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Abstract

Non-Hebbian learning is often encountered in different bio-organisms. In these processes, the strength of a synapse
connecting two neurons is controlled not only by the signals exchanged between the neurons, but also by an additional
factor external to the synaptic structure. Here we show the implementation of non-Hebbian learning in a single solid-state
resistive memory device. The output of our device is controlled not only by the applied voltages, but also by the
illumination conditions under which it operates. We demonstrate that our metal/oxide/semiconductor device learns more
efficiently at higher applied voltages but also when light, an external parameter, is present during the information writing
steps. Conversely, memory erasing is more efficiently at higher applied voltages and in the dark. Translating neuronal
activity into simple solid-state devices could provide a deeper understanding of complex brain processes and give insight
into non-binary computing possibilities.
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Introduction

Ramón y Cajal postulated that the nervous system is formed of

individual fundamental units called neurons linked to each other

by small contacts [1], that were later called synapses [2]. In spite of

the astonishing continuous progress made in neuroscience for

more than a century, there is still a lack of understanding of many

neuronal mechanisms, mainly due to their complexity and

versatility. For example, for the specific case of neuronal processes,

Hebb proposed that its basis stands on the synaptic strength

(weight) increase caused by the simultaneous activity of both

presynaptic and postsynaptic neurons [3]. The learning process

proposed by Hebb is inherently unstable because of the so-called

autocorrelation aspect. In simple terms, autocorrelation represents

the trend of the synaptic weight for self-amplification, that is, the

more a synapse drives a postsynaptic cell the more the synaptic

weight will grow. Likewise, once depressed, the synaptic weight

decreases invariably to zero. One realistic way of stabilizing the

synaptic weight is to introduce an extra, third factor capable of

modulating the learning process so as to control the self-

amplification. Such third factors are typically neuromodulators

and are usually inputs external to the analyzed synaptic system. An

example of an external neuromodulator is dopamine in certain

brain areas manifested by mechanisms of learning and forgetting

processes, for example in classical or operant conditioning [4–7].

In addition to the experimental influence of diverse neuromodu-

lators, mathematical models in neuronal networks have demon-

strated their role in the plasticity of memory processes [8–9].

Resistive memories are solid-state devices in which a resistance

state can be set by an appropriate sequence of voltage pulses of

well-determined durations [10–14]. This behavior resembles some

key aspects of synapses in the brain, since the voltage pulses act

very much like the neuronal action potentials (or spikes) in

Hebbian processes [15,16]. In biological synapses the learning

process is strengthened by its repetition, and a similar behavior has

also been observed in solid-state resistive memory devices

mimicking Hebbian learning [17–21].

In this paper we move a step further and present the first

experimental implementation of a three-factor non-Hebbian

learning in a single memory device. In this specific example, we

employ a light-controlled resistive memory device [22]. In our

system the electrical resistance (which is equivalent to the synaptic

weight) is modulated not only by the voltage (equivalent to

neuronal action potentials) as in conventional resistive memories,

but also by a third, external factor, which in our case is the

presence of light. Moving closer to translating complex neuronal

operations into simple solid-state devices can provide both a deeper

understanding of neuromodulated brain processes and give insight

into non-binary computing possibilities.

Results and Discussion

In Figure 1a we show the design of a light-controlled resistive

memory. It consists of a 20-nm-thick Al2O3 film deposited on a p-

doped Si substrate covered with a thin layer (1.9 nm) of native

SiO2. The Si substrate works as bottom electrode in a metal-oxide-

semiconductor (MIS) configuration while Pd electrodes, patterned
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by photolithography, act as top electrodes. Light can reach the

optically active silicon substrate through the spaces uncovered by

palladium and after crossing the transparent aluminum oxide and

silicon oxide layers. The behavior of the light-controlled memory

devices is based on the photogeneration of charge carriers in

silicon under illumination. With suitable applied voltage-pulses,

the photogenerated electrons from Si are injected in the Al2O3

layer. A fraction of these electrons is then trapped in the Al2O3

layer, changing quasi-permanently its resistance state [22]. The

electrical characterization of the devices was performed by means

of remnant resistance hysteresis switching loops (HSL; Figure 1b).

Each step on the HSL represents the remnant resistance (Rrem)

measured at 7 V either in the dark (curve labeled ‘dark’ in

Figure 1b) or under illumination (the curve labeled ‘light’ in

Figure 1b), after sweeping the voltage between 2Voperate and

+Voperate (each pulse of the sweep has a length of 100 ms), again

either with light or in the dark, respectively. Each Voperate pulse

is followed by a waiting time of 100 ms at 0 V to discard capacitive

effects before finally reading the device state with the 7 V voltage

pulse. In the dark, the absence of photogenerated electrons in Si

results in a non-hysteretic remnant resistance HSL curve. Under

illumination, the resistance decreases strongly due to the presence

Figure 1. Device and measurements protocols. (a) Configuration of the light-controlled resistive memory devices. 20 nm of Al2O3 are deposited
on p-Si/SiO2. The bottom electrode is the Si substrate, whereas the top electrode is Pd patterned by photolithography. Light can reach the optically
active Si substrate through the spaces uncovered by Pd and after crossing the transparent Al2O3 and SiO2 layers. Inside the Si, under illumination,
charge carriers are photogenerated. (b) Typical remnant resistance hysteresis switching loops measured at 7 V after applying a voltage pulse between
-Voperate and Voperate either in the dark or under illumination, followed by a 100 ms waiting time at 0 V to discharge capacitive effects. (c-e) Steps
of voltage-pulses applied to the memory in different learning processes (summarized in Table 1 and 2); the sequence is for example repeated 1000
times in the case of the ‘usual activity’ measurements (process A1 in Table 1). S0 is the typical voltage input and is applied in the usual activity or in
the reading steps, while SE is the extra-external voltage input, applied in addition to S0 during the inhibitory learning (SE.0) or the Memory erasing
(SE,0 and |SE|.|S0|) steps. Processes A2–A6 (Table 1) contain ‘inhibitory learning’ steps (figure d), meaning that positive S voltages are applied
a number of times. Processes B1–B4 (Table 2) comprise ‘Memory erasing’ steps (figure e), meaning that negative S voltages are applied a number of
times. The operating voltage pulse (S0 or S = S0+SE) is applied either in the dark or with light, as a third extra-control parameter, followed by a waiting
time in short-circuit conditions (at 0 V) and then followed by the measurement of the induced memory state by a reading voltage of S0 = 7 V under
illumination. The step time t0 is 100 ms in all cases.
doi:10.1371/journal.pone.0052042.g001
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of photogenerated charge carriers in the system, and a hysteretic

non-volatile memory behavior is obtained. The HSL proves that

a non-volatile memory state can be intrinsically defined by

a chosen voltage pulse under illumination, although it also

depends on any previous memory state.

After this brief initial presentation and characterization of basic

properties of the light-controlled resistive switching devices, we

move now to the testing of different learning processes, thus

showing the influence of the external non-Hebbian third factor in

the results. In Figures 1c to 1e we present the individual different

voltage-pulses steps that constitute the core of the different

processes implemented. We have denoted them as ‘Usual activity’

(Fig. 1c), ‘Inhibitory learning’ (Fig. 1d) and ‘Memory erasing’

(Fig. 1e). The measuring sequence for each point of these processes

is: I. the application of a 100 ms Operate voltage pulse (of different

amplitudes, S0 or S, in dark or under illumination), II. the

application a 100 ms waiting step in short-circuit conditions for

discharging any capacitive effects, and finally III. the measurement

of the state of the memory system under illumination (please refer

to the Experimental Section for details) with a voltage pulse S0 = 7

V of 100 ms duration. For segment I. of the measurement

sequence presented above, the Operate voltage pulse is applied in

the dark for processes A3, A5 (only during the Inhibitory learning

part, as presented in Table 1) and B2, B4 (only during the Memory

erasing part, see Table 2) and under illumination for all other

processes. In all the different protocols tested we keep the same

conditions for reading the remnant resistance (Rrem) state of the

memory device, namely S0 = 7 V under illumination, in order to

sense the changes created by the different learning activities

performed in the ‘Operate’ step. These different core steps are

repeated a certain number of times during the learning processes

presented in this paper (summarized in Tables 1 and 2). Before the

beginning of each process (presented in Tables 1 and 2) a cleaning

protocol is performed with the aim of removing any trapped

charges in the Al2O3 layer. This cleaning consists in 400 pulses of

210 V, 100 ms each, in the dark, and we observed that this

protocol is equivalent to bringing the memory to a pristine state, as

all past events are fully erased.

For positive applied voltages S.0, the remnant resistance

increases (see Figure 1b), while at negative applied voltages S,0,

the remnant resistance decreases. Within this paper we identify the

former step as an inhibitory learning process, while we associate

the latter step with erasing the learned information. The inhibitory

learning in our device correlates with a neuronal plasticity-rule

where the synaptic strength is reduced through the learning

process. In this context, the opposite process, excitatory learning,

would be a learning process involving the increase of synaptic

strength (i.e. decrease of resistance).18 The step we refer to as

erasing step resets the synaptic weight to a reproducible initial

condition with low resistance.

In Table 1 we summarize the different ‘inhibitory learning’

processes tested (the outcomes of the processes are presented in

Figures 2 and 3). Process A1 (Figure 2a) is equivalent to the

experience achieved during a usual day-to-day activity (the applied

voltage pulses are shown in Figure 1c) as we observe that the

system learns slowly over time (the resistance increases mono-

tonically). We can further study the inhibitory learning by applying

different sets of pulses, distinct from process A1 (the usual activity).

Process A2 departs from A1 after the application of the 100 initial

voltage pulses sets. In this particular case we continue by applying

500 voltage pulses of S = 10 V under illumination (in the ‘Operate’

step, see Figure 1d), followed by 400 steps of S0 = 7 V that

represent again a usual activity protocol (Figure 1c). Other

protocols follow similar routines although we change the amount

and amplitude of the inhibitory learning part of the protocol.

In Figure 2 we show the behavior of our system after different

learning sequences (A1 to A5, Table 1). As described above, the

process A1 is equivalent to the experience achieved during a usual

day-to-day activity, the system learns slowly over time. Distinctly,

processes A2–A5 contain steps that are equivalent to applying

inhibitory stimuli on a bio-system (SE.0). The learning is faster

than in case A1, and this is represented by a more pronounced

permanent increase of the remnant resistance of the device (in

agreement with Figure 1b, with light). A stronger stimulus or

a higher number of events lead to a more efficient inhibitory

learning, as it also happens in Hebbian learning (Figure 2b). In

addition, the presence of light as an extra, external (to the two

interconnected neurons) control parameter during learning

increases its efficiency.

After the inhibitory learning steps (N .600 in processes A2–

A5), the system returns to the usual activity protocol and starts

forgetting the information. That is, learning is only maintained if

the stimulus is present and forgetting occurs as an exponential

decay.

The key point of our work is that in addition to the normal

inhibitory learning, we obtain higher learning efficiency when the

system is illuminated. This external light input is the equivalent of

a third factor that controls learning in bio-organisms. This is more

evident in Figure 2b, where we summarize the efficiency of the

different learning processes. We define the efficiency of each

inhibitory learning process as the change in the electrical

resistance induced in the inhibitory learning part of the overall

Table 1. Summary of the inhibitory learning processes tested.

Process ‘Operate’ voltage pulses

Usual activity, S0

Inhibitory learning,
S =S0+SE (SE.0) Usual activity, S0

Inhibitory learning,
S=S0+SE (SE.0) Usual activity, S0

A1 1000x (S0, light)

A2 100x (S0, light) 500x (S = 10 V, light) 400x (S0, light)

A3 100x (S0, light) 500x (S = 10 V, dark) 400x (S0, light)

A4 100x (S0, light) 500x (S = 8 V, light) 400x (S0, light)

A5 100x (S0, light) 500x (S = 8 V, dark) 400x (S0, light)

A6 100x (S0, light) 500x (S = 10 V, light) 100x (S0, light) 50x (S = 10 V, light) 250x (S0, light)

The outcome of the different processes is displayed in Figures 2 and 3. For processes A2–A6 the first 100 voltage pulses sets are the same, followed by different
inhibitory learning V-sets. S0 = 7 V in all cases and represents ‘usual activity’.
doi:10.1371/journal.pone.0052042.t001

Light-Controlled Learning in Solid-State Devices
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protocol and in the following form: abs(‘Rrem at step 100’ - ‘Rrem

after inhibitory learning pulses’)6100/‘Rrem at step 100’. From

Figure 2b it is clear that the remnant resistance change (that is, the

efficiency of the inhibitory learning process) is higher in the

processes performed under illumination (A2, A4) as compared to

the corresponding equivalent processes in the dark (A3, A5). It is

especially noticeable that the light irradiation approximately

doubles the efficiency of the inhibitory learning process as

compared to similar processes performed in the dark (see

Figure 2b).

In Figure 3 we present the comparison between protocols A2

and A6. Protocol A6 is equivalent to protocol A2 for the 700 initial

sets of V-pulses, after which we have introduced a second

inhibitory learning step (50 pulses, 10 V, with light) and a final

‘usual activity’ routine. The comparison between both protocols

presents another example of similitude between the learning

processes in bio-systems and in light-controlled resistive memories.

After a process in which information was efficiently learned (in our

case in steps 200 to 600), followed by a time of normal forgetting,

the system only needs a small reminder to reach back to the ‘well-

learned’ state.

In Table 2 we summarize the different processes in which we

investigate the efficiency of erasing the information previously

learned by the system (Figure 4 shows the outcome of these

processes). The first 600 voltage-pulses sets in processes B1 to B4

are the same as in processes A2 to A6, a usual activity part

followed by an inhibitory learning part. These 600 pulses are

followed by different information-erasing voltage sets. Forgetting

of inhibitory-information in bio-systems is accelerated by positive

reinforcements, in our case by applying negative voltage pulses to

the device (S,0, voltage pulses presented in Figure 1e).

Figure 4a shows the behavior of the memory system after the

different Memory erasing processes. The last 400 steps in process

A2 (Table 1) are equivalent to a slow, continuous, day-to-day

forgetting in bio-systems and are here exemplified by a progressive

decrease in the electrical resistance after the inhibitory learning

factors have been removed. Processes B1 to B4 (in which we also

include erasing steps with negative ‘Operate’ voltage pulses; see

Table 2) are the equivalent of applying a positive-reinforcement on

a bio-system after the inhibitory learning took place. Information

is forgotten more efficiently in the dark and with higher-amplitude

stimuli, meaning higher-amplitude negative applied voltage pulses

(210V, processes B1, B2, Rrem is more sharply decreasing). This

Table 2. Summary of the different ‘inhibitory learning’ and ‘Memory erasing’ processes tested.

Process ‘Operate’ voltage pulses

Usual activity, S0

Inhibitory learning,
S =S0+SE (SE.0)

Memory erasing,
S =S0+SE (SE,0) Usual activity, S0

B1 100x (S0, light) 500x (S = 10 V, light) 100x (S =210 V, light) 300x (S0, light)

B2 100x (S0, light) 500x (S = 10 V, light) 100x (S =210 V, dark) 300x (S0, light)

B3 100x (S0, light) 500x (S = 10 V, light) 100x (S =27 V, light) 300x (S0, light)

B4 100x (S0, light) 500x (S = 10 V, light) 100x (S =27 V, dark) 300x (S0, light)

For processes B1 to B4 the first 600 sets of voltage pulses are the same, followed by different memory erasing voltage pulses. S0 = 7 V in all cases. The outcomes are
presented in Figure 4.
doi:10.1371/journal.pone.0052042.t002

Figure 2. Inhibitory learning of light controlled resistive memory devices. (a) Output of the different processes used for analyzing the
efficiency of the different ‘inhibitory learning’ processes. The remnant resistance was measured at S0 = 7 V with light after the inhibitory learning
voltage pulses (S0+SE) were applied either in the dark or with light. The curves are labeled following the protocols described in Table 1. (b) Efficiency
of the different learning processes described in Table 1. Processes A2, A4 are inhibitory learning with light, whereas processes A3, A5 are learning in
the dark. Approximately double efficiency is obtained when light is present during learning as compared to learning in the dark. A1 is the ‘usual
activity’ curve, which serves as a base line.
doi:10.1371/journal.pone.0052042.g002

Light-Controlled Learning in Solid-State Devices
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effect can be observed comparing processes B1, B2 at 210 V and

B3, B4 at 27 V (in agreement with Figure 1b). Note that most of

the learned information is forgotten within the first two steps of the

applied erasing voltages, nevertheless a higher number of erasing

pulses lead to better memory cleaning (Figure 4b). The Rrem

change in this case is defined as: abs((‘Rrem at step 600’ - ‘Rrem

after Memory erasing pulses’) *100/‘Rrem at step 600’). As it can

be observed, information can be efficiently erased with an

adequate set of voltage pulses. Again in this case, the processes

studied (Table 2, information removal) have a different efficiency

in the dark or under illumination. Dark conditions lead to a slightly

higher efficiency (B2, B4) than under illumination (B1, B3),

highlighting again the role of the external third factor in the

memory process.

Methods

The 20-nm-thick Al2O3 films were prepared on p-Si/SiO2 by

atomic layer deposition at 300uC from trimethylaluminium (TMA)

as metal-carrying precursor gas and H2O vapour as oxygen

source, separated by N2 inert gas purges. We then covered the

entire surface of the Al2O3 with Pd except the rings left around the

circular top contacts for the light to enter through the transparent

oxide layers and reach the optically active Si substrate. The radius

of the circular top Pd contacts is 50 mm. The radius of the

uncovered oxide rings around the top metal contacts is 1 cm for

the results presented in this paper. Equivalent results can be

obtained for ring-radii in the range 1 mm to 1 cm, since at about

1 mm we reach the electron diffusion length in the lightly doped p-

Si substrates [22].

For measurements under illumination, the samples were

irradiated with 2.5 mW/cm2 UV light using a light emitting

diode (LED) situated at 3 cm distance from sample and having

a wavelength of 390 nm.

The reading of the remnant resistance, Rrem, was always

performed under light, only the writing/erasing conditions were

different, either under light or in the dark. We chose to read the

remnant resistance with light in all measurements (2.5 mW/cm2

UV) in order to better verify the system state, because when

reading Rrem in the dark we always obtain a value in the 1011 V
range. This large resistance in the dark is due to the limited

amount of free-electrons present in the system, since there is no

photogeneration of charge carriers in the Si substrate (the main

source of free electrons in our system).

Conclusions
We have analyzed the behavior of light-controlled resistive

memory devices [22] as synaptic-mimics for inhibitory learning

processes. We have demonstrated that the learning processes are

not only controlled by the voltage pulses applied to the device (that

are equivalent to the neuronal action potentials) but also by an

Figure 3. Output remnant resistance measured in processes A2
and A6, as described in Table 1. After a learning process followed
by a forgetting time, the system only needs a small reminder to reach
back to the ‘well-learned’ state. This behavior is similar to processes
encountered in living organisms.
doi:10.1371/journal.pone.0052042.g003

Figure 4. Output of the different processes used to analyze the efficiency of memory erasing through positive reinforcement
voltage pulses. The remnant resistance is read at S0 = 7 V under illumination. Process A1 represents usual activity (see Table 1). A2 is a process
without any erasing step and information is slowly forgotten over time (starting from step 600). Processes B1, B3 contain negative-voltages Memory
erasing steps performed under illumination, while processes B2, B4 contain Memory erasing steps in the dark. Additionally, a more efficient memory
erasing is obtained with higher-amplitude negative voltages and in the dark.
doi:10.1371/journal.pone.0052042.g004
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external third factor, in our case the presence of light. This is, to

the best of our knowledge, the first implementation of a non-

Hebbian learning process in a single solid-state device. We believe

that light-controlled non-volatile resistive memory devices offer

a new perspective for the investigation of neuromodulated learning

processes. More complex structures, bringing together a number

of devices that would act as neuronal networks, could be the next

step into implementation of biological processes into silicon-

compatible architectures.
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