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ABSTRACT ARTICLE HISTORY
Training classification models on imbalanced data tends to result in Received 13 May 2018
bias towards the majority class. In this paper, we demonstrate how Accepted 10 July 2019
variable discretization and cost-sensitive logistic regression help mit- KEYWORDS

igate this bias on an imbalanced credit scoring dataset, and further Class imbalance; variable
show the application of the variable discretization technique on the discretization; cost-sensitive
data from other domains, demonstrating its potential as a generic logistic regression;
technique for classifying imbalanced data beyond credit socring. The discrimination ability; credit
performance measurements include ROC curves, Area under ROC scoring

Curve (AUCQ), Type | Error, Type Il Error, accuracy, and F1 score. The

results show that proper variable discretization and cost-sensitive

logistic regression with the best class weights can reduce the model

bias and/or variance. From the perspective of the algorithm, cost-

sensitive logistic regression is beneficial for increasing the value

of predictors even if they are not in their optimized forms while

maintaining monotonicity. From the perspective of predictors, the

variable discretization performs better than cost-sensitive logistic

regression, provides more reasonable coefficient estimates for pre-

dictors which have nonlinear relationships against their empirical

logit, and is robust to penalty weights on misclassifications of events

and non-events determined by their apriori proportions.

1. Introduction

Class imbalance problems refer to a class of problems related to classifying imbalanced
data where many more observations are labeled by the majority class than the minority
class [1,11]. In practice, the minority class is usually the class of interest, such as fraud in
the fraud detection problem [31], malignance in the breast cancer diagnosis problem [23],
delinquency in the credit scoring problem [3], sinus bradycardia in the arrhythmia analysis
[12], and poor quality in the product quality inspection [5].

However, when trained on imbalanced data, most standard statistics and machine learn-
ing models are heavily biased towards the majority class (i.e. non-events) and severely
misclassify the minority class (i.e. events) [38], caused by their assumptions of equal target
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class distribution [17] and maximizing overall accuracy [33]. Models with poor event
discrimination are less useful and generate costs associated with Type II errors (money,
reputation, health, etc.).

To solve these problems more efficiently, researchers and practitioners have made efforts
from various perspectives, such as data sampling [22], feature selection [25,29], cost-
sensitive learning [2,20,24], ensemble learning [4], and kernel-based learning [8], with the
considerations of concrete problem characteristics.

Previous research has not considered variable discretization as a generic technique for
class imbalance problems. In this paper, we empirically explore the effects of variable
discretization on classifying imbalanced data and compare it with cost-sensitive logistic
regression models. Variable discretization and cost-sensitive logistic regression are stud-
ied for their high interpretability and computational efficiency. A credit scoring dataset
is used in the case study. The goal is to predict the probability of a debtor’s default or
delinquency. The proportion of delinquency observations is only 6.68%. We provide a
detailed descriptive study on how variable discretization and cost-sensitive logistic regres-
sion help mitigate the model bias and/or variance on an imbalanced credit scoring data.
The variable discretization technique is further applied on two datasets from other domains
(i.e. biology, business) to demonstrate its potential for use in a wide range of fields.

The paper is structured as follows. In Section 2, related work is reviewed. In Section 3,
the data is explored and discretized. In Section 4, the models on the credit scoring dataset
are developed, evaluated, and compared. In Section 5, the performance of variable dis-
cretization is examined on two datasets from other domains. In Section 6, conclusions and
future work are discussed.

2. Related work

A comprehensive review on the foundations, algorithms, and applications of imbalanced
learning was conducted by He et al. in 2013 [15]. It summarized the previous research in
five categories, including sampling methods, cost-sensitive methods, kernel-based learn-
ing methods, active learning methods, and one-class learning methods. It also suggested to
evaluate models based on both curve-based measures (e.g. ROC curve, AUC) and single-
value measures (e.g. Type I Error, Type II Error, F1 score, G-mean), considering that some
traditional performance measures (e.g. accuracy) did not serve as a good indicator of dis-
crimination abilities of models [34]. In an imbalanced credit scoring study by Wang et al.,
AUC and F-measure (i.e. F1 score) were used as model performance metrics [39].

In 2001, King proposed the weighted log-likelihood function in Equation (2) for the
logistic regression in rare events data. Compared with the standard log-likelihood function
in Equation (1), Class 1 Weight (W) and Class 0 Weight (W,) were added to penalize the
misclassifications of events and non-events differently. W, and Wy were determined by the
estimated population proportion of events T and the sample proportion of events y.

InL(B1y) =Y _yiln(r) + Y (1 —y)In(l — ;) (1)
InLw(Bly) = W1 Y _yiln() + Wo » (1= y)In(l — ) (2)
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The weighted logistic regression in Equation (2) is referred to as class-dependent cost-
sensitive logistic regression [28]. Bahnsen et al. proposed a different version of cost-
sensitive logistic regression, called example-dependent cost-sensitive logistic regression
[2], where each example (i.e. observation) in the log-likelihood function was associated
with a user-defined constant misclassification cost weight based on domain knowledge.
Deng and Maher proposed determining each observation’s cost weight by Gaussian kernel
function [6,26,27], resulting in very high computational complexity O(n*) and limiting its
application on big data.

Different from cost-sensitive logistic regression which has been widely used, the variable
discretization method has not been considered for addressing class imbalance problems,
although it has been widely used as a domain-specific standard technique in credit scoring.
This technique creates more powerful and interpretable predictors from continuous (i.e.
interval) data. Dougherty et al. reviewed existing variable discretization methods, com-
pared three of them (i.e. equal width interval, entropy-based, and purity-based) in depth
on 16 datasets, and found that the global entropy-based one performed the best on aver-
age [10]. For entropy-based discretization methods, the evaluation measures include: class
information entropy, Gini, dissimilarity, and the Hellinger measure [21]. For the scoring
problem, one commonly used variable discretization method is called the optimal bin-
ning, which computes the cutoff points based on conditional inference trees and recursive
partitioning [18].

To select powerful discretized variables, one common measurement is information
value defined in Equation (4) [14], where p; is the number of non-events (i.e. non-
delinquency) in the level j of the variable divided by the total number of non-events, and
gj is the number of events (i.e. delinquency) in the level j of the variable divided by the
total number of events. To interpret the information value, the following rule of thumb is
proposed [37,40].

<0.02: useless

[ ]
e 0.02to0.1: weak
e 0.1to 0.3: medium
e >(0.3:strong
IV = (pj — ) In(pj/q)) (4)
j
3. Data

Demographic and financial information from 150,000 borrowers is publicly available in a
dataset used in a Kaggle 2011 Competition Give Me Some Credit [19]. The characteristics
of the individuals in the data are represented by 11 variables, as shown in Table 1. The goal
was to predict whether a client will experience financial distress in the next two years or
not, indicated by the dependent variable SeriousDIgin2yrs. As shown in Table 2, there are
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Table 1. Variables for analysis and modeling.

Variable Type Description

SeriousDIqin2yrs Binary Person experienced 90 days past due delinquency
or worse

Monthlylncome Interval Monthly income

DebtRatio Interval Monthly debt payments, alimony, living costs
divided by monthly gross income

Age Interval Age of borrower in years

NumberOfDependents Interval Number of dependents in family excluding
themselves (spouse, children, etc.)

NumberOfOpenCreditLinesAndLoans Interval Number of open loans (installment like car loan or
mortgage) and lines of credit (e.g. credit cards)

NumberRealEstateLoansOrLines Interval Number of mortgage and real estate loans
including home equity lines of credit

RevolvingUtilizationOfUnsecuredLines Interval Total balance on credit cards and personal lines of

credit except real estate and no installment debt
like car loans divided by the sum of credit limits

NumberOfTime30——59DaysPastDueNotWorse Interval Number of times borrower has been 30-59 days
past due but no worse in the last 2 years

NumberOfTime60——89DaysPastDueNotWorse Interval Number of times borrower has been 60-89 days
past due but no worse in the last 2 years

NumberOfTimes90DaysLate Interval Number of times borrower has been 90 days or

more past due

Table 2. Frequency of dependent variable.

SeriousDlgin2yrs Frequency Percent (%)
1 10,026 6.68
0 139,974 93.32

10,026 delinquent observations and 139,937 non-delinquent observations. The proportion
of delinquencies is 6.68%.

There are 29,731 observations with missing values either in the variable MonthlyIncome
or NumberOfDependents, which is 19.82% of the total. These missing values are treated as
follows.

(1) Missing Completely at Random (MCAR) analysis is conducted, and there is no pat-
tern existing in the missing data. Hence, those observations are dropped to ensure the
data accuracy and support the model training computation, when building the model
with original variables. After dropping missing data, the proportion of delinquencies
is 6.95%, which is very close to the original data.

(2) When building the model with discretized variables, those observations are kept by
grouping the missing values separately into a level of a variable.

3.1. Exploratory analysis

Because the dependent variable is binary and all independent variables are interval, the
empirical logit plot is used to examine the linearity of the relationship between the depen-
dent variable and independent variables. If the relationship is linear, it is reasonable to
use the interval form of an independent variable. Otherwise, a transformation is required.
Moreover, through the empirical logit plots, we can check the univariate effects, positive
or negative.



572 L. ZHANG ETAL.
The empirical logit plot is created in the following steps.

(1) For each interval variable, generate percentile ranks from 1 to 100 [35].

(2) For each rank i of each interval variable, calculate the total number of observations
Nj, the number of delinquency observations Y;, and the mean of the interval variable
Xi.

(3) Foreachrank i of each interval variable, compute the empirical logit using the formula
elogit; = log((Y; + 0.5)/(N; — Y; 4+ 0.5)) [9].

(4) For each interval variable, plot the empirical logit elogit against the mean in each rank
x and their linear regression line. Each point in the plot represents N; data points from
the dataset by their mean.

(5) For each interval variable, plot the empirical logit elogit against the rank i and their
linear regression line. Each point in the plot represents N; data points from the dataset
by their rank index.

For example, consider the predictor variable RevolvingUtilizationOfUnsecuredLines.
Percentile ranks can be found in Table 3. Ranks 1-8 are merged together because their
respective minimum and maximum points are the same. As shown in Figure 1(a), there
is a nonlinear relationship between RevolvingUtilizationOfUnsecuredLines and its empir-
ical logit, mainly caused by extreme values. These extreme values in the empiricial logit
plot cannot be simply removed, considering they represent several hundred data points in
the dataset. However, the relationship between its rank and its empiricial logit is approx-
imately linear as shown in Figure 1(b). In this case, its rank, the discretized form of its
original interval values, is preferred to be used in the modeling.

3.2. Variable discretization

Four variable discretization methods (i.e. distance, quantile, Gini, optimal binning) are
compared. On the credit scoring dataset, the quantile discretization produces the highest
AUC on the test data with the logistic regression model trained on the training data, where
the ratio of training data and test data is 70% vs. 30%. Each variable is ranked and dis-
cretized into 20 bins maximally based on the quantile, with the threshold value 20 selected
by the same procedure above.

Information value is used as the measurement of the discrimination power of each indi-
vidual variable after discretization, as shown in Table 4. Note that for some variables, the
resulting number of bins is less than 20 because the bins with non-significant differences
are merged together. For the variable MonthlyIncome, an additional bin has been included

Table 3. Percentile ranks of RevolvingUtilizationOfUnsecuredLines.

Rank i Min Max Mean X; Count N; EventY; elogit;

1-8 0 0.000707 0.000034 12,000 335 —3.5488
9 0.000708 0.001733 0.001210 1501 18 —4.3844
10 0.001735 0.002969 0.002334 1499 25 —4.0574
29 1.0062 1.092954 1.036357 1500 556 —0.5290

100 1.093178 50708 573.887190 1500 589 —0.4358
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Figure 1. Empirical logit plot against RevolvingUtilizationOfUnsecuredLines and its rank.

Table 4. Information values.

Variables Bins Information value
RevolvingUtilizationOfUnsecuredLines 19 1.1635
NumberOfTime30——59DaysPastDueNotWorse 3 0.4865
NumberOfTimes90DaysLate 2 0.4842
NumberOfTime60——89DaysPastDueNotWorse 2 0.2648
Age 20 0.2620
NumberOfOpenCreditLinesAndLoans 15 0.0852
Monthlylncome 21 0.0813
DebtRatio 20 0.0795
NumberOfDependents 5 0.0279
NumberRealEstateLoansOrLines 4 0.0184

to accomodate missing values. By following the rule suggested by Hand et al. [14], the
variables with the information value over 0.1 will be studied.

To prepare the discretized variables for the modeling, they are further transformed by
one-hot encoding. A one-hot encoder converts a discretized variable into multiple binary
dummy variables with each bin represented by one binary dummy variable [30,36].

3.3. Datasets from other domains

Beyond the credit scoring data, two public datasets from other domains (i.e. biology, busi-
ness) are collected. They include 206 and 11 interval variables respectively, as shown in
Table 5. The goal of the arrhythmia data is to predict sinus bradycardia [12], and the goal of
the wine_quality data is to predict poor quality [5]. The process illustrated in Sections 3.1
and 3.2 is performed on these two datasets. Among all variable discretization methods,
the optimal binning method produces the best performance. The resulting discretized
variables will be modeled using logistic regression in Section 5.

Table 5. Basic characteristics of datasets.

Dataset Repository Target Event rate Observations Variables Domain

arrhythmia udl 06 5.55% 452 206C, 73N Biology
wine_quality ucl score<=4 3.70% 4898 11C Business
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4. Modeling

Logistic regression and class-dependent cost-sensitive logistic regression are used as clas-
sifiers for their high interpretability. The models are evaluated by 10-fold cross-validation.
The performance measurements include ROC curve, AUC, Type I Error, Type II Error,
accuracy, and F1 Score. The mean of AUCs of 10-fold cross-validation is used to measure
the model bias, while the standard deviation of AUCs of 10-fold cross-validation is used
to measure the model variance. They are reasonable measurements, considering that the
model bias refers to the error introduced by approximating the true model, and the model
variance refers to the amount of the change of the estimated model if using a different
training dataset [16].

To evaluate and compare the performance of variable discretization and class-
dependent cost-sensitive logistic regression, the following five models are built.

e Model 1: Logistic regression model on all original interval form of independent vari-
ables in Table 1.

e Model 2: Logistic regression model on original interval form of variables with the
information value over 0.1 in Table 4.

e Model 3: Class-dependent cost-sensitive logistic regression model on the same inde-
pendent variables in Model 2. The class weights (i.e. Wy, W7) that produce the highest
mean of AUCs of 10-fold cross-validation are used in the modeling, indicated by the
dash line in Figure 2(b). The search for the best class weights will be discussed below.

e Model 4: Logistic Regression model on discretized form of independent variables used
in Model 2. The discretized variables are transformed by the one-hot encoder. In total,
48 binary dummy variables are created.

e Model 5: Class-dependent cost-sensitive logistic regression model on the same dis-
cretized independent variables in Model 4. The class weights (i.e. Wy, W1) that pro-
duce the highest mean of AUCs of 10-fold cross-validation are used in the modeling,
indicated by the solid line in Figure 2(b).

For the class weights (i.e. Wy, W1) in Model 3 and Model 5, they are determined by the
population proportion of events T and the sample proportion of events y in Equation (3). ¥
is known from the data. 7 is typically unknown and hard to obtain accurate estimation [7].
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Figure 2. The result of tuning 7. (a) T vs. Class Weights and (b) AUROC vs. W1.
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Here 7 is tuned as a hyperparameter from 0 to 0.5. As shown in Figure 2(a), as 7 increases,
W1 increases and Wy decreases linearly. Figure 2(b) shows how the mean of AUCs on the
10-fold cross-validation changes as W1 increases. When modeling on interval variables in
Model 3, the best occurs at T = 0.5, resultingin W; = 7.19 and Wy = 0.54. The changes of
the class weights have minimal influence on the modeling of discretized variables used in
Model 5, implying that good variable discretization is robust to penalty weights determined
by proportions of events and non-events. Hence, for Model 5, we take W; = 1and Wy = 1,
leading Model 5 the same as Model 4. Because of this, we will only compare Model 4 with
other models in the following section.

The ROC curve of each model can be found in Figure 3. Model 1 and Model 2 have
similar AUCs, indicating that the variables with the information value below 0.1 provide
minimal contribution. The ROC curves of Model 3 and Model 4 demonstrate stronger
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Figure 3. 10-fold cross-validation ROC curves of credit scoring data. (a) Model 1. (b) Model 2. (c) Model
3 and (d) Model 4.
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Table 6. 10-fold cross-validation AUC of models.

Model Mean Std.

Model 1 0.69 0.011
Model 2 0.68 0.013
Model 3 0.79 0.010
Model 4 0.83 0.006

Table 7. Estimated parameters of Model 2 and Model 3.

Parameter Model 2 Estimate  Model 3 Estimate
Intercept —1.45644 2.69671
RevolvingUtilizationOfUnsecuredLines —0.000048 —0.000053
NumberOfTime30—59DaysPastDueNotWorse 0.50255 0.67117
NumberOfTimes90DaysLate 0.45629 0.79821
NumberOfTime60—89DaysPastDueNotWorse —0.92206 0.47276

Age —0.02791 —0.02809

results than Model 2. Moreover, for Model 4, the ROC curves on 10-fold cross-validation
are closer to each other, indicating lower model variance. This can be further confirmed by
the mean and standard deviation of AUCs on 10-fold cross-validation in Table 6. Model 4
produces the highest mean and the lowest standard deviation of AUCs, demonstrating the
power of variable discretization.

The estimated coeflicients of the models are also examined. As shown in Table 7, Model
2 and Model 3 produce different estimates for every independent variable, as well as
the sign of the variable NumberOfTime60—89DaysPastDueNot Worse. Its sign is negative
in Model 2, while its sign is positive in Model 3. Its empirical logit plot in Figure 4(c)
shows the positive relationship. Based on its variance inflation factor (VIF) in Table 8, its
sign change in Model 2 is caused by its multicollinearity with the variables NumberOf-
Time30—59DaysPastDueNotWorse and NumberOfTimes90DaysLate. None of them can be
dropped in the modeling because of their information values presented in Table 4. Model 3
specificly guarantees a positive estimate, which is consistent with the univariate effect. For
other variables, the signs of estimated parameters are consistent with their univariate effect
shown in their empirical logit plots in Figures 4(a,b,d). The estimated parameters of Model
4 are not presented here because of space limitation. Considering these dummy variables
are binary indicators transformed by one-hot encoder, their estimated coeflicients are more
interpretable.

Further, these models are compared based on Type I Error, Type II Error, accuracy, and
F1 score on the test data after splitting the original dataset into training data (70%) and
test data (30%), which can be found in Table 9. The probability cutoft is chosen as the
intersection point of the specificity plot and sensitivity plot, one of the most frequently
used criterion [13,32]. We have the following findings.

e There is no improvement from Model 1 to Model 2, indicating that variables with
information value below 0.1 provide limited contribution.

e Compared with Model 2, Model 3 decreases Type I Error by 8.23%, decreases Type II
Error by 8.3%, increases accuracy by 8.24%, and increases F1 score by 0.0656, indicat-
ing the contribution of penalizing the misclassifications of events and non-events in
different scales by running the class-dependent logistic regression.
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Figure 4. Empirical logit plots against ranks. (a) Age. (b) NumberOfTime30to59DaysPastDueNotWorse. (c)
NumberOfTime60to89DaysPastDueNotWorse and (d) NumberOfTimes90DaysLate.

Table 8. VIF  for  NumberOfTime60—89DaysPast
DueNotWorse.
Parameter VIF Factor
RevolvingUtilizationOfUnsecuredLines 1
NumberOfTime30—59DaysPastDueNotWorse 20.5
NumberOfTimes90DaysLate 20.5
Age 1
Table 9. Performance measures under the best probability cutoff.
Model Type | Error Type Il Error Accuracy F1 score Probability cutoff
Model 1 36.61% 36.54% 63.39% 0.1941 0.0666
Model 2 36.73% 36.74% 63.27% 0.1931 0.0654
Model 3 28.50% 28.44% 71.51% 0.2587 0.4486
Model 4 24.88% 24.83% 75.12% 0.2877 0.0646

e Compared with Model 2, Model 4 decreases Type I Error by 11.85%, decreases Type
IT Error by 11.91%, increases accuracy by 11.85%, and increases F1 score by 0.0946,
indicating the contribution of variable discretization.
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Figure 5. ROC curves of wine_quality and arrhythmia data. (a) arrhythmia and (b) wine_quality.

Table 10. The performance of variable discretization on other datasets.

Dataset Model AUC TypelError  Typell Error  Accuracy F1 score Probability cutoff

arrhythmia Interval 0.6216 46.87% 42.86% 53.33% 0.1127 3.64e—11
Discretized ~ 0.9603 14.06% 14.28% 85.92% 0.3871 2.09e—17

wine_quality Interval 0.7757 30.74% 30.91% 69.25% 0.1439 0.0317
Discretized 0.8327 26.08% 25.45% 73.95% 0.1763 0.0289

e Compared with Model 3, Model 4 decreases Type I Error by 3.62%, decreases Type II
Error by 3.61%, increases accuracy by 3.61%, and increases F1 score by 0.0290, indicat-
ing that variable discretization performs better than the inclusion of class-dependent
costs in the logistic regression.

5. Application of variable discretization in other domains

To further examine the power of variable discretization, logistic regression models
with original interval variables and discretized variables in the datasets arrhythmia and
wine_quality are built and compared. The original datasets are split into training data
(70%) and test data (30%). Logistic regression models are trained on the training data and
then evaluated on the test data.

Their resulting ROC curves on the test data can be found in Figure 5. For both datasets,
the ROC curve by discretized variables moves closer to the upper-left corner than the
one by interval variables. The improvement can be further checked by other performance
measures (i.e. Type I Error, Type II Error, accuracy, F1 score) in Table 10, where the prob-
ability cutoff is chosen as the intersection point of the sensitivity plot and specificity plot.
For example, on the dataset arrhythmia, Type I Error decreases by 32.81%, Type II Error
decreases by 27.58%, accuracy increases by 32.59%, and F1 score increases by 0.2744. Note
that the probability cutoff on this dataset is very small, but it is reasonable that some esti-
mated probabilities are very close to 0, considering the facts that they are direct outputs
of a sigmoid function ranging from 0 to 1 and target classes (i.e. non-event, event) are
represented by 0 and 1 in the data.

6. Discussions and conclusions

To improve the model performance on imbalanced data, efforts have been made from
the perspective of the predictors and the modeling algorithm, respectively, in this study.
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Through the detailed study on the credit scoring dataset, we show that the proper vari-
able discretization and class-dependent cost-sensitive logistic regression with the best class
weights help reduce the model bias and/or variance, based on the ROC curves and AUC
on 10-fold cross-validation, Type I Error, Type II Error, accuracy, and F1 score. Moreover,
class-dependent cost-sensitive logistic regression is beneficial for increasing the prediction
power of predictors during the training phase even if those predictors are not transformed
in their best forms and keeping the multivariate effect and univariate effect of predictors
consistent.

On the other hand, the logistic regression model with proper discretized variables
performs better than class-dependent cost-sensitive logistic regression, provides more rea-
sonable coefficient estimates, and is robust to penalty scales of misclassification costs of
events and non-events determined by their proportions. This indicates that we should
always discretize the variables showing nonlinear relationships against their empirical
logits.

In this study, logistic regression and its variant (i.e. class-dependent cost sensitive logis-
tic regression) are used as classifiers. In the future, we will study the performance of variable
discretization with other classifiers such as decision tree, support vector machine, and
neural network.
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