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Abstract

The porcine immune system has an important role in pre-clinical studies together with

understanding the biological response mechanisms before entering into clinical trials. The

size distribution of the Korean minipig is an important feature that make this breed ideal for

biomedical research and safe practice in post clinical studies. The extremely tiny (ET) mini-

pig serves as an excellent model for various biomedical research studies, but the compara-

tively frail and vulnerable immune response to the environment over its Large (L) size

minipig breed leads to additional after born care. To overcome this pitfall, comparative anal-

ysis of the genomic regions under selection in the L type breed could provide a better under-

standing at the molecular level and lead to the development of an enhanced variety of ET

type minipig. In this study, we utilized whole genome sequencing (WGS) to identify traces of

artificial selection and integrated them with transcriptome data generated from blood sam-

ples to find strongly selected and differentially expressed genes of interest. We identified a

total of 35 common genes among which 7 were differentially expressed and showed selec-

tive sweep in the L type over the ET type minipig breed. The stabilization of these genes

were further confirmed using nucleotide diversity analysis, and these genes could serve as

potential biomarkers for the development of a better variety of ET type pig breed.

Introduction

Pre-clinical trials are the most effective measures taken to reduce the risk of any human calamities

from a new treatment, and the animal model has an important role in serving such objectives. The

significant information gathered from experimentation with lower mammals ultimately helps in

the validation of hypothesis and is the true success of an experiment. The selection of suitable ani-

mals for the development of pre-clinical safe trials is a necessary prerequisite that would enable a

strong foundation to pursue safe human-related trials [1, 2]. For these pre-clinical trials various ani-

mal models have been used, such as rodents, non-rodents, and non-human primates including

minipigs which largely are considered the best animal model for the these studies due to various

advantages [3–5]. Pigs as an animal model have been proven to have few ethical problems in
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studying pig organs for transplantation compared to pet animals (like the dogs) or large primates

(like chimpanzees, orangutans, or gorillas), and the organ size is also an important advantage of

minipigs that make the breed attractive for various biomedical research projects [6, 7]. Moreover,

pigs as an experimental animal can be kept in a gnotobiotic/germfree chamber [8]. Such gnotobi-

otic pigs are an excellent model to examine kidney problems (hemolytic uremic syndrome) that

occur after oral infection with enterohemorrhagic Escherichia coli [9, 10]. Furthermore, the

immune system of minipigs is more than 80% similar to humans while the similarity of the

mouse immune system to human is limited to 10%. Therefore, these advantages have popularized

these pigs for feasible use in biomedical research [10, 11]. Minipigs are one of the key breeds

anatomically and physiologically similar to humans that are used to understand various mecha-

nisms and to evaluate the efficacy and safety of experimental therapies, drugs, and modalities in

healthcare studies [12, 13]. Recent progress in genetic engineering also makes the minipig as ideal

candidate to be used as a prospective organ donor for xenotransplantation in humans. There are

different breeds of minipigs, e.g., Minnesota, Yucatan, Hanford, Mini-Lewe, and the widely used

Göttingen minipigs [14, 15]. Among the different breeds of minipigs, only the Korean miniature-

pig breed, Mini-Pig, registered with the United Nations, and Agricultural Food Organization

(FAO) as a medical/laboratory species located in South Korea, and it is used for various biomedi-

cal research studies like xenografts, efficacy evaluation and biomaterial studies in different regions

of the world. The Korean miniature pig varies from ET with an average body weight (18-26kg) to

a L size minipig with an average body weight (37–85.6kg) range from birth to full maturation.

Among the ET and L-type Minipig, the ET breed has been considered as one of the most suitable

animal models, but due to a more prone immune system, the ET breed comes with the pitfall of

extensive after birth care compared to the L type breed. Identification of genomic regions which

undergo positive selection in one breed is a potent approach to delineate genes that help with

adaptation to environmental factors and are responsible for the phenotype diversity.

In the last decade, many genome wide analyses with sound statistical approaches have been

conducted to pin down significant results from the driven data [16, 17]. Using the existing

WGS knowledge and understanding of molecular architecture, we oversaw the development

of a breed with an enhanced trait value [18, 19]. These approaches already helped in the identi-

fication of different genomic regions with selection signals, suggesting the contribution of the

region in influencing different traits related to phenotypic or genotypic composition [20, 21].

Similarly, with a better understanding of the genetic architecture and using advanced molecu-

lar breeding approaches these pitfalls can be overcome and a more stable ET breed can be

developed with an L type immunogenicity response.

In the pursuit of identifying potential genes and their roles in different pathways, we per-

formed WGS data analysis to distinguish selective sweep genes in the L-type over the ET type

and RNA-seq analysis for their gene expression patterns. Here, we present an unbiased

approach by integrating WGS and RNA-seq data and utilizing statistically established methods

such as cross-population extended haplotype homozygosity (XP-EHH) [22], Integrated Haplo-

type Score (iHS) [23] and Z-scores of the pooled heterozygosity (ZHp) [24] statistics were used

to detect the selection signatures from the ET and L type breeds followed by a comparative

nucleotide diversity analysis on the identified genes of interest performed in the L vs ET type

minipigs using vcftools to observe the stability in the region [25].

Methods

The analysis was implemented to identify selective sweep genes in the minipig pig breed vari-

ety using re-sequencing data following the identification of differentially expressed genes by

utilizing the RNA-seq data.
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Sampling and data collection

All the experimental procedures were verified and approved by the National Institute of Ani-

mal Science (NIAS) approval no: NIAS20181295 and carried out in consent with the ARRIVE

guidelines [26, 27]. All the minipigs used in this study were male, and the average birth weight

of the ET and L type was (0.18–0.3kg) and (0.5–0.7kg), respectively, and the average body

weight at 12/24 months was 18/26kg and 37–85.76kg. The pigs were euthanized with an anes-

thetic injection given into the ear vein with an overdose of Alfaxan (0.7mg/kg), and blood sam-

ples were collected from post-harvested minipigs (N = 4) [28, 29]. Subsequently, the samples

were stored in a sterile container and immediately frozen at −70˚C until further analysis.

RNA-seq data were generated for the minipigs (N = 4) with pair-end data after isolation of

the blood samples using TRIzol (Invitrogen) and a RNeasy RNA Purification Kit with DNase

treatment (Qiagen) following the manufacturers’ instruction manual. One microliter of

cleaned total RNA was used to check the RNA quality using BioAnalyzer with an RNA chip

(RIN> 7 and 28S:18S ratio > 1.0). The library was constructed with random cDNA fragments

and acquired adapter-fragments of the cDNA using the TruSeq Stranded Total RNA Sample

Prep Kit (Illumina, San Diego, CA, USA) following the manufacturer’s instructions. The con-

structed library was used to perform sequencing on the Illumina novaseq and paired-end

reads were generated. and reported earlier [20, 30]. The selective sweep genes were identified

from the data derived using WGS analysis or re-sequencing analysis performed by collecting

the blood samples from the ET and L type Minipig breed. Similarly, differentially expressed

genes were identified using applying the same blood sample for the RNA-seq analysis to obtain

their role in the biological process.

Sequence mapping and SNP calling

The raw reads were aligned with the reference genome of the pig (Sscrofa11.1) downloaded

from the NCBI. SAMTOOLS was further used to clean low-quality map reads in the BAM files

with permissive quality cutoffs [flag-sat–bS and–bF 4] [31]. To perform variant calling and

snp/indels extraction, we used the Genome Analysis Toolkit 4.0 (GATK) pipeline based on

best practices defined by the Broad Institute [32], and the Picard tool was used to filter poten-

tial PCR duplicates. Subsequently, the reference BAM file was indexed using SAMtools. Fur-

thermore, the HaplotypeCaller, CombineGVCF and “SelectVariant” argument of GATK were

used for the identification of single nucleotide polymorphism (SNPs). VariantFilteration was

adopted from GATK to avoid possible false positive with the following parameters: SNPs with

mapping quality (MQ)< 40.0, MQRankSum< − 12.5, ReadPosRankSum< − 8.0 and quality

depth (unfiltered depth of non-reference samples; low scores are indicative of false positives

and artifacts)< 2.0 were filtered [33]. Haplotype phasing and imputation of missing alleles for

the entire set of swine populations were performed using BEAGLE version 4.1 [34]. After all

the filtering processes, a total of 24,665,965 SNPs were retained and used for further analysis.

To perform differentially expressed gene analysis, the PE reads were first analyzed for the

quality assessment using FastQC [35], and low-quality reads were removed using Trimmo-

matic tools [36] with parameters leading:3, trailing:3, slidingwindow:4:15, headcrop:13, and

minlen:36 before proceeding to the sequence alignment. All quality-filtered PE reads were

aligned to the Sscrofa genome (Sscrofa11.1) at the University of California Santa Cruz (UCSC)

using Hisat2 [37, 38], and reads were counted using FeatureCount [39]. Finally, DESeq2 was

used to identify differentially expressed genes [40].

Selective sweep gene analysis. To determine a genome wide pattern of positive selection

using the whole SNP set identified from the ET and L type breeds, we first phased the SNPs

data with a beagle and extracted each chromosome. Afterwards, we divided them into PopA
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and PopB and applied three statistically established methods, XP-EHH [22], ZHp [24], and

iHS [23], to detect the genome wide selective sweep regions. Here, each method based on dif-

ferent approaches such as the XP-EHH assesses haplotype differences between two popula-

tions. It is designed to detect alleles that have an increase in frequency to the point of fixation

or near fixation in one of the two populations (A and B) being compared, by calculating the

extended haplotype homozygosity (EHH) and log-ratio iHH between PopulationA and Popu-

lationB as shown in Eq (1).

XP � EHH ¼
ln iHHA

iHHB

� �
� E ln iHHA

iHHB

� �h i

SD ln iHHA
iHHB

� �h i ð1Þ

Similarly, the iHS test is a program that identifies selected sweep genes by searching the

locus where allele resides on a longer haplotype than the ancestral allele and compares the

EHH between the derived and ancestral alleles as shown in Eq (2). This approach makes the

method less affected by the demographic history and enabled us to identify incomplete sweeps,

where the selected sweep is not fixed in the sample, and then, did a comparison between iHHA

and iHHD denoted as ancestral and derived alleles [23].

iHS ¼
ln iHHA

iHHD

� �
� E ln iHHA

iHHD

� �h i

SD ln iHHA
iHHD

� �h i ð2Þ

To calculate ZHp we first obtained the expected heterozygosity (Hp) score at each position

to scan the selection signals. The Hp values of individual SNPs were first calculated according

to Eq (3) where ∑nMAJ and ∑nMIN represent the sums of the numbers of the major and

minor alleles at each locus. Subsequently, to detect selection signals, the Hp values were then

Z-transformed using Eq (4) [24, 41].

Hp ¼ 2
X
nMAJ

X
nMIN

.�X
nMAJ þ

X
nMIN

�2

ð3Þ

ZHp ¼ ðHp � mHpÞ=sHp ð4Þ

The genomic coordinates of the regions with a high XP-EHH, ZHp, and iHS score for the

10k window with a 10k bin size were computed using an in-house python script, and then, it

was used as input data to fetch the gene_id information of the respective regions.

Gene ontology analysis. Lists of differentially expressed genes with p.adj� 0.05 in the

Minipig w.r.t. L vs ET type breed were compiled and submitted to DAVID v6.8 server [42] for

functional annotation and enrichment analysis. Subsequently, list of degs visualized using

Cytoscape program with string plugin [43, 44]. For each list, enriched Gene Ontology (GO) was

performed for the 3 categories: Biological Processes, Molecular functions, and Cellular Com-

partments analysis. These terms were then clustered semantically using the ReviGO server [45].

Enriched functions throughout the whole transcriptome of the minipig with an elevated GO-

term function and clustered lower-level GO-terms were visualized using treemap.

Results

Blood samples from 4 minipig breeds (L and ET type), respectively, were collected, and we per-

formed re-sequencing, which enabled us to obtain the complete genetic variation and to iden-

tify the genes potentially involved in genomic selection. Subsequently, RNA-seq analysis was

performed which enabled us to identify differentially expressed genes.
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Population structure analysis

The principal component analysis (PCA) plot reveals the distribution of the two breeds in a

two-dimensional view. The present PCA analysis from the WGS data was performed using the

R package SNPRelate with 4 samples from each pig breed, and we obtained a clear separation

of the respective breeds. Similarly, a clear separation was observed from the RNA-seq data

after batch correction studies (Fig 1A and 1B).

Genome wide artificial selection

Based on the high-quality SNPs, three tests were performed for the identification of positively

selected genes in different genomic regions of the chromosomes of the L-type minipig breed.

We identified positive selective sweep genes in the L-type minipig with p� 0.05 and respective

scores of� ±1.5 and obtained 855 genes in XP-EHH, 3650 genes in iHS, and 2949 genes in the

ZHp statistical analysis (S1 File).

Differentially expressed gene analysis and common genes identification

The differential expression analysis was performed in R package DESEq2 after obtaining the

gene expression count using featureCounts [39]. A cutoff value of the fold change� ±1.5 and

adjusted p-value� 0.05 were selected to obtain differentially expressed genes (DEGs) between

the respective breeds. The overall relationship differentially expressed pattern was further visu-

alized by Volcano Plot (Fig 1C) [46], and to capture the information, representation of the

gene interaction role was identified with Cytoscape [43] using the string database plugin [44]

and presented as the network (Fig 2D). Next, common genes were identified among the iHS,

XP-EHH, ZHp, and DEGs and the results were limited to 35 genes that were used for further

analysis (Fig 1D, and S2 File). Amongst them, 7 were identified as differentially expressed and

selective sweep genes in the L-type breed (Table 1).

Gene ontology (GO) and gene regulatory network studies. The information inferred

from the existing literature reported a close relationship between human and pig organs [6, 47,

48]. KEGG pathway analysis of the identified commonly selective sweep genes from iHS,

XP-EHH, and zHP was undertaken by filtering the data based on the score and a significant p-

value� 0.05. The aims were to study the significance of the identified selective sweep genes in

pigs and to comprehend the crucial functions shared by these genes in humans to extensively

analyze and understand the molecular mechanisms shared by the species. Different genes were

observed sharing common pathways such as the regulation of autophagy (ATG16L2, ATG7,

and ATG13), Fc epsilon RI signaling pathway (MAP2K4, MAPK8, GAB2, and VAV2), Insulin

resistance (MLXIPL, MAPK8, PRKCE, CREB3L1, and PTPRF), Axon guidance (ROBO2,

EPHA5, DPYSL5, SRGAP1, and ROBO1), and cAMP signaling pathway (CAMK2B, MAPK8,

CREB3L1, HTR4, VAV2, and RAPGEF4) (Table 2, and S1 Fig). Amongst them, the commonly

enriched pathways were axon guidance (GO:0007411), synaptic vesicle endocytosis

(GO:0048488), microtubule cytoskeleton organization (GO:0000226), negative regulation of

cell migration (GO:0030336), protein localization to basolateral plasma membrane

(GO:1903361), camera-type eye photoreceptor cell differentiation (GO:0060219), hippocam-

pus development (GO:0021766), and vesicle-mediated transport (GO:0016192) in Biological

process. Similarly, cell-cell junction (GO:0005911), synapse (GO:0045202), basolateral plasma

membrane (GO:0016323), and axoneme (GO:0005930) were enriched in the cellular compo-

nent and transferase activity, and transferring glycosyl groups (GO:0016757) was identified in

the molecular function (S3 File).

Similarly, a separate analysis was performed for the enrichment analysis in positively and

negatively expressed DEGs in the L-type minipig. We observed signaling pathways such as the
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TNF signaling pathway, NF−kappa B signaling pathway, Rap1 signaling pathway, Neurotro-

phin signaling pathway, Cytokine−cytokine receptor interaction, and Toll−like receptor sig-

naling pathway. Among them, the major pathways were enriched in the upregulated condition

(Fig 2C). Likewise, the functional annotations of genes were tagged into three groups:

Fig 1. Principal component analysis: (a) & (b) representing the distribution of pig breed variety (L vs ET) in 2-d view. There a clear separation between the

breeds can be visualized. (c) Differentially expressed genes visualization was performed using enhanced volcano plot with p.adj� 0.05 and Log2FC�±1.5, here

NS signifies non-significant genes. (d) Common genes in different condition viz. iHS, ZHp, XP-EHH, and DEGs were visualized using Venny, and 35 common

genes were identified.

https://doi.org/10.1371/journal.pone.0263035.g001
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Fig 2. (a and b) Gene ontology study was done to identify the contribution and significance of differentially expressed upregulated and downregulated genes in

minipig with p� 0.05. (c) KEGG pathway enrichment analysis after functional annotation with p< 0.01. Enriched pathway in L-type minipig was performed

by dot-plot analysis. (d) protein-protein interaction analysis was done to visualize the upregulated and downregulated genes. Here, Blue nodes represent the

downregulated genes and purple nodes represent the upregulation of genes.

https://doi.org/10.1371/journal.pone.0263035.g002

Table 1. Identification of differentially expressed selective sweep genes.

Gene_Id ENS_id Chr XP-EHH iHS ZHp log2FC FDR

AIF1L ENSSSCG00000034178 1 2.649219181 2.6971365 -2.5781349 1.7994906 0.02328175

DNAH9 ENSSSCG00000018015 12 4.629307125 4.1900572 -3.3738688 2.1705897 0.0000756

GABBR2 ENSSSCG00000027558 1 3.922787712 5.2696931 -2.5781349 -2.523233 0.01536176

GRTP1 ENSSSCG00000009554 11 3.34265521 3.69934 -4.2762313 1.5207297 0.0000014

HBB ENSSSCG00000014725 9 3.111822546 3.0945901 -1.866248 -3.382391 0.02276081

HECW1 ENSSSCG00000036443 18 3.32804312 5.2894497 -3.963867 1.9930709 3.87E-10

HTR4 ENSSSCG00000014428 2 2.788343178 2.2548874 -3.9885142 1.7281431 0.00707621

https://doi.org/10.1371/journal.pone.0263035.t001
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molecular function, cellular component, and biological process. The most significant GO

terms in the upregulated condition were as follows: regulation of cell shape (GO:0009360),

platelet-derived growth factor receptor signaling pathway (GO:0048008), positive regulation of

protein kinase B signaling (GO:0051897), antigen processing and presentation of endogenous

peptide antigen via MHC class I (GO:0019885), and innate immune response (GO:0045087).

The significant GO terms in the downregulation were translation (GO:0006412), cytoplasmic

translation (GO:0002181), ribosomal small subunit assembly (GO:0000028) etc. Fig 2A and 2B

show the biological processes. Likewise, extracellular exosome (GO:0070062), cytosol

(GO:0005829), and cytoplasm (GO:0005737) were among the enriched terms in cellular com-

ponent and GTPase activator activity (GO:0005096), non-membrane spanning protein tyro-

sine kinase activity (GO:0004715), and zinc ion binding (GO:0008270) were among the

enriched terms in Molecular function (S2 Fig and S4 File).

Discussion

A robust immune response to outside challenges could help in the survival of a biological

entity, and the blood is an important component that has a key role in the development of the

immune system. Blood circulates throughout the tissues, recognizes foreign bodies and subse-

quently acts through the T and B-cells [49–51]. The L type pig breed has been reported to have

a better immune system over the ET type minipig breed, and hence, the emphasis was given to

overcome this issue by development of a better ET type pig breed which can be used in various

biomedical studies. Genomic selection methods have been successfully beneficial in various

studies to understand the molecular mechanism involved in trait specific features and pheno-

typic characteristics [33]. These selection methods are based on a strong statistical foundation

to predict an accurate gene selection and are widely used to improve the trait characteristics by

understanding the mechanisms involved in adapting to the situation according to environ-

mental changes and other factors for better survival [52–54]. Although, these methods have

Table 2. Comparison of KEGG pathways enriched in Pig and Human for selective sweep genes.

SNO KEGG Number KEGG Pathway Pig Genes Human Genes

1 ssc04360:

hsa04360

Axon guidance ROBO2, EPHA5, DPYSL5, SRGAP1,
ROBO1

ROBO2, EPHA5, DPYSL5, SRGAP3, SRGAP1, NTN1,
EPHB1, ROBO1

2 ssc04024:

hsa04024

cAMP signaling pathway CAMK2B,MAPK8, CREB3L1, HTR4,
VAV2, RAPGEF4

CAMK2B, GABBR2,MAPK8, GRIN3A, CREB3L1,
HTR4, VAV2, RAPGEF4

3 ssc04664:

hsa04664

Fc epsilon RI signaling pathway MAP2K4,MAPK8, GAB2, VAV2 MAP2K4,MAPK8, GAB2, VAV2

4 ssc04931:

hsa04931

Insulin resistance MLXIPL,MAPK8, PRKCE, CREB3L1,
PTPRF

MLXIPL,MAPK8, CREB3L1, PRKCE, PTPRF

5 ssc04140:

hsa04140

Regulation of autophagy ATG16L2, ATG7, ATG13 ATG16L2, ATG13, ATG7

6 ssc04012 ErbB signaling pathway CAMK2B,MAP2K4,MAPK8, CBLB
7 ssc04911 Insulin secretion CAMK2B, CREB3L1, KCNMA1,

RAPGEF4
8 hsa04520 Adherens junction GUCY1A2, KCNMA1, CLCA1, ITPR2
9 hsa04514 Cell adhesion molecules (CAMs) CAMK2B,MAPK8, PRKCE, ITPR2, IL1RAP

10 hsa04971 Gastric acid secretion PTPRM, PTPRJ, CTNNA3, CTNNA2, PTPRF
11 hsa04724 Glutamatergic synapse GALNT14, GALNT13, GALNT10
12 hsa04750 Inflammatory mediator regulation of

TRP channels

CNTNAP2, CDH2, PTPRM, CDH15, NEO1, PTPRF

13 hsa00512 Mucin type O-Glycan biosynthesis CAMK2B, KCNK10, SLC26A7, ITPR2
14 hsa04924 Renin secretion GRIN3A, GRM8, ITPR2, DLGAP1, SHANK2

https://doi.org/10.1371/journal.pone.0263035.t002
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enabled us to identify genes of interest from huge data in the form of positive selective sweep, a

differentially expressed gene could help us in identifying potential markers and therefore have

an imperative role in the development of better breed to prevail over the existing problems.

Henceforth, we integrated the results obtained from the WGS with the RNA-seq data to iden-

tify potential genes involved in the development of the L type pig breed over the ET type.

The sweep genes among the L vs ET minipig variety exhibiting a positive signature were

identified using XP-EHH and iHS and ZHp statistical test. The identified common genes

expressed in the blood samples were limited to a total number of genes to 35. Among them,

there were 7 (AIF1L, DNAH9, GABBR2, GRTP1, HBB, HECW1, and HTR4) differentially

expressed (upregulated and downregulated) genes with log2FC� ±1.5 and p.adj� 0.05 in the

L type minipig. Among them,, the identified key genes HECT, C2 and WW Domain Contain-

ing E3 Ubiquitin Protein Ligase 1 (HECW1) also known as NEDD4-like ubiquitin protein

ligase 1 (NEDL1) protein-coding gene identified as a positively selected gene with GO annota-

tions related to this gene include a ubiquitin-protein ligase activity. They regulate the bone

morphogenetic protein signaling pathway during embryonic development and bone remodel-

ing [55, 56]. From a complex protein-protein interaction network, it has been identified as

actively involved with the transforming growth factor-beta (TGFB) signaling pathway and

directly interacts with SMAD family proteins responsible for regulating cell development and

growth [57]. These SMAD family proteins have been strongly correlated with the immune

response. that the SMAD pathway regulates the production of IgA by B cells, maintains the

protective mucosal barrier, and promotes the balanced differentiation of CD4+ T cells into

inflammatory T helper type and suppressive FOXP3+ T regulatory cells [58–60].

The identified selective sweep gene AIF1L has been identified as an important molecule

that has an essential role in cell survival and is actively involved in proinflammatory activities

of immune cells such as monocytes/macrophages and activated T lymphocytes [61, 62].

Besides this, DNAH9 gene also identified as a selectively sweep and a positively expressed dif-

ferentially expressed gene is known to have a crucial role in the cytoplasmic movement of

organelles, also known as cytoplasmic dyneins and the bending of cilia and flagella with the

help of molecular motor axonemal dyneins [63]. These motors also enable the response to a

broad array of signals including phosphorylation, Ca2+, redox changes, and mechanical acti-

vation [64, 65]. It is also reported that the respiratory tract is lined with cilia which keep

inhaled dust, smog, and potentially harmful microorganisms from entering the lungs and

overexpression of such key genes could help in the survival of eukaryotes at the cellular level

by ejecting dust and foreign bodies entering the cells [66]; additionally, it creates the water cur-

rents necessary for respiration and circulation in sponges and coelenterates as well. Whereas,

GRTP1 also known as Growth hormone-regulated TBC protein 1, is an upregulated gene in

the L type found to be involved in a growth related function [67].

Moreover, the identified HTR4 (5-Hydroxytryptamine Receptor 4), a positively selected

gene found on chromosome 2, is a Protein Coding gene that is a member of the family of sero-

tonin receptors, which are G protein coupled receptors that stimulate cAMP production in

response to serotonin. Serotonin stimulates monocytes and lymphocytes, which influence the

secretion of cytokines and is also reported for utilizing functions in the innate and adaptive

immunity [68, 69].

HBB, a selective sweep gene identified as three-fold down regulated in the L-type mini

breed located on chromosome 9 on the Sscrofa11.1 genome assembly is a Hemoglobin Subunit

Beta protein coding gene. It is directly involved with the innate immune system and associated

with important pathways in biological processes such as oxygen transport, receptor-mediated

endocytosis, blood coagulation, etc. [70, 71]. Among the identified key genes, GABBR2 is one

of the GPCR family proteins via γ-aminobutyric acid signaling pathway reported to have a key
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Fig 3. (a) Manhattan plot was generated to map the coordinates of identified genes on respective location of the chromosomes in iHS and

XP-EHH. (b) These identified genes were further analyzed for nucleotide distribution comparison analysis in LvsET minipig and

understanding the stability and gene level.

https://doi.org/10.1371/journal.pone.0263035.g003
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role in neurodevelopment phenotypes [72]. The characterization of this gene at the molecular

level could help us to better understand how its downregulation helps the development of the

L type minipig breed. Gene annotation studies also revealed a close association and active

involvement of these genes in the various biological processes important in the immune sys-

tem and in the development of cells at various stages (Fig 2A–2C). These identified genes were

further mapped to their genomic positions using the Manhattan plot (Fig 3A and 3B). After-

wards, the identified genes were further analyzed for nucleotide diversity which also presented

strong evidence of the stabilization effect in these genes in terms of selection (Fig 3C). In con-

clusion, we have identified 35 key genes among which 7 were differentially expressed and posi-

tively selected in the L-type Korean minipig. Nucleotide diversity analysis showed strong

evidence for the stability of identified genes, and the gene ontology analysis revealed an associ-

ation with the immune response associated pathways, regulation of autophagy, signaling path-

ways, etc. A comparative analysis with human states shows the importance of the minipig as a

suitable animal model for various research. A comparative analysis was done to understand

the similarity between the pathway association with humans as a reference source. The results

clearly present evidence of a close association of different pathways at the molecular level and a

strong association between them. The identified genes could be used as potential markers in

molecular breeding processes and could enhance the immune response in the relative ET type

minipig breed.
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