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Cartilage is a kind of connective tissue that buffers pressure and is essential to protect
joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of
blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by
stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage
homeostasis involves the regulation of multiple growth factors and the transduction
of cellular signals. It is a very complicated process that has not been elucidated
in detail. In this review, we summarized a variety of signaling molecules related to
chondrocytes function. Especially, we described the correlation between chondrocyte-
specific regulatory factors and cell signaling molecules. It has potential significance for
guiding the treatment of cartilage injury.

Keywords: chondrocyte, transcription factor, growth factor, Wnt, TGF-β, FGF, Ihh, Notch

INTRODUCTION

Articular cartilage is a dense connective tissue without nerves, blood vessels, and lymph. It plays a
load-bearing, buffering, and protecting role in joint movement (Carballo et al., 2017). Chondrocytes
are the only cell type (accounting for 1%) in cartilage tissue and secrete growth factors and enzymes
to regulate extracellular matrix (ECM) synthesis. They further embed themselves in ECM to form
cartilage (Jiang and Tuan, 2014). The major ECM components, collagen II and aggrecan (ACAN),
are classic markers of chondrocytic phenotype (Chijimatsu and Saito, 2019). The ECM network is
responsible for absorbing mechanical stress of articular cartilage, promoting chondrocyte adhesion
and regulating intracellular signal transduction.

Chondrocytes originate from bone marrow mesenchymal stem cells (BMSCs). First,
aggregated BMSCs are capable of differentiating into chondroprogenitor cells. Then these
chondroprogenitor cells become chondrocytes that undergo a series of differentiation processes
and develop into hypertrophic chondrocytes (Figure 1). Finally, with the cartilage matrix
partially calcified, chondrocytes are gradually replaced by osteoblasts after apoptosis and
endochondral ossification is performed. Although chondrocyte hypertrophy and apoptosis
are natural processes of endochondral ossification, it will accelerate the progress of
osteoarthritis (OA) when cartilage is damaged (Rim et al., 2020). Besides, the growth and
differentiation regulation system of chondrocytes cultured in vitro is extremely prone to
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imbalance, which can easily lead to cell aging and
dedifferentiation. The process of chondrocyte dedifferentiation
is accompanied by fibrous phenotype changes, decreased
expression of collagen II, and increased expression
of collagen I, matrix metalloproteinase 13 (MMP-13),
and nitric oxide synthase (NOS) (Parreno et al., 2017;
Charlier et al., 2019).

With the rapid development of transportation and sports
and the acceleration of aging progress in human society, the
incidence of joint cartilage trauma, strain, and degenerative
diseases increased every year. Cartilage regeneration and repair
capabilities are very limited. Once the cartilage is damaged,
it is almost impossible to self-heal and may even degenerate.
The treatment of cartilage injury is a difficulty in orthopedics,
and the core of repairing cartilage is mainly by promoting
chondrocyte proliferation and ECM synthesis (Richter et al.,
2016). The process of chondrocytes in growth, metabolism, and
differentiation is complicated. Several cytokines and cellular
signals interact to regulate chondrocyte function and maintain
cartilage homeostasis (Kozhemyakina et al., 2015; Liu et al.,
2017; Fischer et al., 2018). It is of great significance to
understand how the chondrocyte growth and development
are affected by the interaction of key regulatory factors
and cell signals.

KEY REGULATORY FACTORS
REGULATING CHONDROCYTE
PROLIFERATION AND
DIFFERENTIATION

Sox9 Can Maintain Chondrocytes
Phenotype and Inhibit Chondrocyte
Hypertrophy
SRY-box 9 protein (Sox9) is an important transcription factor
that mediates the differentiation of bone marrow mesenchymal
stem cells (MSCs) into chondrocytes (Liu et al., 2017).
It can be combined with collagen II and ACAN, then
activate its own gene expression and induce chondrocyte
proliferation and ECM synthesis (Akiyama et al., 2002;
Soetjahjo et al., 2018). A recent study has shown that
glutamine can control chondrogenic gene expression, protect
chondrocyte survival, and promote chondrocyte proliferation
and ECM synthesis. The realization of these effects depends
on Sox9 stimulating glutamine metabolism (Stegen et al.,
2020). In addition, several experimental studies have confirmed
that Sox9 abundantly existed in cartilage progenitor cells
and chondrogenic cells, which is a necessary condition for
maintaining the chondrocytes phenotype (Zhao et al., 1997).
Consecutively, Sox9 inhibits the differentiation of chondrocytes
into pro-hypertrophic chondrocytes and does not participate
in the further differentiation of hypertrophic chondrocytes
at the end stage (Akiyama et al., 2004) (Figure 1), and
then the expression of Sox9 is turned off. After that,
another transcription factor Runx2 begins to be expressed
(Yamashita et al., 2009).

Runx2 Is Essential for Regulation of
Chondrocyte Hypertrophy and
Differentiation
Runt-related transcription factor 2 (Runx2) is essential for
mediating chondrocyte maturation. The expression of Runx2
is low in proliferating chondrocytes, while it increased in
pre-hypertrophic chondrocytes, and further increased in
hypertrophic and terminal differentiated chondrocytes (Chen
et al., 2014; Komori, 2017). Experimental study indicated that
Runx2 regulates the expression of collagen X in hypertrophic
chondrocytes, thus promoting endochondral ossification
(Ding et al., 2012). There are also research that reported that
maturation of chondrocytes was delayed in the Runx2 knockout
mice (Yoshida et al., 2004; Takarada et al., 2013). These findings
suggested that Runx2 can positively regulate chondrocyte
maturation and endochondral ossification (Figure 1). Based
on the effect on chondrocytes, Runx2 can be used as a target
to regulate the differentiation and apoptosis of chondrocytes
(Jiang et al., 2020). In addition, the expression of Runx2
in osteoarthritis chondrocytes is significantly higher than
that of normal chondrocytes (Kamekura et al., 2006). With
the decrease of Runx2, the progression of osteoarthritis
is slowed down. As a result, Runx2 is a vital factor for
chondrocyte maturation and participates in the pathogenesis
of osteoarthritis.

BMPs Is Involved in the Regulation of
Chondrogenic Differentiation and
Endochondral Ossification
Bone morphogenetic proteins (BMPs) are involved in almost
all processes related to skeleton development (Wu et al.,
2007), which belong to the TGF-β superfamily. As an osteo-
chondrogenic factor, it positively regulates chondrocyte
differentiation and endochondral ossification via transfer
BMP signal from plasma membrane receptors to nucleus
through Smad-dependent pathways and non-Smad-dependent
pathways (Wan and Cao, 2005; Zhou et al., 2016; Chen
et al., 2020). Smads, as a series of downstream effectors of
Smad signaling pathways, is classified into three subgroups, a
common-partner Smad (Co-Smad), receptor-regulated Smads
(R-Smads), and inhibitory Smads (I-Smads). In Smad-dependent
signaling pathways, the BMP-specific R-Smads (Smad1, 5,
8) were phosphorylated after BMPs binds to the receptors
and subsequently form complexes with Co-Smad (Smad4).
Then the complexes transferred to the nucleus to regulate the
transcription of targeted genes (such as Sox9, Runx2) (Wu
et al., 2007; Papathanasiou et al., 2012). Non-Smad-dependent
signaling pathway, namely p38/mitogen-activated protein
kinase (MAPK) signaling pathway, facilitates differentiation
of mesenchymal cells into chondrocytes by activating Runx2
(Wu et al., 2016).

It is known that several BMPs play critical roles in maintaining
cartilage homeostasis, such as BMP2, BMP3, BMP4, and BMP7
(Figure 1). In the interim, BMP2, BMP4, and BMP7 may
induce the chondrogenic differentiation via regulating the
expression of Sox9 and stimulate endochondral ossification
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FIGURE 1 | Chondrocytes originate from MSCs and undergo a series of differentiation processes. Sox9 induces MSCs differentiate into chndrocytes and promotes
proliferation, whereas Runx2 stimulates chondrocyte hypertrophic. BMPs affect certain stages of chondrocyte differentiation and regulate the expression of Sox9 and
Runx2.

through regulating the transcription of Runx2 (Liao et al.,
2014; Wu et al., 2016; Zhou et al., 2016; Thielen et al., 2019).
In addition, BMP3 can promote the maturation of terminal
hypertrophic chondrocytes (Gamer et al., 2009). Futhermore,
BMPs can promote the accumulation of mesenchymal cells and
proliferation of chondrocyte by up-regulating the expression of
the Wnt, Notch, and PI3K/AKT/mTOR signaling (Kobayashi
et al., 2005; Zhang et al., 2019).

As the key transcription factors and growth factors for the
growth and development of chondrocytes, Sox9, Runx2, and
BMPs are regulated by multiple signal cascades. Next, we will
focus on discussion of the relationship between signal pathways
(Wnt, Ihh, TGF-β, FGF, Notch) and these factors.

COOPERATION BETWEEN SIGNAL
PATHWAYS AND CYTOKINES DURING
CARTILAGE DEVELOPMENT

Wnt Signaling Pathway Interacts With
Other Signaling Molecules to Regulate
Chondrocyte Proliferation and
Differentiation
Wnt family proteins are a sort of secreted glycoproteins that
functions through autocrine or paracrine. Wnt signaling is
transmitted by canonical Wnt signaling pathway (β-catenin-
dependent pathway) and non-canonical Wnt signaling pathway
(β-catenin-independent pathway), thereby regulating various
biological processes (Clevers and Nusse, 2012). The non-
canonical Wnt signaling pathway basically includes the
planar cell polarity pathway (PCP) and Wnt/Ca2+ pathway,
in addition to mitogen-activated protein kinase (MAPK),
inositol triphosphate (IP3)-intercellular calcium, and c-Jun
N-terminal kinase (JNK), which are activated independently of
β-catenin, leading to cytoskeleton reorganization, chondrocyte
stacking and different phenotypic responses. In canonical Wnt
signaling pathway, Wnt proteins can combine with the seven
transmembrane Frizzled protein receptor and the low-density

lipoprotein receptor-related receptor 5/6 (LRP5/6), resulting
in the recruitment of cytoplasmic protein Disheveled (Dsh)
and destruction complex [the complex includes adenomatous
polyposis coli (APC), glycogen synthesis kinase-3β (GSK-3β),
Axin, and casein kinase 1 (CK1)]. After that, the phosphorylation
of β-catenin by destruction complex is suppressed, thus causing
β-catenin accumulation in the cytoplasm to become free
β-catenin. Accordingly, free β-catenin move into the nucleus
and form complexes with T cell factor/lymphoid enhancer
factor (TCF/LEF), thereby controlling the transcription of target
genes and activating the canonical Wnt/β-catenin signaling
pathway (Figure 2). As the most important component of the
canonical Wnt signaling pathway, β-catenin signal can control
the differentiation of mesenchymal progenitor cells. If β-catenin
is inactivated, such as β-catenin gene is knocked out in embryos,
it will cause ectopic chondrogenesis (Day et al., 2005).

There are 19 members of the Wnt protein family.
The canonical and non-canonical Wnt signaling regulates
chondrocyte growth and metabolism via different Wnts. In this
article, we focus on discussing the Wnt proteins which are only
relevant to cartilage development. First, Wnt-3a can promote
chondrocyte proliferation through Wnt/β-catenin signaling and
induce chondrocyte differentiation in vivo through Wnt/Ca2+

signaling (Nalesso et al., 2011). Besides, Wnt-3a is considered
to induce hypertrophy and differentiation of chondrocytes and
participate in OA development (Bertrand et al., 2020), whereas
Wnt-3a/β-catenin signaling could be inhibited by overexpression
of Wnt-16, leading to reduced chondrocyte apoptosis (Yan et al.,
2020). Second, Wnt-4 stimulates chondrocytes differentiation,
and its overexpression will reduce the proliferation capacity
of chondrocytes and accelerate the maturation (Zwaka et al.,
2007). Next, Wnt-5a mediates non-canonical Wnt signaling to
promote chondrocyte differentiation and inhibits the expression
of collagen II (Kawakami et al., 1999), while Wnt-11 plays the
opposite role (Ryu and Chun, 2006). However, Wnt-1 and
Wnt-7a block chondrocyte differentiation through inhibiting the
aggregation of mesenchymal stem cells (Rudnicki and Brown,
1997). Moreover, the decrease of Wnt-7a expression and the
increase of Wnt-5a expression can promote the dedifferentiation
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FIGURE 2 | The canonical Wnt signaling pathway in chondrocytes. In the absence of Wnt, β-catenin could be phosphorylated by CK1 and GSK-3β. When Wnt
signaling is activated, Wnt ligands combine with Frizzled and LRP5/6, and then recruit Dsh and destruction complex. So that the level of cytoplasmic β-catenin is
increased. Subsequently, β-catenin enter the nucleus and bind to TCF/LEF to regulate the transcription of target genes (Sox9 and Runx2). In addition, BMP2 can
increase the expression of nuclear β-catenin, whereas increased expression of Sox9 can inhibit β-catenin signaling and facilitate degradation of β-catenin.

of chondrocytes (Sassi et al., 2014b). Last, Wnt-9a promotes
chondrocyte maturation and regulates Indian hedgehog (Ihh)
protein expression (Spater et al., 2006). It has been shown that
the lack of wnt-5b and wnt-9a resulted in delayed endochondral
ossification (Ling et al., 2017).

Wnt signaling can also work with other signaling molecules
to mediate chondrocyte development. For instance, Wnt
signaling pathway mediated by β-catenin may be inhibited
along with increased expression of sox9 (Topol et al., 2009).
Several experiments have found that mutant mice of Sox9-
overexpression in chondrocytes exhibited chondrodysplasia,
which is similar to β-catenin-null mutant mice. Among the
two mutant mice mentioned above, the differentiation of
hypertrophic chondrocytes and endochondral ossification
is delayed (Akiyama et al., 2004). As a result, the activation
of β-catenin-dependent promoters is inhibited by Sox9
and the degradation of β-catenin is facilitated through the
ubiquitination/proteasome pathway.

According to the study, Wnt/β-catenin signaling is able
to mediate chondrocyte hypertrophy through inducing type
X collagen alpha 1 (Col10a1) upregulation and activating

Runx2 expression (Dong et al., 2006). Besides, BMPs also play
critical roles in chondrocyte hypertrophy. Previous study has
shown that Wnt/β-catenin signaling could be mediated by
BMP2 to regulate chondrocyte hypertrophy. The molecular
mechanism has revealed that BMP2 increased the protein
level of nuclear β-catenin in chondrocytes (Papathanasiou
et al., 2012). It has been reported that Wnt act upstream of
Ihh in growth plate chondrocytes. Moreover, Wnt signaling
can drive the up-regulation of Ihh and BMP signals during
the process of endochondral MSC differentiation, thus
promoting chondrocyte hypertrophy, cartilage mineralization
and bone metastasis (Diederichs et al., 2019). Furthermore,
ERK1/2 signal can be activated by non-canonical Wnt
signal, thus inducing the loss of chondrocytes phenotype
and promoting chondrocytes dedifferentiation (Xie et al., 2018).
To sum up, the interaction between Wnt signaling pathway
and other signaling molecules can mediate chondrocyte
proliferation, differentiation and maturation. Although
the function of Wnt signaling pathway has not been fully
explained, there is still a lot of room for discovering more
possible mechanisms.
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FIGURE 3 | The Ihh signaling pathway in chondrocytes. When Ihh signaling is produced, it binds to Ptc, and then the inhibition of Ptc on Smo is relieved, which
result in the activation of Gli. Next Gli enters the nucleus to regulate the expression of target genes (Sox9, Runx2, PTHrp).

Ihh Signaling Pathway Promotes
Chondrocyte Proliferation and Inhibits Its
Differentiation Through Ihh-PTHrp
Feedback Loop
Ihh belongs to the vertebrate hedgehog protein family. Once
the Ihh signal is produced, its amino-terminal part can combine
with the transmembrane protein Patched (Ptc), and then the
suppression of Ptc on smoothened (Smo, a class of G protein-
coupled multichannel membrane protein) is blocked. Thus, Smo
was activated, and the signal is transmitted to downstream
effectors, causing the activation of Gli family genes, which are
all transcription factors mediating the hedgehog pathway and
originally isolated from human glioblastoma cells (Yang et al.,
2015). Soon thereafter, Gli enters into the nucleus and initiates the

expression of downstream genes, such as parathyroid hormone-
related protein (PTHrp) (Figure 3).

Ihh has been indicated that it may control chondrocyte
proliferation and differentiation through Ihh-PTHrp negative
feedback loop (Vortkamp et al., 1996; Kindblom et al.,
2002) (Figure 4). On the one hand, PTHrp is induced
by Ihh signal and diffused into growth plate region to
promote chondrocyte proliferation. Meanwhile, PTHrp in turn
acts on PTH/PTHrp receptors (PPR) to block chondrocyte
terminal differentiation, thus maintaining the proliferative of
chondrocytes and turning off the expression of Ihh (Zhao
et al., 2002; Sasai et al., 2019). On the other hand, when
PTHrP is not enough to stimulate chondrocyte proliferation,
chondrocytes begin to secrete Ihh, and the expression level
of PTHrP is upregulated, thereby promoting the proliferation
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FIGURE 4 | The Ihh-PTHrp feedback loop in chondrocytes. In articular cartilage, Ihh is expressed in pre-hyertrophic chondrocytes and hyertrophic chondrocytes, it
also can promote chondrocytes proliferation. Ihh stimulates the expression of PTHrP in periarticular and perichondral chondrocytes to promote chondrocytes
proliferation via increasing Sox9 activity. PTHrP in turn inhibits the hypertrophy of chondrocytes via PPR, and Ihh expression is turned off. BMP and Runx2 can
induce the expression of Ihh.

of chondrocytes and inhibiting the terminal differentiation of
hypertrophic chondrocytes. When Ihh signal is absent, the
expression of PTHrp is reduced, which accelerates chondrocyte
hypertrophy (Yang et al., 2015).

Additionally, Ihh signaling and other signaling molecules
jointly regulate chondrocyte development. For example, the
activation of PPR may raise the phosphorylation of protein kinase
A (PKA), thus phosphorylating Sox9 so that the differentiation
process of chondrocytes is delayed (Kronenberg, 2006; Nowak-
Solinska et al., 2013). In addition, Runx2 can directly bind
to the promoter of the Ihh and induce up-regulation of Ihh
levels, and consequently, the maturation and differentiation of
chondrocytes is promoted (Yoshida et al., 2004). Intriguingly, a
recent study found that desert hedgehog (Dhh), another member
of the hedgehog family, can promote the expression of Col X
and Runx2 to promote chondrocyte hypertrophy (Ma et al.,
2020). This suggests that Ihh and Dhh signals may synergistically
promote the differentiation of chondrocytes. Furthermore, BMP
can induce the Ihh-PTHrp signaling by increasing the expression
of Ihh to mediate chondrocyte differentiation (Retting et al.,
2009). When there was no hedgehog signal inputs, BMP
might enhance the formation of ectopic chondrocytes in the
perichondrium (Hojo et al., 2013). In addition, a study showed
that total flavonoids of Rhizoma can simultaneously up-regulate
the expression of BMP/Runx2 and Ihh/PTHrp to repair the
damage caused by thiram on chondrocytes and improve cell
viability (Yao et al., 2020). Therefore, Ihh signaling and other
signaling molecules together determine the proliferation and
differentiation of the chondrocytes. It is warranted to further
explore the regulatory effects of other signaling molecules on Ihh
signaling pathway.

TGF-β Signaling Pathway Regulates the
Expression of Transcription Factors and
Growth Factors to Control Chondrocyte
Proliferation and Differentiation
Transforming growth factor (TGF-β) is a kind of polypeptide
growth factor. It involves many biological processes, such as
embryonic development, inflammation, cell growth, immune
response, and carcinogenesis (Morikawa et al., 2016). The
TGF-β superfamily includes TGF-β, BMPs, activin, growth
and differentiation factors (GDFs), and nodal. After TGF-
β superfamily proteins combine with type II receptor, type
I receptor (also called active receptor-like kinases, ALKs) is
activated by type II receptor, thus resulting in phosphorylation
of R-Smads or activation of MAPK cascade (Grafe et al.,
2018) (Figure 5). On the one hand, in Smad-dependent TGF-β
signaling pathway, the complexes composed of phosphorylated
R-Smads (Smad2, 3) and Co-Smad (Smad4) transfer into nucleus,
thereby regulating downstream target gene expression, such
as Sox9 and Runx2 (van der Kraan et al., 2009). So that
the proliferation and differentiation of chondrocytes could
be controlled by different transcription factors (Wu et al.,
2016). On the other hand, non-Smad-dependent pathway
(MAPK pathway) induced by TGF-β can mediate cartilage
homeostasis (Thielen et al., 2019). The phosphorylation of
MAPK may activate JNK and p38 kinases, which changes
the balance between TGF-β signaling and BMP signaling, so
it will accelerate the terminal differentiation of chondrocytes
(Kraan et al., 2010).

Herein, we will illustrate the current understanding that
the interaction between TGF-β and key regulatory factors (for
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FIGURE 5 | The TGF-β and BMP signaling pathway in chondrocytes. When TGF-β or BMPs bind to type II receptor, type I receptor is transphosphorylated, which
activate Smad-dependent signaling or non-Smad-dependent signaling (MAPK signaling). In the Smad-dependent signaling, R-Smads (the TGF-β-specific R-Smads
is Smad2, 3 and the BMP-specific R-Smads is Smad1, 5, 8) are phosphorylated, and then it forms complexes with Co-Smad (Smad4). Next the complexes transfer
into nucleus to regulate the expression of Sox9 and Runx2. MAPK signaling can phosphorylate Runx2 to increase its transcription activity, and it also can activate
JNK and p38 kinases to change the balance between Smad2/3 and Smad1/5/8.

example, Runx2, Sox9, BMP) affects cartilage development. The
expression of Runx2 is suppressed by the activation of the
TGF-β/Smads signaling, thereby reducing chondrocyte ECM
degradation (Xiao et al., 2018; Janssen et al., 2019). On the
contrary, Sox9 protein level can be stabilized by TGF-β, and both
of them synergistically protect chondrocytes’ function (Chavez
et al., 2017). In addition, there is recent research that studied the
mechanism of salidroside to promote chondrocyte proliferation,
and it found that the expression of Sox9 was up-regulated by
salidroside, and the expression of TGF-β and Smad3 was up-
regulated (Sun et al., 2020). As a member of the same protein
family, TGF-β1 may induce the expression of BMP2 to promote
the proliferation of chondrocytes. Contrarily, BMP2 may inhibit
the activation of TGF-β-induced Smad signal to suppress the
terminal differentiation of chondrocytes. Just like Ihh-PTHrp,

TGF-β and BMP form a feedback loop to regulate chondrocyte
development (Wu et al., 2016).

TGF-β signaling can also participate in the signal transduction
of other signaling pathways. Current evidence indicated that
activation of TGF-β signal is accompanied by increased
expression of Wnt protein and its receptor, as well as
the aggregation of β-catenin in the nuclear (Zhou et al.,
2004), the interaction of TGF-β and Wnt signaling pathway
stimulated chondrocyte differentiation. Furthermore, TGF-
β can also promote the proliferation and differentiation of
chondrocytes via the Notch-Sonic hedgehog (Shh)-Foxa
pathway (Ma et al., 2019). Accordingly, these investigations
revealed that TGF-β signaling pathway interacts with
other cytokines to control chondrocyte proliferation and
differentiation.
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FIGURE 6 | The FGF signaling pathway in chondrocytes. FGF combines with FGFR to activate the downstream cascade (RAS-MAPK and PI3K-AKT), and then the
expression of Sox9 and Runx2 is regulated. FGF can suppress BMP/Smad signaling via MAPK signaling in chondrocytes development.

FGF Signaling Pathway Mediates
Chondrocyte Development via
Regulating Cytokines Expression
Fibroblast growth factor (FGF) is a sort of peptide that
can promote cell mitosis and angiogenesis. In the skeletal
system, FGF signaling is related to homeostasis regulation
of the cartilage environment and the occurrence of cartilage
degenerative diseases. FGF may bind to specific receptor (FGFR),
and then the tyrosine kinase domain of FGFR located inside the

cell membrane is activated, thus activating downstream signals
(such as RAS-MAPK and PI3K-AKT) to mediate chondrocyte
development (Figure 6).

Several FGFs and FGFR are considered to be the important
regulator of chondrocyte development. Multiple studies have
shown that FGF2, FGF9, and FGF18 can facilitate mesenchymal
stem cells differentiation into chondrocytes, stimulating
chondrocyte proliferation and ECM synthesis (Chuang et al.,
2010; Ellman et al., 2013; Cinque et al., 2015; Correa et al.,
2015; Shu et al., 2016). Moreover, FGF23 is highly expressed
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FIGURE 7 | The Notch signaling pathway in chondrocytes. When Notch signaling is produced, Notch ligand of adjacent cells bind to Notch receptor, then the
receptor is cleaved by γ-secretase to release the NICD. Next, NICD enters the nucleus and interact with RBPjk to induce the target genes expression (Hes and Hey).
Afterward, the expression of Sox9 is inhibited, whereas the expression of Runx2 is increased. Besides, Notch also can induce the expression of p57 via BMP/Smad
signaling to promote chondrocyte hypertrophy and suppress chondrocyte proliferation.

in osteoarthritis chondrocytes, and its up-regulation may
induce chondrocyte hypertrophy (Orfanidou et al., 2009). Many
studies have indicated that cartilage hypoplasia is manifested
in FGFR1/2 knockout mice (Karuppaiah et al., 2016), while
the dwarfism is also induced in FGFR3-mutant mice on
account of the activation of FGFR3 (Sahni et al., 2017). In
addition, FGFR1/2 exists in proliferating chondrocytes, while
FGFR3 exists in hypertrophic chondrocytes (Zhou et al., 2015).
Therefore, it is generally believed that FGFR1/2 can promote
the proliferation and differentiation of chondrocytes, whereas
FGFR3 cannot, and FGFR3 can also facilitate the apoptosis
of chondrocytes.

Based on literature reports, we proposed our understanding
of how FGF signaling interacts with other cytokines to
intervene chondrocyte development. On one hand, FGFs

can enhance Sox9 expression to promote chondrocyte
proliferation via the MAPK pathway (Murakami et al.,
2000). Activated FGFR3 raises the transcriptional activity of
Sox9, causing the suppression of chondrocyte hypertrophy
and reduction of chondrogenesis (Zhou et al., 2015).
On the other hand, FGF2 may improve the activity of
Runx2 via MEK/ERK pathway, leading to chondrocyte
differentiation (Wang et al., 2004). As previously described,
BMP signaling can promote chondrocyte proliferation,
whereas FGF2 induces chondrocyte hypertrophy and
differentiation. Furthermore, the FGF signaling is
stimulated when the BMP signaling is inhibited by Noggin
(BMP antagonist) (Minina et al., 2002; Otsuki et al.,
2010). Therefore, FGF and BMP play an opposite role
in regulating chondrocyte proliferation, hypertrophy,
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and differentiation. These suggest that we can regulate the
expression of key regulatory factors through FGF signaling to
maintain cartilage homeostasis.

Proper Notch Signaling Is Vital for
Chondrogenesis and Normal
Chondrocyte Differentiation via
Modulating Key Regulatory Factors
Expression
Notch signaling pathway consists of ligands, Notch receptors,
and CSL (CBF-1, Suppressor of hairless, LAG) proteins, and
it can regulate chondrocyte proliferation and differentiation
via the interaction of the adjacent cells (Zieba et al., 2020).
After the ligand binds to the receptor, the Notch signaling is
activated, which causes the cleavage of extracellular domain of
receptor. Next, the receptor is cleaved three times to release
Notch intracellular domain (NICD). When the canonical Notch
signaling is activated, NICD is transferred into the nucleus to
interact with recombination signal binding protein-jk (RBPjk)
which is on DNA, and then form a transcription complex.
As a result, the transcription factor induces the expression of
downstream target genes, which includes the Hairy enhancer of
split (Hes) and Hes-related with YRPW motif (Hey) family genes,
thereby affecting chondrocyte proliferation and differentiation
(Hosaka et al., 2013) (Figure 7).

Experiments have proved that overexpression of Notch can
inhibit the expression of Sox9, collagen II, and ACAN in
chondrocytes, thus decreasing chondrocyte proliferation and
suppressing hypertrophic chondrocyte differentiation (Chen
et al., 2013). On the contrary, absence of Notch signaling may
increase Sox9 expression, causing chondrocyte proliferation and
hypertrophy (Mead and Yutzey, 2009). Moreover, activation of
Notch1 can upregulate the expression of Sox9 in embryonic
MSCs, which induce chondrogenic (Haller et al., 2012).
Therefore, these dates supported the conclusion that appropriate
level of Notch signaling is crucial for chondroprogenitor
cell proliferation and normal hypertrophic chondrocyte
differentiation through modulating Sox9 expression. In addition,
MMP-13 is the most effective collagen II degrading enzyme
in the family of matrix metalloproteinases (MMPs); it can be
regulated and controlled by Notch signaling via the activation of
Runx2 (Xiao et al., 2019), thereby promoting the degradation of
collagen II in chondrocytes and facilitating the differentiation of
hypertrophic chondrocytes (Blaise et al., 2009; Sassi et al., 2014a).
Notch can also induce cell cycle arrest and promote chondrocyte
hypertrophy through upregulation of p57 expression which is
mediated by BMP/Smad signaling (Shang et al., 2016). Hence,
these findings indicates that Notch signaling pathway is necessary
for the chondrogenic differentiation and normal chondrocyte

development via regulating transcription factors and growth
factors expression.

CONCLUSION

Articular cartilage is in the physiological environment with
various biochemical and biophysical stimulation signals. The
process of chondrocyte proliferation and differentiation is
affected by key factors (such as Sox9, Runx2, BMPs) and
cell signals (such as Wnt, TGF-β, FGF, Ihh, and Nocth),
thereby promoting the synthesis of ECM and expressing the
characteristics and functions of chondrocytes. The regulation
of chondrocyte growth and maturation does not depend on
the single role of a signal molecule, but the interaction and
coordination of several molecules. Although a lot of scientific
work has been done on the cartilage development both in
experimental and in theoretical fields, the exploration is ongoing.
We reviewed the various signaling factors that regulate cartilage
development and revealed the relationship among them, hoping
to provide more ideas for the treatment of cartilage damages.
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