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Abstract

Motivation: Interaction graphs are able to describe regulatory dependencies between compounds without capturing
dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics
of biological systems. However, since dynamic complexity of these models grows exponentially with their size, ex-
haustive analyses of the dynamics and consequently screening all possible interventions eventually becomes in-
feasible. Thus, we designed an approach to identify dynamically relevant compounds based on the static network
topology.

Results: Here, we present a method only based on static properties to identify dynamically influencing nodes.
Coupling vertex betweenness and determinative power, we could capture relevant nodes for changing dynamics
with an accuracy of 75% in a set of 35 published logical models. Further analyses of the selected compounds’ con-
nectivity unravelled a new class of not highly connected nodes with high impact on the networks’ dynamics, which
we call gatekeepers. We validated our method’s working concept on logical models, which can be readily scaled up
to complex interaction networks, where dynamic analyses are not even feasible.

Availability and implementation: Code is freely available at https://github.com/sysbio-bioinf/BNStatic.

Contact: hans.kestler@uni-ulm.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Given the complexity of biological systems, holistic approaches that
tend to describe general dynamic behaviours are required. For this
purpose, various modelling approaches ranging from discrete to
continuous have been applied. Altogether, these modelling
approaches are based on simple interaction graphs depicting inter-
action partners in complex biological contexts. However, while
complex interaction graphs, such as protein–protein interactions
networks, are quite large, mathematical models are restricted to a
limited number of nodes. This size limitation is based on the infor-
mation required to build these models. In this context, discrete mod-
els as Boolean networks (BNs) (Kauffman, 1969), are less
restrictive. Thus they can be constructed and enlarged by both litera-
ture and reverse engineering from time series (Hopfensitz et al.,
2011; Laubenbacher and Stigler, 2004; Maucher et al., 2011, 2014;
Veliz-Cuba, 2012). Nevertheless, also for BNs it holds that dynamic
complexity scales exponentially with network size, again limiting

the possibility of complete dynamic investigations (Schwab et al.,
2020).

Different studies pointed to the possibility that a limited number
of nodes are responsible for the dynamic behaviour of a complete
network (Jeong et al., 2001). Therefore, we addressed whether it is
possible to capture dynamically relevant nodes only by relying on
interaction graph properties. In this direction, multiple static meas-
ures have been suggested in graph theory (Freeman, 1977; Heckel
et al., 2013; Matache and Matache, 2016), still missing analyses on
their potential impact in predicting alterations in dynamics. To fill
this gap between interaction graph and dynamic analyses, we
selected a set of 35 published BNs and used them for identifying dy-
namic drivers. This decision is based on the fact that BN models
have proven to be quite capable of predicting complex biological
behaviours (Albert and Othmer, 2003; Dahlhaus et al., 2016;
Davidich and Bornholdt, 2008; Herrmann et al., 2012; Ikonomi
et al., 2020; Meyer et al., 2017; Siegle et al., 2018; Werle et al.,
2021), together with reasonable simulation times for dynamic
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analyses. Therefore, we first performed feature selection experi-
ments to determine the static measures which are most promising to
predict the dynamic behaviour. Then, we evaluated if combinations
of well-performing measures were also promising. We obtained a set
of nodes only by static investigation to predict dynamic impact (Fig.
1). Finally, we investigated further properties of our selected group
of nodes, interestingly individuating a set of nodes which was previ-
ously undefined. These nodes that we called ‘gatekeepers’, are not
highly connected and show a high impact on the dynamic
behaviour.

2 Materials and methods

2.1 Boolean network models
In BNs, every compound entity g is translated to a binary variable
xg 2 f0; 1g. The corresponding variable describing a compound’s
activity is time-dependent and thus xg ¼ xgðtÞ. Furthermore,
each compound is assigned a fixed transition function
fgðx1; . . . ; xg; . . . ;xnÞ describing its regulations. For a network N
consisting of n nodes in total, activity states change at some point in
time and thus are described by a vector of n variables
xðtÞ :¼ ðx1ðtÞ; . . . ; xnðtÞÞ. Such a set is referred to as the system’s
state. To update the state of a network to the next step in time, the
transition functions fg of all genes have to be evaluated. For this pur-
pose, different updating schemes can be applied (Gershenson,
2004). The most simple one is synchronous updating where all tran-
sition functions are evaluated synchronously (Kauffman, 1969), that
is for every compound g, xgðt þ 1Þ ¼ fgðx1ðtÞ; . . . ;xnðtÞÞ. Due to the
finite size of the state space and the deterministic nature of syn-
chronous BNs, each state will lead to a recurring state or set of
states. These repeating states are called attractors. In a biological
context, attractors can be associated to phenotypes (Kauffman,
1993).

For the analyses, we used a set of published BNs of various bio-
logical processes to investigate the ability to predict compounds
with high dynamic impact only based on static measures. Extensive
literature research was conducted to screen for BN models, as
explained in Supplementary Section 1. This has yielded a data set of
35 BNs (Supplementary Table S1) ranging in size from 5 to 51
genes, with an average size of 20 nodes. The median number of
nodes in networks is 18, with an interquartile range of 10.5 (from

12.5 to 23). The number of regulations ranged from 12 in a network
of 7 nodes to 158 in a network of 32 nodes, with an average of 48
edges for a total number of 684 nodes.

2.2 Dynamic measures
We used the R-package BoolNet (Müssel et al., 2010) for simulation
of the BNs’ dynamics. Each network N was simulated using the syn-
chronous update strategy. The dynamics of a BN can be modified by
perturbations. Perturbations such as fixing the state of a node cor-
respond to laboratory overexpression (OE, xgðtÞ :¼ 1) or knockout
(KO, xgðtÞ :¼ 0) experiments. This may lead the system towards a
different set of attractors. The dynamic impact of each compound g
of N was determined by the change of the networks’ dynamics after
these compounds perturbation (P) (OE or KO, P 2 fOE;KOg). The
corresponding perturbed network will be denoted by the symbol

NP
g . Measurements of the changes in the dynamics were based on

the networks’ set of attractors AðNÞ. An attractor a 2 AðNÞ will be
represented as a vector a ¼ ða1; . . . ; anÞ of trinary variables ag 2
f0;1; 0:5g indicating presence, absence or oscillating behaviour.
We additionally use the notation AgðNÞ to denote attractors
without component g. For instance, a 2 AgðNÞ correspond to
a ¼ ða1; . . . ; ag�1; agþ1; . . . ; an).

We applied three different dynamic measures to quantify
changes in attractors after perturbing component g by
P 2 fOE;KOg. Using this method allows us to rank the different
compounds of each network according to their dynamic impact.

Gain of attractors (Gg): The gain of attractors calculates the
number of attractors which emerge after perturbation. It returns the
number of attractors present in the modified set and not in the ori-
ginal attractors

Gg ¼ max
P
jAgðNP

g Þ n AgðNÞj: (1)

Here, the maximal number of newly created attractors is chosen
for each gene g, whether this be through OE or KO. Over all n nodes
the gain of attractors is analysed a vector G ¼ ðGgÞng¼1.

Loss of attractors (Lg): The loss of attractors returns the number
of original attractors for which there exists no match in the modified
set

Lg ¼ max
P
jAgðNÞ n

�
AgðNÞ n AgðNP

g Þ
�
j: (2)

The vector of attractor losses of all n nodes is given by
L ¼ ðLgÞng¼1.

Minimal Hamming distance (Dg): The third measure is based on
the Hamming distance Hða; a0Þ, which sums up the absolute differ-
ences between a and a0 for every component (Hamming, 1950).
However, the perturbed compound g is not incorporated into the
distance. Only the effects caused to other compounds by this per-
turbation are considered Hgða; a0Þ ¼

P
g0 6¼g jag0 � a0g0 j. Dg quantifies

the minimal shift in attractors caused by the perturbation. Here, any
given attractor in the perturbed system is compared to the set of all
attractors in the original system. Dg measures the Hamming distance
to the one which most closely resembles its own pattern of gene
expression.

Dg ¼ max
P

1

jAðNP
g Þj

X
a0¼AðNP

g Þ
min

a2AðNÞ
Hgða; a0Þ: (3)

The corresponding vector is denoted by D ¼ ðDgÞng¼1.
Dynamic impact (Ig): The three measures given above can be

aggregated to one single measure for the dynamic impact of the indi-

vidual node I ¼ 1
3

�
rkðGÞ þ rkðLÞ þ rkðDÞ

�
; where rkð:Þ denotes the

ranking function. Here compounds g in a network N can be ranked
according to the relevance of their perturbation on the dynamics.
The dynamic impact Ig of an individual compound g can now be
extracted from I ¼ ðIgÞng¼1.

Fig. 1. Schematic description of the approach. Using a combination of the two

graph-based measures VB and DP on the interaction graph allows to predict dynam-

ic behaviour and nodes most relevant for that (right). Traditional approaches rely

on certain dynamic models such as Boolean networks (left). These models are used

to simulate the dynamics under various perturbation scenarios such as knock-out or

overexpression to determine the most relevant nodes. In contrast, due to the smaller

search space, the interaction graph-based approach allows to screen for these nodes

more efficiently
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2.3 Static measures
We investigated a range of graph-theoretical measures that assign in-
dividual values to each node according to the specific properties of
networks’ topology. In contrast, dynamic properties are derived
from the state graph which grows exponentially with the number of
compounds in the system. Due to the smaller search space, measures
of static properties can be calculated on a faster time scale than their
dynamic counterparts. We performed feature selection experiments
to determine the static measures, which are most promising to pre-
dict the dynamic behaviour. The classification was done using all
possible combinations of the static interaction graph-based features
over all nodes of all networks N. Each node g was labelled with its
dynamic impact measured by Ig. For classification, we used k-
Nearest-Neighbour, random forest, and support vector machine
algorithms with linear and radial basis function kernels.
Classification performance was measured using 10x10 and leave-
one-subset-out (leaving out one network) cross-validation (CV). For
the 10 � 10-CV, results show a CV accuracy ranging between mini-
ma of 0.461 and 0.545 across algorithms and maxima between
0.691 and 0.749 over all possible feature combinations.
Analogously, the reclassification accuracy ranges between minima
of 0.469 and 0.569 to maxima between 0.705 and 1.0. The two
static measures vertex betweenness and determinative power are
overrepresented over the best performing feature combinations.
Thus, we considered them as the most promising features for further
evaluation (see detailed descriptions of methods and results in
Supplementary Section 2).

Interaction graphs (I ): The interaction graph I ¼ GðV; EÞ con-
tains a set V of n nodes representing genes as well as other compo-
nents or processes of the system. These are connected via directed
edges E which represent regulatory influences. That is, an edge
ðgi; gjÞ 2 E pointing from gene gi to gene gj indicates the presence of
gi in the Boolean transition function of gj. The interaction graph
therefore captures only (static) topological properties of the system.

Vertex betweenness (VBg): The vertex betweenness, or shortest-
path betweenness (Freeman, 1977), is derived from the interaction
graph I ¼ GðV; EÞ and can be calculated for every vertex g 2 V (i.e.
node), each corresponding to a given gene. It analyses to the distri-
bution of shortest paths between nodes. The definition of vertex
betweenness VBg is based on the set of shortest paths sij between
nodes gi and gj, gi 6¼ gj, and its subset sijðgÞ of paths which pass node

gVBg ¼
P

gi ;gj2Vnfgg
jsijðgÞj
jsij j : The more often g is passed by the shorted

paths the higher is its final score. Similar to the dynamic measures
the vector of all n vertex betweenness will be denoted as
VB ¼ ðVBgÞng¼1.

Determinative power (DPg): Determinative power relates to net-
work entropy and assigns high scores to a node g if knowledge about
the state of this node yields a high ’gain of information’ about
the state of its output nodes, as defined in terms of mutual informa-
tion (MI) (Heckel et al., 2013; Matache and Matache, 2016).
The determinative power DPg of a node g is defined by utilizing a
measure of the binary Shannon entropy hðpgÞ ¼ �pg log 2

ðpgÞ � ð1� pgÞ log 2ð1� pgÞ, where pg ¼ PðXg ¼ 1Þ describes the
probability of a random, binary variable Xg taking the value xg ¼ 1
(Matache and Matache, 2016).

Furthermore, the support of a given Boolean regulation function
fg is defined as the set of states which are mapped to an output of 1
by the function, formally described as SðfgÞ ¼ fx : fgðxÞ ¼ 1g.

The reduction of uncertainty about the values of genes in the
support of fg (Climent et al., 2010) achieved by knowledge of the
state of node g0 is described using MI.

MIðXg; fg0 ðXÞÞ ¼ h
�P

x2Sðfg0 Þ px

�
�

P
b2f0;1g PðXg ¼ bÞh

�P
x2Sðfg0 Þ PðX ¼ xjXg ¼ bÞ

�
:

(4)

Here px denote the probability of state x and X ¼ ðXgÞng¼1.
Finally, this yields the determinative power of node g as DPg,

summing over all outputs g0 of node g DPg ¼
Pn

g0¼1

MIðXg; fg0 ðXÞÞ.

As the value of MIðXg; fg0 ðXÞÞ is maximally one, the values of the
determinative power of a node ranges between zero and the number
of outputs of the node (Pentzien et al., 2018). The corresponding
vector of determinative power will be denoted as DP ¼ ðDPgÞng¼1.

2.4 Gene impact ranking
In the following, different selection sets are obtained from various
combinations VBT and DPT , the top scoring genes of the two static
measures. Here T 2 ½1%; 100%� denotes the percentage of all n
genes. More precisely, VBT denotes the top scoring gene set

VBT ¼ fg : rg � dTne; r ¼ rkðVBÞg; (5)

where r ¼ ðrgÞng¼1. DPT is defined analogously. We analyse

VBT ; DPT , the union VBT [DPT , and the intersection VBT \DPT

for their intersect with the top dynamic impact genes IT . To investi-
gate whether a stricter or broader criterion should be chosen for
labelling a gene as having high impact the comparison between stat-
ics and dynamics is conducted for all possible sizes T 2 ½1%; 100%�
of the selected set. Based on this threshold, genes are classified as ei-
ther high or low impact according to their scores on the presented
static and dynamic measures individually.

2.5 Connectivity of nodes
Connectivity of compounds in the interaction graph is considered to
be relevant to determine high-impact nodes (Guimera and Amaral,
2005). Connectivity is quantified using z-scores Cg for a given gene

g, where dg is the total degree of node g, while d is the average total
degree of all nodes in the network. r is the corresponding standard

deviation of these total degrees in the same network Cg ¼ dg�d
r . The

corresponding vector is denoted as C ¼ ðCgÞng¼1.

A hub is then defined as a node having a z-score in connectivity
of Cg � 2:5, as given by (Guimera and Amaral, 2005). Hubs
are considered to be master regulators of biological processes
(Borneman et al., 2006; He and Zhang, 2006).

3 Results

Formal descriptions of regulatory interactions of a system can be
represented by different types of mathematical models, and can
allow for the investigation of dynamics. However, since dynamic
complexity grows exponentially with size, dynamic investigation is
limited. In contrast, the size of static interaction graphs only grows
linearly when adding components. Therefore, it is of some interest
to find methods based on interaction graph properties to capture dy-
namic drivers. Such a method would finally reduce complex dynam-
ic analyses, as a screening with static-based methods can drastically
reduce the search space for dynamic analysis. This procedure allows
finding dynamic influencing compounds and, thus, potential target
candidates on large models. On these grounds, we considered BNs,
as best candidates to evaluate our approach.

3.1 Combination of static measures captures dynamic

influencing compounds
We considered a range of eight commonly described static measures,
namely VB (Freeman, 1977), DP (Heckel et al., 2013; Matache and
Matache, 2016), connectivity (Guimera and Amaral, 2005), resist-
ance distance (Klein and Randi�c, 1993), coreness (Giatsidis et al.,
2013), eigenvector centrality (Newman, 2008), eccentricity (Hage
and Harary, 1995) and shimbel index (Rodrigue, 2016; Shimbel,
1951, 1953). By applying feature selection, we compared their per-
formance in predicting the dynamic characteristics defined in our
method sections (Supplementary Section 2). By training on 35 pub-
lished BN models, VB and DP performed best in predicting dynamic
relevant compounds (Supplementary Figs S1 and S2).
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Next, we considered the possibility that combinations of these
two measures might improve the prediction power of dynamic fea-
tures. Hence, selected nodes by VB, DP, their intersection, and their
union were considered, and their specificity and sensitivity was eval-
uated at different thresholds T. To do so, each node was perturbed
and three dynamic measures have been computed and averaged for
each given threshold T. Among the static measures, VBT \DPT

yielded the best results considering both single dynamic measures
and their average (Fig. 2A and B, Supplementary Figs S3 and S4).
Here, we obtained a sensitivity of 0.756 at a threshold of 73% with
an accuracy of 0.756 6 0.136 for all 35 networks. Furthermore, the
selection threshold stability has been successfully addressed by boot-
strap analysis (Supplementary Fig. S5), as well as the independence
of the method towards network size (Supplementary Fig. S6).
Finally, these results confirm that there actually exists a combination
of static measures able to faithfully capture changes in dynamic
behaviours and consequently their drivers. Thus, these measures are
of high potential to reduce the simulation complexity and conse-
quently allow for faster predictions and more complex models. This
method provides a fast and easy approach to select relevant dynamic
drivers in any type of interaction graph-based method.

3.2 Characterization of the selected compounds reveals

a new class of dynamic drivers
To further characterize the selected set of compounds, we started
from the shared concept that highly connected compounds strongly
influence dynamic behaviour (Jeong et al., 2001). Hence, we consid-
ered to study the relationship between connectivity and dynamic in-
fluence. First, we observed that highly connected nodes (hubs) were
all selected by our method, further corroborating its correctness.
However, according to the definition of hub nodes (Guimera and
Amaral, 2005) only 21 compounds (3.1% of the selection) were
classified as highly connected. Therefore, we considered that among
our selection, other statically definable classes of dynamic influenc-
ing nodes might exist. To address this possibility, we deepened our
analyses measuring mismatches between the impacts regarding con-
nectivity and our approach. The overall results of our approach, the
selection given by the VBT \DPT at T ¼ 73%, selected 424 nodes
out of 684 in total. Nodes excluded from this first selection are
260ð38:0%Þ. This group we named non-selected (NS). To further in-
vestigate the set of selected nodes, we ranked them by (i) their static
impact according to VB and DP as an average, and (ii) their connect-
ivity. For all nodes in VBT \DPT at T ¼ 73%, we considered mis-
matches between these two rankings. Therefore, we divided our
nodes as follows: Positive mismatches are nodes that have a higher
average ranking in DP and VB than in connectivity. Negative mis-
matches instead are nodes with lower or equal average ranking of

VB and DP compared to connectivity. As a result, the aim of our
analysis is to investigate whether it is possible to find nodes with
high static and dynamic impact, which are also not highly
connected.

Out of all 684 nodes across all networks, 227ð33:2%Þ are classi-
fied as positive mismatch. The remaining 197ð28:8%Þ selected nodes
are classified as negative mismatches (Fig. 3). Positive mismatch
nodes have a lower score in static impact (p < 1 � 10�5), if com-
pared to hub nodes. However, this group of nodes has a dynamic
impact comparable to the one of hubs (p>0.99) and significantly
higher compared to other groups (p<0.0001) (Fig. 3A and B).
Accordingly, for hubs, the median for the dynamic impact is at
0.667, whereas for positive mismatch nodes the median is 0.696.
Negative mismatch nodes have a median of 0.546. Moreover, posi-
tive mismatch nodes show significantly lower connectivity if com-
pared to hubs and negative mismatching nodes (p < 1 � 10�5, Fig.
3C). Our results unravelled the existence of a group of nodes charac-
terized by low connectivity and high dynamic impact. Interestingly,
this group can be identified only based on topological measures.

Next, we compared if this set of selected nodes and their con-
nectivity-based subgroups can be identified also by other published
interaction graph-based methods. To do so, we considered three
static features that have been linked to control of dynamic behav-
iours: Canalysing variables (Murrugarra and Dimitrova, 2015),
feedback vertex set (FVS) (Za~nudo et al., 2017), and network motifs
(Milo et al., 2002). Thus, we investigated nodes which act as canal-
ysing variables (Murrugarra and Dimitrova, 2015), nodes belonging
to the FVS of a network (Za~nudo et al., 2017), as well as nodes
which participate in network motifs (Albergante et al., 2014; Milo
et al., 2002). An important feature of biologically motivated net-
works is the presence of canalysing functions. Multiple levels of
canalysation can be described, depending on the number of func-
tions which a node is canalysing. In total, we could identify 543
(79.4%) of all nodes present in the set of analysed BNs acting as
canalysers (see Supplementary Table S3). Out of these, 73.9% be-
long to the set VBT \DPT . Furthermore, there is any particular en-
richment of canalysing nodes in neither the positive or the negative
mismatch subgroups. Moreover, by increasing the level of canalysa-
tion the distribution into the subgroups of the canalysing nodes
shifts towards the negative mismatch class (Supplementary Table
S3). This results from the fact that highly canalysing nodes are also
more highly connected. Similarily to canalysing nodes, biological
networks show occurrence of certain network motifs (Milo et al.,
2002). Albergante et al. (2014), could show that short feed forward
loops are particularly affecting the stability of protein–protein inter-
action networks. Therefore, we investigated the frequency of partici-
pation of nodes in coherent and incoherent feedforward loops
(C1FFL and I1FFL), as well as the bifan motif. Among our investi-
gated BNs we found a total of 1086 C1FFLs, 112 I1FFLs and 1197
bifans. Around 80% of nodes that participate in each of these motifs
fall also in the selected VBT \DPT (Supplementary Fig. S7).
However, again, we could not observe any particular enrichment in
one of our identified subgroups of positive and negative mismatches.
Finally, the FVS is described as group of nodes that can be used to
control BNs dynamics (Za~nudo et al., 2017). In total, by a network-
based analysis, we could detect 138 (20.2%) nodes identified as
FVS. Again, taking all nodes into account, around 83% of the FVS
is also selected by VBT \DPT (Supplementary Fig. S8). These results
lead us to the conclusion that our method selects a unique set of
nodes defined by VBT \DPT , that is not a subset of any known pre-
viously described static features. Even more interestingly, the class
of positive mismatches was confirmed not to be univocally detect-
able by any of these methods. Thus, we conclude that we actually
identified a completely new class of nodes.

3.3 Higher mutual information characterizes positive

mismatches nodes as gatekeepers of hubs
In the previous sections, we showed that VBT \DPT yields a set of
nodes that can capture dynamic relevant changes in a selection of 35
BNs. Further, we showed that this selected set can be further be sub-

Fig. 2. Static measures to determine important dynamic nodes. (A) The figure shows

the sensitivity (red) and specificity (blue) yield by the comparison of static measures

(vertex betweenness and determinative power) and the average of the three dynamic

parameters at each threshold T ¼ f1,. . .,100g over all networks. Dots represent the

average sensitivity and specificity and coloured regions display the standard devia-

tions. Here, the point of intersection between sensitivity and specificity is at 0.756

corresponding to a threshold T ¼ 73%. (B) The performance of the intersection

against single dynamic measures is depicted at each threshold T ¼ f1,. . .,100g. The

figure shows that considering single dynamic measures (Hamming distance in pur-

ple, attractor loss in brown, attractor gain in green) is comparable to using their

average value
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grouped as positive and negative mismatches. We could show that
these groups are uniquely identified by our method and not by
others. Since positive mismatches show the unique feature of being
not highly connected and still highly impacting dynamic behaviour,
we further characterized this newly identified class of compounds.
Combining the idea of hubs as master regulators of biological proc-
esses, together with the possibility of new groups of dynamic drivers
arising, we hypotheses that the positive mismatch class is somehow
affecting dynamics by acting through hubs. To evaluate this concept,
we considered the reliability with which signals are passed among
these nodes. All simple paths (i.e. paths in which no vertex is visited
twice) across networks starting at a non-hub and ending at a hub
node are calculated and compared depending on the classification of
the start node. The MI as given by equation (4) was calculated for
every edge along these paths and normalized by the number of
edges. Every path P is thus assigned a value MIp 2 ½0; 1�. Across all
pairs of non-hub starting nodes and hub end nodes, the maximal MI
values among their connecting paths are compared. The distribution
of these values by group across networks is shown in Figure 3D.
Here, we could show that there exist channels of information flow
beginning at positive-mismatch nodes and more reliably affecting
hubs. This might indicate a special gatekeeper role of these positive-
mismatch nodes. Hence, we will refer to this new group of nodes as
gatekeepers. Given that BN models depict parts of complex biologic-
al regulations, input nodes are often used to trigger activation or in-
hibition of cascades. However, these nodes are considered as
external inputs and not regulated within the network. Hence, we
would not expect input nodes to have a major impact in our ana-
lysis. In fact, the majority of input nodes across networks fall into
the low-impact group of NS genes. For a total of 53 input nodes,
44ð83:0%Þ are classified as NS, while 7ð13:2%Þ are assigned to the
positive-mismatch group and 2ð3:8%Þ to the negative mismatch
group.

Having shown that there actually is an information flow between
hubs and gatekeepers, we investigated the potential nature of this re-
lationship. One hypothesis in this sense, could be that these two
classes of nodes are co-expressed. To address this idea, we per-
formed the co-expression analysis available in STRING (Szklarczyk
et al., 2016). Our results show that gatekeepers and hubs seem not
to be significantly co-expressed (Supplementary Table S4). Another
important relationship between compounds is mutual exclusivity,
which is relevant especially in disease development and treatment
(Völkel et al., 2020). Therefore, we investigated mutually exclusive
pairs of hubs and gatekeepers for human networks using cBioPortal
(Gao et al., 2013) (Supplementary Table S5). Again, we did not find
enrichments of significantly mutually exclusive couples of hubs and
gatekeepers. Altogether, even if we could show a significant

exchange of MI between hubs and gatekeepers, still further investi-
gations will be required to elucidate how this information is exactly
transferred.

3.4 Perturbation of gatekeepers impacts biological

phenotypes
In the previous sections, gatekeeper nodes were identified and
described. Next, it is evaluated whether perturbations of gatekeeper
nodes can biologically impact phenotypes of investigated networks.
For this purpose, interventions on gatekeepers were compared with
experimental results. The BN by Cohen et al. (2015) depicts path-
ways involved in tumour development by leading to invasion and
metastases. In the network one gatekeeper node, twist-related pro-
tein 1 (TWIST1), is of particular interest. In silico KO of TWIST1
impairs tumoural associated behaviour. In accordance, TWIST1 KO
in breast cancer cells inhibits the expression of epithelial to mesen-
chymal transition (EMT) markers, preventing metastases formation
in immune-deficient mice (Li et al., 2014; Xu et al., 2017).
Furthermore, a similar effect of TWIST1 on invasion potential has
been observed also in other types of tumours, such as prostate can-
cer, melanoma, and glioblastoma (Cho et al., 2013; Mikheeva et al.,
2010; Weiss et al., 2012). Another example of the biological impact
of not highly connected gatekeepers is the network of Méndez-
López et al., (2017). Also here, the network describes the EMT pro-
cess. Again, individuated gatekeepers [E74 Like ETS Transcription
Factor 5 (ESE2) and cyclin-dependant kinase inhibitor 2A (p16)] are
not hub nodes. The unperturbed network simulation leads to three
single state attractors describing epithelial, senescent and mesenchy-
mal characteristics (Méndez-López et al., 2017). The highest on at-
tractor changes after perturbation can be observed in the context of
ESE2 loss of function, leading to an attractor with only mesenchy-
mal characteristics. In accordance, experimental results in ESE2 con-
ditional KO mice show induction of EMT by upregulation of Snail
Family Transcriptional Repressor 2 (Snail2) (Chakrabarti et al.,
2012). Similar results have been shown for loss of ESE2 in both
breast and prostate cancer, identifying also a prognostic value linked
to its expression in cancer tissues (Feldman et al., 2003; Li et al.,
2017; Watson et al., 2010; Yao et al., 2015). Besides tumour associ-
ated phenotypes, we also investigated the effect of gatekeepers in
homeostatic systems. In this context, the network of Krumsiek et al.
(2011) describes differentiation decision-makings in the hematopoi-
etic system. Here, the authors describe loss of hematopoietic pheno-
types concomitant with KO of identified gatekeepers such as GATA
binding protein 2 (GATA2), friend leukaemia integration 1 (FLI1),
CCAAT enhancer binding protein alpha (CEBPA), Spi-1 proto-
oncogene (PU1) and growth factor independence 1 (GFI1).

Fig. 3. Characterization of selected nodes. (A) Percentile scores of static impacts. Selected nodes from the intersection of the two static measures vertex betweenness and deter-

minative power are further divided in hubs, positive mismatches and negative mismatch nodes (n). Hub nodes are shown to have a higher percentile score in static ranking. (B)

Impact on dynamic ranking. The percentile score in dynamic impact for each of the selected and non-selected subgroups is depicted. Hubs and positive mismatch nodes have

comparable dynamic impact whereas negative mismatches and none selected have significantly reduced impact. (C) Connectivity defined by the z-score is depicted for the

selected and none selected subgroups. Positive mismatches show significantly lower connectivity compared to hubs and negative mismatches. (D) Average maximal mutual in-

formation (MI) in paths (p) to hubs. Positive mismatch nodes show a significantly higher MI then negative mismatches and not selected nodes. Statistical tests were performed

using a Bonferroni corrected Wilcoxon rank sum test. Significant values are considered for p< 0.05

3534 F.M.Weidner et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab277#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab277#supplementary-data


Altogether, we could show that alterations of gatekeeper nodes ma-
jorly affect biological phenotypes connected to both disease and
physiological conditions.

4 Discussion

There is a variety of proven approaches to identify nodes of high im-
pact on the dynamics of regulatory networks (Gonzalez et al., 2006;
Klamt et al., 2007, 2006; Paulevé, 2017; Schwab et al., 2016; Zheng
et al., 2010). Each of the mentioned approaches relies on the deter-
mination of intervention targets by calculation of the networks’ dy-
namics. In contrast, our method is based only on static properties of
nodes in interactions graphs. Thus, it can be applied to a large var-
iety of mathematical models, or even simpler, to interaction graphs.
To validate our approach, BNs were used as reference models. This
choice is driven by the biological relevance of these models, together
with their ability to cover a wide range of network sizes and the
availability of these models.

Here, we set up a selection method based on interaction graph
properties by studying the dynamic and static features of 35 pub-
lished BNs. We could show that the intersection of two static meas-
ures, VB and DP, can faithfully capture dynamic influencing nodes.
On the one hand, by comparing the selected set of nodes from our
approach to the ones of other graph-based measures (Milo et al.,
2002; Murrugarra and Dimitrova, 2015; Za~nudo et al., 2017), we
could find a wide overlap of nodes compared to each of the other
approaches. This indicates that the intersection of VB and DP is ac-
tually selecting a relevant subset of nodes. On the other hand, results
show the method uncovers additional relevant nodes. Additionally,
applying the method provides a series of advantages. First, the static
selection according to VB and DP can be applied very broadly.
Methods based on detecting canalysing nodes, instead, require
canalysing functions (Murrugarra and Dimitrova, 2015). Methods
like FVS provide sets of nodes for control of networks. However,
the whole set needs to be controlled in order to shift the dynamic be-
haviour. This is not the case here: each of the nodes selected by the
static intersection can yield a dynamic shift when perturbed. Due to
this fact, the method can also be applied for e.g. drug targeting pur-
poses, or to detect dynamic drivers. In this context the method can
have multiple benefits. On the one side, a limited amount of drug-
gable targets is desirable in clinical settings (Palmer and Sorger,
2017). On the other, it has been shown that disease drivers are single
or combined alterations that then cause disrupted cellular signalling
(Völkel et al., 2020). In addition, our selection can be further subdi-
vided into two subgroups: positive and negative mismatches. In par-
ticular, the positive-mismatch subgroup of the selection provides a
new set of compounds with high dynamic impact while not being
highly connected. For measuring connectivity, we applied the com-
monly used z-score of in- and output degree normalized by mean
and standard deviation across the whole network (Chee and Byron,
2021; Fiscon et al., 2018; Li Mow Chee and Byron, 2021). Another,
more robust definition of the z-score is based on the median and me-
dian absolute deviation (Rousseeuw and Hubert, 2011). In addition
to the standard z-score, we also based our classification into PM,
NM, and NS on this robust z-score. Our results show that the classi-
fication of nodes remains stable using this robust z-score (see
Supplementary Table S2). This subset of nodes cannot be detected
univocally by any previously published method (Supplementary Fig.
S9). Instead, these other methods (Milo et al., 2002; Murrugarra
and Dimitrova, 2015; Za~nudo et al., 2017) tend to select the class of
negative mismatch compounds. This means, these methods tend to
select highly connected nodes with high dynamic impact. Hence, the
selection captures two types of compounds based on static proper-
ties. First, the well-known and detectable highly connected dynamic
influencing drivers. Second, a new set of dynamic drivers, which we
called gatekeepers—nodes with high dynamic relevance but no high
connectivity. Notably, the majority of input nodes (86.8%) do not
fall into this new class. Moreover, none of the hub nodes was pre-
sent in the class of gatekeepers. Based on our results, we hypothesize
that the high dynamic impact of a new class of gatekeeper nodes
may arise due to perturbations of these nodes being more reliably

passed on to downstream hubs. This hypothesis would be corrobo-
rated by the implications of nodes having a disproportionately high
DP or VB. A node ranking high in DP indicates a higher likelihood
that the effect of modifications will influence a nodes’ direct outputs
and will not be outweighed by the influence of other inputs of these
target genes. The existence of paths from gatekeeper nodes to hubs
having a higher maximal MI than those of other classes further dem-
onstrates that this principle extends to longer paths, that is there
exist channels of information flow which are more stable carriers of
signals. High values of VB further suggest that a node represents a
bottleneck in the communication between various modular subnet-
works (Yu et al., 2007). A perturbation of a high-VB node should,
therefore, have a disproportionate impact on the dynamic behaviour
of genes in a given subnetwork. Ravasz et al. (2002) put forth the
idea of hierarchical organization in biological networks. This hier-
archical organization also indicates that, next to hubs, there are add-
itional nodes on other levels of connectivity which still impact the
system’s phenotypes.

Besides theoretical hypotheses, we also investigated the biologic-
al co-expression, co-occurrence and mutual exclusivity between
gatekeepers and hubs (see Supplementary Tables S4 and S5). Here,
we could not find enriched pairs in any scenario. However, this find-
ing may be correlated with time and localization effects of hub inter-
actions. Relating to this, Han et al. (2004) subdivided the class of
hubs into ’party’ hubs which interact with most of their partners
simultaneously and ’date’ hubs, which bind their different partners
at different times or localizations. This would indicate that also
interactions are process and context-dependent, and may not be
detected by analyses based on overall expression data. To further
evaluate the importance of gatekeeper nodes, we investigated their
biological relevance in three case studies. Results underline the im-
pact of gatekeeper nodes. The low connectivity of these gatekeepers
relative to other nodes in the system was confirmed by comparing
their connectivity in BNs with the ones from BioGrid (Stark et al.,
2006). This characteristic is of fundamental interest in the context
of selecting potential intervention targets. Removal of hub nodes
correlates with lethal phenotypes (Borneman et al., 2006; He and
Zhang, 2006; Jeong et al., 2001), and hubs are difficult to target
(Dufour et al., 2013; Lu et al., 2007; Song et al., 2017).

5 Conclusion

Here, we presented a new method to identify dynamic affecting
compounds based only on static interaction graph properties. The
approach aims to rapidly screen interaction networks for their dy-
namic drivers and, consequently, potential interventions candi-
dates. Furthermore, besides observing considerable overlaps to
other methods, our selection strategy could identify a new class of
compounds previously unreported. The newly identified gatekeep-
ers provide promising targets for drug selection and disease driv-
ers. Finally, our approach is easily scalable to large directed-graph
investigations.
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