, we demonstrated that HREMD reproduces key experi-
mental observables (SAXS, SANS, and NMR) using two different
force fields for three different IDPs. In contrast, the ensemble
generated by standard MD of equivalent length failed to match

Fig. 2 Comparison of experimental and calculated local structural properties of IDPs. Comparison between the ensemble-averaged experimental (bars)
and calculated (symbols) NMR secondary chemical shifts (ΔCS) of backbone atoms a NH, b Cα, and c Cβ for SH4UD. ΔCS RMSE of backbone atoms with
respect to experimental values (bars), as defined in Eq. (6), for d Histatin 549, e Sic 147, and f SH4UD50. The error bars in ΔCS RMSE (d–f) are the standard
error of the mean as defined in Eq. (4). The color code indicates the force field and sampling method used. The theoretical NMR chemical shifts are
calculated using SHIFTX248. The prediction values of SHIFTX2 have RMS errors of 1.12, 0.44, 0.52, 0.17, and 0.12 p.p.m. for backbone atoms NH, Cα, Cβ,
HN, and Hα, respectively48.

Fig. 3 Chain statistics of IDPs. a The orientational correlation function as a function of the pairwise residue sequence separation, s. For s< 5, C sð Þ is fitted
by C sð Þ ¼ e�s=k for each IDP, where k is the number of Cα atom pair related to persistence length (lp) by lp= k × 0.38 nm. For s � 5 the power law
C sð Þ � s�3=2 applies only for Sic 1, whereas for Histatin 5 and SH4UD the correlation vanishes. b–d The average pairwise geometric distance (Rs) between
Cα atoms of two residues at separation s for b Histatin 5, c Sic 1, and d SH4UD. The data are fitted by Eq. (2) in two regimes, s≤ 10 (blue) and s > 10 (red).
The error bars are smaller than the symbol size.
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SAXS data (Fig. 1). The comparison of standard MD and
HREMD using the same force field suggests that the a03ws and
a99SB-disp force fields are of adequate accuracy and that
enhanced sampling techniques are necessary to reproduce the
experimental data.

We found that the calculated NMR CS and the loci of sec-
ondary structure elements are the easiest to converge as they are
consistent between all the simulations, independent of force field
and sampling method. In contrast, HREMD is required for SAXS
observables to converge to the experimental values. The most
difficult quantities to converge are the secondary structure pro-
pensities, which were found here to depend on both the force field
and the sampling method, perhaps more on the former than the
latter (Supplementary Figs. 9 and 10), with a03ws and a99SB-disp
having biases towards helices and β-sheets, respectively.

The data show that standard MD simulations can be in
apparent agreement with NMR CS, which measure local struc-
tural information64, while failing to reproduce SAXS/SANS
intensities, which determine with high precision more global
structural properties (here distributions of distances between
pairs of nuclei that are >~1 nm apart61,65) (Figs. 1 and 2 and
Supplementary Fig. 2)41. Thus, agreement with NMR CS alone is
not always a definitive test of the accuracy of MD simulations of
IDPs. It is critical to analyze and compare both local and global
properties17,66 of IDPs to ensure that the simulations have indeed
generated accurate ensembles.

Simple theories established for semiflexible homopolymers
and heteropolymers have been shown to provide a qualitative
description of IDP structural properties such as stiffness67–69

and solvent quality12,14,55,70,71. The high fidelity HREMD tra-
jectories reveal that, despite having markedly different
sequences, the IDPs studied here have common hierarchical
chain architecture. For short contour lengths (up to ~10 resi-
dues), the chain statistics of all three IDPs are similar, as evi-
denced by Rs and C(s). These short segments are relatively stiff.
Beyond this critical contour length, the IDPs differentiate.
SH4UD and Histatin 5 become flexible, while Sic 1 remains
relatively stiff with power-law decay in C(s) that implies long-
range spatial correlations68. This is consistent with Sic 1 being
more extended than SH4UD.

The origin of the stiffness of Sic 1 relative to SH4UD can be
understood by examining their primary sequences (Supplemen-
tary Fig. 1). All the charged residues of Sic 1 are positive, leading
to electrostatic repulsion between them. Further, Sic 1 contains 15
proline and 5 glycine residues. Proline is stiff due to its cyclic side
chain, whereas the absence of a side chain for glycine increases
the backbone flexibility72,73, and therefore both are known to be
disorder-promoting72,73. In comparison, SH4UD has both posi-
tively and negatively charged residues, 11 prolines and 12
glycines.

We now discuss the HREMD method42,43,45 and make
recommendations for its optimal use in IDPs. HREMD enhances
sampling by changing the quality of water as a good solvent for an
IDP. This is achieved by scaling only the intraprotein and
protein-solvent potential energy functions by a factor, λ and

ffiffiffi
λ

p
,

respectively (where λ < 1). An exchange of coordinates is allowed
between neighboring replicas if the Monte Carlo metropolis cri-
terion is satisfied42,43. The HREMD method was chosen because
it does not necessitate a predefined reaction coordinate. The
advantage of HREMD over temperature replica exchange MD is
that HREMD crosses entropic barriers74 more efficiently and a
smaller number of replicas is sufficient, that is, HREMD is
computationally more efficient.

The total number of replicas (n) used, the scaling factor (λi), or
the effective temperature (Ti) of a replica and the average

exchange probability (pex) of the lowest rank replica are listed in
Supplementary Tables 2 and 3. A Tmax of 400–450 K (lower limit)
was needed to achieve a good agreement between the lowest rank
(unscaled) replica of HREMD and the experimental SAXS results.
Moreover, to estimate the upper limit of effective temperature, we
performed HREMD of Histatin 5 using a99SB-disp, Tmax= 800 K
and 24 replicas (Supplementary Table 3). This simulation gen-
erated the ensemble in the lowest rank replica similar to that of
HREMD with Tmax= 450 K (Supplementary Fig. 12a). However,
we noted that replica from Ti= 522 K and above-sampled col-
lapsed structures when compared to the ensemble of the lowest
rank replica. Therefore, we suggest 450 K < Tmax < 500 K is an
appropriate choice for the upper limit of maximum effective
temperature (Supplementary Fig. 12a). However, choosing the
higher value of Tmax would increase the number of replicas and
thus computational cost.

To ensure HREMD does not bias the ensemble, we also per-
formed control simulations of a short intrinsically disordered
peptide, Ala5 (five residues)17,20 and the 20-residue folded protein
Trp cage17,75 (Supplementary Fig. 13), both of which have been
used as benchmarks for the optimization of molecular mechanics
force fields17,20. Unlike what was observed for the longer IDPs
(Histatin 5, Sic 1, and SH4UD), MD, and HREMD both yield
similar ensembles for the controls (Supplementary Fig. 13). This
suggests that HREMD does not introduce unphysical conforma-
tions and is equivalent to microsecond standard MD for short
peptides and proteins.

A quantitative comparison of the sampling efficiency of stan-
dard MD and HREMD is provided by calculating the auto-
correlation functions (Ct) of the number of contacts (nc) and of
Rg (Supplementary Note, Supplementary Fig. 14, and Supple-
mentary Table 6). The decay of the autocorrelation is markedly
more pronounced for HREMD than for standard MD. Taking the
steepness of the decay of Ct in Supplementary Fig. 14 as a mea-
sure of sampling efficiency, it is clear that HREMD sampling is
superior to that of standard MD (Supplementary Table 6).

In summary, we demonstrate HREMD simulations as an
effective method to generate accurate structural ensembles of
three IDPs with varying amino acid composition (Histatin 5, Sic
1, and SH4UD). The unbiased HREMD trajectories, calculated
without using any experimental input or predefined reaction
coordinate, are in excellent agreement with SAXS, SANS, and
NMR observables. Nonetheless, comparison to experimental data
was imperative to confirm the accuracy of MD results. The suc-
cess of the HREMD approach for these three markedly different
IDPs suggests that it will be of general applicability. Moreover,
HREMD simulations performed using two recent molecular
mechanics force fields (a03ws and a99SB-disp) converge to the
same distribution of Rg. In contrast, neither of the force fields
could reproduce small-angle scattering experiments with stan-
dard MD of the same cumulative length as HREMD, although
NMR CS were reproduced accurately with standard MD. Local
chemical and structural properties of IDPs, which influence CS,
therefore, seem force field-dependent, while the overall protein
size and shape, which influences small-angle scattering intensities,
also depend on the sampling. Both local and global features must
be employed to validate IDP ensembles. Therefore, our results
suggest adequately sampled simulations using recent IDP-specific
force fields can reliably generate the 3D ensembles of IDPs
(Supplementary Fig. 15), which is a prerequisite to an under-
standing of the biological function of IDPs. We also report that
despite differences in their sequence, all three IDPs have similar
local chain statistics for short lengths (<~10 residues). More
studies are required to establish whether this is a universal IDP
behavior.
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Methods
Experimental SAXS and NMR data. The experimental SAXS data of Histatin 5,
Sic 1, and SH4UD were taken from Henriques et al.31 Protein Ensemble Database
(http://pedb.vib.be)47 and our previous work41, respectively. Similarly, NMR CS of
backbone atoms (Cα, Cβ, NH, Hα, and HN) of Histatin 5, Sic 1, and SH4UD were
acquired from the literature49, Protein Ensemble Database47, and Biological
Magnetic Resonance Data Bank database entry 1556350 respectively.

MD simulations. The initial 3D structures of IDPs (Histatin 5, Sic 1, and SH4UD)
were obtained from I-TASSER76. An MD-equilibrated starting structure with Rg

value close to experimental SAXS was chosen for the production simulation of each
IDP. The same starting structure of IDP was utilized for each force field and
sampling method. A short disordered peptide, Ala517,20, and a small folded protein,
Trp-cage17, were also simulated as controls (SI). The initial structure of Ala5 was
constructed using Visual MDs77, whereas the starting structure of Trp cage was
taken from PDB 1L2Y75.

We performed standard MD simulations with two recently optimized force
fields, Amber ff03ws20,78,79 with TIP4P/2005s20 (a03ws) and Amber ff99SB-
disp17,80 with the modified TIP4P-D17,22 water model (a99SB-disp) using
GROMACS81–86. All bonds involving hydrogen atoms were constrained using the
LINCS algorithm87. The SETTLE algorithm was used for water88. The Verlet
leapfrog algorithm was used to numerically integrate the equation of motions with
a time step of 2 fs. A cutoff of 1.2 nm was used for short-range electrostatic and
Lennard–Jones interactions. Long-range electrostatic interactions were calculated
by particle-mesh Ewald89 summation with a fourth-order interpolation and a grid
spacing of 0.16 nm. The solute and solvent were coupled separately to a
temperature bath of 300, 293, 300, 298, and 282 K for Histatin 5, Sic 1, SH4UD,
Ala5, and Trp cage, respectively, to match the temperatures measured at the
experiments using velocity-rescaling thermostat90 with a relaxation time of 0.1 ps.
The pressure coupling was fixed at 1 bar using the Parrinello–Rahman algorithm91

with a relaxation time of 2 ps and isothermal compressibility of 4.5 × 10−5 bar−1.
The energy of each system was minimized using 1000 steepest decent steps
followed by 1 ns equilibration at NVT (amount of substance, volume, and
temperature) and NPT (amount of substance, pressure, and temperature)
ensembles. The production runs were carried out in the NPT ensemble. The
cumulative lengths of standard MD simulations with a number of independent
runs enclosed in the brackets for Ala5, Trp cage, Histatin 5, Sic 1, and SH4UD are 2
(1), 4 (4), 5 (5), 8 (4), and 10 μs (6), respectively (Supplementary Table 1).

Enhanced sampling MD simulations. We employed replica exchange with solute
tempering 242,43, an HREMD simulation method to enhance the conformational
sampling. Replica exchange with solute tempering 2 is implemented in GROMACS
(v.2018.6)81–86 patched with PLUMED (v.2.5.2)92. The interaction potentials of
intraprotein and protein solvent were scaled by a factor λ and √λ, respectively,
while water–water interactions were unaltered42–44,93. The scaling factor λi, and
corresponding effective temperatures Ti of the ith replica are given by,

λi ¼
T0

Ti
¼ exp � i

ðn� 1Þ ln
Tmax

T0

� �� �
ð3Þ

where T0 and Tmax are the effective temperatures of lowest rank (unscaled) and the
highest rank replicas, respectively, and n is the total number of replicas used. For
analysis, we use only the trajectory of the unscaled for lowest rank replica (λ0= 1
or T0). Exchange of coordinate between neighboring replicas was attempted every
400 MD steps. Each replica of HREMD is 500 ns long. The cumulative lengths of
HREMD simulations with the number of replicas enclosed in the brackets for Ala5,
Trp-cage, Histatin 5, Sic 1, and SH4UD are 2 (4), 4 (8), 5 (10), 8 (16), and 10 μs
(20), respectively (Supplementary Tables 2 and 3). The details of HREMD and
standard MD simulations are shown in Supplementary Tables 1–4. The secondary
structure prediction was calculated with DSSP94. The orientational correlation
function is determined using MD analysis95.

Statistics and reproducibility. To estimate the error from HREMD trajectory, we
divided the trajectory into five equal blocks each containing 10,000 frames (0–100,
100–200, 200–300, 300–400, and 400–500 ns). The mean value for each block,
mi (i= 1–5), was first calculated. The reported error bars are the standard error of
the mean of the (m1, m2, m3, m4, and m5) distribution, that is,

Error bar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðn� 1Þ
Xn¼5

i

mi �m
� �2

vuut ð4Þ

where m is the mean value and n= 5 is the number of blocks used.
In regard to the reproducibility of the work, a multiple copies of standard MD

and two copies of HREMD simulations were performed for each IDP.

Theoretical SAXS profiles. The theoretical SAXS and SANS intensities were
calculated with SWAXS46,96 and SASSENA97, respectively, by taking into account
of explicit hydration water, which contributes to the signal46. The agreement

between experiment and simulation was determined by a χ2 value:

χ2 ¼ 1
k� 1

Xk
i¼1

½<Iexpt qi
� �

>� ðc < Isim qi
� �

>þ bgdÞ�
σexptðqiÞ

( )2

ð5Þ

where <Iexpt(q)> and <Isim(q)> are the ensemble-averaged experimental and the-
oretical SAXS data, respectively, k is the number of experimental q points, c is a
scaling factor, bgd is a constant background, and σexpt is the experimental error. In
Eq. (5), c is a factor to scale calculated values to the experiment because the
experimental values are often expressed in arbitrary units. It does not change the
shape of the SAXS curve. Similarly, bgd is used to incorporate the uncertainty due
to mismatch in buffer subtraction at higher q values14 in the experiment.

Theoretical NMR CS. The theoretical NMR CS was calculated with SHIFTX248 by
taking the average over all frames from the MD trajectory. Furthermore, we
determined the NMR secondary CS for NH, Cα, Cβ, HN, and Hα atoms as the
difference between the experimental (or simulation-derived) CS and the corre-
sponding random coil values specific to a particular atom and amino acid:

ΔCSexpt x; ið Þ ¼ CSexpt x; ið Þ � CSRCðx; iÞ

ΔCScalc x; ið Þ ¼ CScalc x; ið Þ � CSRCðx; iÞ
where atom x∈NH, Cα, Cβ, HN, and Hα and i refers to a specific amino acid.
CSexpt x; ið Þ, CScalcðx; iÞ, and CSRCðx; iÞ are the CS values from experiment, MD
(calculated) and random coil database for atom “x” and amino acid “i,” respec-
tively. Note that the calculated CS for each atom are corrected as
CScalc ¼ CScalc0 þ O, where CScalc0 is an actual ensemble-averaged value from
SHIFTX2 and O is an offset constant determined from linear regression fit of the
theoretical to the experimental NMR CS (Supplementary Figs. 5–7). Such an offset
may arise from the systematic or referencing error in the NMR CS measurement or
calculation98 and is used here to improve the agreement between experiment and
calculated values. CSRC values are those reported in Tamiola et al.99. Finally, we
quantified the agreement between experimental and calculated secondary CS of
atom by evaluating the RMS error given by,

RMSEðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðΔCSexpt x; ið Þ � ΔCScalc x; ið ÞÞ2
s

ð6Þ

where n is the total number of residues in the IDP.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. The source data for the Figs. 1, 2,
and 3 are available as Supplementary Data 1, Supplementary Data 2, and Supplementary
Data 3, respectively.

Code availability
The input files for running HREMD simulation using GROMACS patched with
PLUMED are provided as Supplementary Data 4. It is also deposited in Zenodo100 and
GitHub (https://github.com/utsabstha/hremd-idp).
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