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Abstract: Aging is one of the hottest topics in biomedicine. Previous research suggested thatω-3 fatty
acids have preventive effects on aging. However, most of previous studies on the anti-aging effects of
ω-3 fatty acids are focused on clinical observations, and the anti-aging mechanisms ofω-3 fatty acids
have not been fully elucidated. This stimulated our interest to use multi-omics data related toω-3
fatty acids in order to interpret the anti-aging mechanisms ofω-3 fatty acids. First, we found thatω-3
fatty acids can affect methylation levels and expression levels of genes associated with age-related
diseases or pathways in humans. Then, a Mendelian randomization analysis was conducted to
determine whether there is a causal relationship between the effect ofω-3 fatty acids on blood lipid
levels and variation in the gut microbiome. Our results indicate that the impact of ω-3 fatty acids
on aging is partially mediated by the gut microbiome (including Actinobacteria, Bifidobacteria and
Streptococcus). In conclusion, this study provides deeper insights into the anti-aging mechanisms of
ω-3 fatty acids and supports the dietary supplementation ofω-3 fatty acids in aging prevention.

Keywords: ω-3 fatty acids; aging; methylation; Mendelian randomization; gut microbiome

1. Introduction

Aging is a natural physiological phenomenon for living organisms, which refers to
gradual degenerative changes and increased frailty of the body with increasing age [1].
Due to the fact that biological functions of cells are performed by proteins, senescence
may (in part) be the result of imbalance/dysfunction of the cellular proteome (protein
homeostasis). Aging is characterized by the accumulation of cell damage, which results in
increased susceptibility relative to complex diseases such as cancer, type 2 diabetes and
cardiovascular diseases. The root of these diseases lies in the aging process itself, and
aging is the highest risk factor for the development of these complex diseases. Effectively
inhibiting aging is one of the important solutions to prevent aging-related diseases and
achieve longevity [2]. Therefore, anti-aging is one of the hottest topics in biomedicine.
However, whether it is for anti-aging or treating aging-related diseases, individuals usually
need long-term medication, which can cause the drug resistance of humans. Compared
with drug prevention, dietary supplementation is safer and more feasible.

Currently, a large number of studies have indicated that dietary supplementation
of ω-3 fatty acids has an effect on preventing aging [3]. Ω-3 fatty acids, also known as
N-3 fatty acids, are a class of unsaturated fatty acids. The important ω-3 essential fatty
acids include α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), all of which are polyunsaturated fatty acids. Studies have found that ω-3
fatty acids may have the potential to prevent and reduce the complications of aging [4,5],
including cognitive decline and cardiovascular disease. The levels of EPA, DHA and total
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ω-3 PUFAs in the peripheral blood tissues of dementia patients are significantly lower [6].
DHA, which is abundant in the brain, is neuroprotective and helps in maintaining proper
brain function. The brain concentration of DHA is determined by its dietary DHA content
and hepatic conversion from dietary derived ALA, as verified by an in vivo experimental
model in which the brain incorporation rate of DHA is equal to the brain consumption
rate of DHA [7]. In a cohort of 1214 older non-demented people monitored for four years,
higher plasma EPA levels were linked to a lower incidence of dementia, regardless of
depressive condition. Dietary deficiency ofω-3 fatty acids may result in accelerated brain
aging, atrophy, partial memory and cognitive losses, resulting in high risks for Alzheimer’s
disease and other dementia symptoms [8].

The primary sources ofω-3 fatty acids are Marine fatty fish (salmon, tuna, mackerel,
herring, saury, halibut and sardines), krill, seeds (walnuts, flaxseeds, chia seeds, sesame
seeds, pumpkin seeds and soybeans), certain leafy green vegetables, avocado and certain
types of seaweed. The human body cannot synthesize ω-3 fatty acids de novo. Still, it
can use the 18-carbon ω-3 fatty acids, i.e., α-linolenic acid (ALA), as the raw material,
prolong the carbon chain through the human body’s enzymes to synthesize the 20-carbon
unsaturated ω-3 fatty acids (EPA) and then synthesize the 22-carbon unsaturated ω-3
fatty acids (DHA) from EPA [8]. Due to the limited ability of humans to extend and
desaturate α-linolenic acid into long-chainω-3 polyunsaturated fatty acids, it is necessary
to obtain adequate amounts through fish and fish oil products containing high levels of
ω-3 polyunsaturated fatty acids [3].

As people age, the body’s ability to synthesize DHA from ALA decreases. As a result,
DHA deficiency may be present in the elderly [3]. However, most of the studies on the
effect ofω-3 fatty acids on aging at this stage are focused on clinical observations, and the
underlying anti-aging mechanisms of ω-3 fatty acids have not been fully elucidated. In
this study, based on multi-omics data, we performed methylation analysis, transcriptome
analysis and Mendelian randomization analysis to interpret the anti-aging mechanisms of
ω-3 fatty acids.

2. Materials and Methods
2.1. Methylation Analysis

In this study, methylation chip data are from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE89278, accessed on 28 September 2021). The data
are from a double-blind randomized placebo-controlled trial in which pregnant mothers
consumed DHA-rich fish oil (800 mg DHA/d) or placebo supplements from 20 weeks
gestation to delivery. Blood dots were collected from the children at birth (n = 991), and the
researchers examined the overall DNA methylation of all the samples. Genome methylation
data at birth from 369 children were obtained: 179 for the control group and 190 for the
experimental group.

Then, two methods were used for differential methylation analysis: one is based on
a Statistical difference of DNA Methylation between Promoter and Other Body Region
(SIMPO) algorithm, and the other is based on the traditional method of methylation
probe annotation.

Differential methylation analysis based on SIMPO algorithm: In methylation microar-
ray detection, multiple methylation probes are distributed in the functional regions of the
same gene, and different probes measure different values of methylation signals. Due
to the randomness and complexity of genomic DNA methylation, it is too one-sided to
consider only the methylation of the promoter region or only the methylation of the gene
body region, and there is no significant correlation between the two. A study found that the
correlation between the difference in DNA methylation between the functional region and
the promoter region of a gene and the gene expression was as high as 0.67 [9], and based
on this finding, Quan et al. developed the SIMPO algorithm that can extract the correlation
between the DNA methylation level of a gene and its expression level [10]. It has been
proved that this method resulted in significant improvements in gene overlaps (from 5 to
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17%) between different datasets, and the robustness of SIMPO is better than the traditional
probe-based method. In addition, the biological significance of phenotype-related genes
identified by the SIMPO algorithm is comparable to that of the traditional probe-based
methods [10]. The SIMPO algorithm can count the differences in DNA methylation be-
tween the promoter and other gene body regions and convert the methylation levels of
multiple probes into the methylation levels of the genes, expressed by SIMPO scores.

The formula of the SIMPO algorithm is as follows:

SIMPO score=
x−y

Sw

√
1
m + 1

n

~t(m+n−2)

where the following is the case.

Sw=
1

m+n+1
[(m−1)S2

1+(n−1)S2
2]

x is the average methylation value of all probes in the gene body region; y is the
average methylation value of all probes in the promoter region; m is the number of probes
in the gene body region; n is the number of probes in the promoter region; S2

1 is the variance
of the methylation value of the probe in the gene body region; and S2

2 is the variance of the
methylation value of the probe in the promoter region. Sw: The variance of the difference
of average methylation value and average gene body value.

After obtaining the gene SIMPO scores of the control group and the fish oil supple-
mented experimental group, a t-test was performed. The value of 0.05 was used as the
threshold of p-value to screen the differentially methylated genes.

Differential methylation analysis based on methylation probe annotation: The R
package “minfi” [11] was used to read and filter the probes from the original methylation
data, and the “DMPFinder” function was used to analyze the differential methylation of
the matrix. The “type” parameter was set to “categorical”. From the results of differential
methylation analysis, significant sites were screened (Q-value < 0.001), and differential
methylation genes were obtained by site annotation.

Next, we took the intersection of the differential genes obtained by the two methods
and looked up their functional annotations on PubMed.

Then Gene Ontology(GO) enrichment analysis was performed using STRING (https:
//string-db.org/, accessed on 28 September 2021). The differential methyl-ation genes
were then entered into the STRING website for GO analysis. Finally, Kyoto En-cyclopedia of
Genes and Genomes (KEGG) enrichment analysis was conduct-ed using KOBAS
(http://kobas.cbi.pku.edu.cn/, accessed on 28 September 2021). Tables S1 and S2 show the
detailed process results of Methylation analysis.

2.2. Transcriptome Analysis

In this study, the gene expression profile data were from the GEO database (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50945, accessed on 3 August 2021).
Data were obtained from human placenta HTR8/SVneo cells. The samples contained 12
array culture experiments. Four were blank controls, four were treated with DNA-rich fish
oil emulsion and four were treated with soybean oil emulsion. Cell culture conditions are
as follows: 200,000 HTR8/SVneo cells per well were seeded in SRM in a 6-well plate and
incubated for 24 h at 37 ◦C in 20% oxygen and 5% CO2. After 24 h, 2 mL of either SRM (N),
SRM containing 50 µM Soy Oil emulsion (S) or SRM containing 50 µM Fish Oil emulsion
(D) was added to each well. In this study, four samples treated with DNA-rich fish oil were
used as the experimental group, and four samples treated with soybean oil emulsion and
four samples untreated were combined as the control group.

The GEO2R analysis tool of the GEO website was used to perform differential expres-
sion analysis, and significant genes were screened (adj. p-value < 0.05). Then, the online
analysis tool DAVID (https://david.ncifcrf.gov/home.jsp, accessed on 3 August 2021) was

https://string-db.org/
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http://kobas.cbi.pku.edu.cn/
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used for GO enrichment. After the analysis, gene functional annotation and functional
enrichment results were produced. Then, the DAVID website was used for gene ID conver-
sion. For each gene, OFFICAIL_GENE_SYMBOL was converted to ENTREI_GENE_ID,
which was later submitted to the KOBAS for KEGG analysis and visualization to determine
the metabolic pathways of these differential genes. Tables S3–S8 show the detailed process
results of Transcription analysis.

2.3. A Two-Sample Mendelian Randomization Analysis

In Mendel randomization, the question of whether there was a causal relationship
between the effect of fish oil on blood lipid level and the impact of the gut microbiome
was discussed. The original data of the gut microbiome were NG16 and MBG. NG16 is
the German population data published in 2016 with around 1800 people. MBG is the
summary statistics for 152 microbial trait genome-wide association analyses. However, as
an exposure variable, it is required to have a p-value of less than 5 × 10−8, among which
NG16 does not meet the requirement; thus, the exposure factors used in MR analysis are
only Single-nucleotide polymorphism(SNP) sites in MBG for which its p-value is less than
5 × 10−8 (six data pieces). MBG data were obtained from the University of Bristol Data
Repository (https://doi.org/10.5523/bris.22bqn399f9i432q56gt3wfhzlc, accessed on 25
June 2021). It provides 211 gut microbiome and human SNPs loci GWAS information files.
Lipid data with fish oil supplementation were obtained as outcome variables from the
article [12]. There were more than 500,000 Caucasian volunteers recruited from 2006 to
2010 in England, Scotland and Wales; their biochemical, clinical and genotypic data were
collected. All participants were between 40 and 70 years old when they were assessed.

Then, the R package “TwoSampleMR” [13] was used for Mendelian randomization
analysis. In this part, Inverse Variance Weighting (IVW), Weighted Median (WM) and MR
Egger regression were used as the main causal effect estimations. Among them, the IVW
method focuses on integrating multiple genetic variants to infer the causal relationship
between exposure factors and outcome variables. It is a weighted linear regression of
Walder ratios calculated from different SNPs to obtain the causal relationship of unbiased
estimation. WM is a weighted density function for ratio estimation. Multiple genetic effect
values can be integrated by assigning different weight values to each genetic variable. If
at least half of the information in the analysis comes from valid instrumental variables,
then the causal effects can be continuously estimated. MR Egger takes gene pleiotropy
into account, and the principle is the same as for IVW, but the difference is that the
intercept term for IVW must be 0. In contrast, it is not necessarily the case for MR Egger,
where the intercept is used to check whether there exist genetic pleiotropy. When the
intercept corresponds to a statistic with a p-value > 0.05, it means that the causal effect
is not influenced by genetic pleiotropy. The advantage of comparing the results from
three different approaches is higher reliability due to increased consistency. A flowchart
summarizing the two-steps diagram is presented in Figure 1.

Then, a gene pleiotropy test was conducted. One of the assumptions of MR analysis
is that instrumental variables can only affect outcomes through exposure. If instrumental
variables directly affect outcomes without affecting exposure, it violates the MR idea.
Therefore, it is necessary to test whether there is genetic pleiotropy in causal inference
between exposure and outcome. MR Egger regression analysis can be used to evaluate
the bias caused by gene pleiotropy for the first step (effect of fish oil on lipid and gut
microbiome variation) and the second step (effect of the gut microbiome variation on
lipid) of the two-step MR mediation method, and its regression intercept can be used to
evaluate the size of pleiotropy. The closer the intercept is to 0, the less the possibility of gene
pleiotropy. In this study, the existence of gene pleiotropy in the analysis was measured by
judging the p-value of the gene pleiotropy test. If p > 0.05, the possibility of gene pleiotropy
in the causal analysis was considered to be weak, and its influence could be ignored.
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Figure 1. The flowchart showing the two-step Mendelian randomization methods used in this study.
Step 1: Analysis of the association of ω-3 fatty acids on blood lipid levels using Single-nucleotide
polymorphism (SNP) loci associated with ω-3 fatty acids as a proxy tool. Step 2: Analysis of the
effect of the gut microbiome variation on blood lipid level using SNP loci associated with gut
microbiome variation as a proxy tool for intermediate variables. Both genetic instrumental variables
were independent of confounders. Tables S9–S11 show the detailed process results of MR analysis.

In addition to using the above 3 methods (Inverse Variance Weighting, Weighted
Median and MR Egger regression) to test the reliability and stability of the results, our study
also adopted the leave-one-out method for sensitivity analysis. That is, the gut microbiome
with a p-value less than 0.05 in the IVW method and that passed the heterogeneity test and
gene pleiotropy test was removed one by one, and the combined effect of the remaining
SNP was calculated to evaluate the influence of each SNP on the gut microbiome.

3. Results
3.1. Differential Methylation Analysis

In this study, differential methylation analysis of the methylation chips was performed
by two methods. The first method is the following: The SIMPO algorithm and the SIMPO
scores of control samples were subjected to t-test with the SIMPO scores of experimental
group samples. Genes numbering 233 with significant differences in methylation levels
were obtained (p-value < 0.05) for subsequent analysis. Then, GO and KEGG pathway
analyses were performed on these genes, and the GO results are as follows: Molecular
Function (MF) enrichment results showed four molecular functions (Table 1), all of which
pointed to sequence-specific DNA binding functions, especially transcriptional regulation
of specific regions of sequence-specific DNA binding; thus, it was hypothesized that
supplementation ofω-3 fatty acids could affect transcriptional regulatory functions. After
that, KEGG analysis of 233 differentially methylated genes was conducted using KOBAS.
Two KEGG terms were obtained from the category of “KEGG_PATHWAY” with a p-value
threshold of 0.005: 1. Signaling pathways regulating pluripotency of stem cells; 2. Cellular
senescence. Three KEGG terms were obtained from the category of “KEGG_DISEASE”
with a p-value threshold of 0.005: 1. Parkinsonian syndrome; 2. Lissencephaly; 3. Maturity
onset diabetes of the young (MODY). Table 2 shows the detailed data of the KEGG analysis
results. Figure 2 shows the bar chart and the bubble chart of the KEGG enrichment analysis
results. The second method is outlined as follows: Seeking the differentially methylated
probes between the experimental group and the control group and then using annotation
information to find the differential Methylation genes corresponding to the probes. One
hundred and sixty five significant differential methylation probes (DMPs) were obtained,
and 140 differential methylated genes were acquired after annotation.
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Table 1. The GO enrichment results of differentially methylated genes related to aging (based on
SIMPO algorithm).

GO-Term Description Strength False Discovery Rate

0000977 RNA polymerase II transcription regulatory
region sequence-specific DNA binding 0.41 3.67 × 10−2

0000976 Transcription regulatory region
sequence-specific DNA binding 0.39 3.67 × 10−2

1990837 Sequence-specific double-stranded
DNA binding 0.39 3.67 × 10−2

0043565 Sequence-specific DNA binding 0.35 3.67 × 10−2

Table 2. The KEGG enrichment results of differentially methylated genes related to aging (based on
SIMPO algorithm).

Category Term p-Value Related Genes

KEGG_PATHWAY Signaling pathways regulating
pluripotency of stem cells 1.53 × 10−3

POU5F1
WNT16
AKT2
RIF1
ID1

KEGG_PATHWAY Cellular senescence 2.69 × 10−3

AKT2
RRAS2

CCDC109A
SIRT1
RBBP4

KEGG_DISEASE Parkinsonian syndrome 1.74 × 10−3 PINK1
DNAJC13

KEGG_DISEASE Lissencephaly 2.44 × 10−3 NDE1
TMTC3

KEGG_DISEASE Maturity onset diabetes of the
young (MODY) 3.26 × 10−3 HNF1B

PDX1
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Figure 2. The enriched KEGG pathways of differentially methylated genes. (a) The enriched KEGG pathways of differentially
methylated genes visualized in the bar plot. Each row represents an enriched function, and the length of the bar represents
the enrich ratio, which is calculated as “input gene number”/” background gene number”. The color of the bar (C1–C6)
represents different clusters, the terms in the same cluster have the similar functions. For each cluster, if there are more
than 5 terms, the top 5 with the highest enrich ratio will be displayed. The enrichment analysis was conducted using
KOBAS. (b) The enriched KEGG pathways of differentially methylated genes visualized in bubble plot. Each bubble
represents an enriched function, and the size of the bubble from small to large: (0.05,1), (0.01,0.05), (0.001,0.01), (0.0001,0.001),
(1 × 10−10, 0.0001), (0, 1 × 10−10). The color of the bubble (C1–C6) is the same as the color of the bar, which represents
different clusters. For each cluster, if there are more than 5 terms, the top 5 with the highest enrich ratio will be displayed.
The enrichment analysis was conducted using KOBAS.



Genes 2021, 12, 1691 7 of 16

Then, we entered all 140 genes into the STRING website for GO enrichment analysis,
and four biological GO terms that linked to aging have been discovered: 1. Homophilic
cell adhesion via plasma membrane adhesion molecules; 2. Regulation of neurotransmitter
levels; 3. Nervous system development; 4. Multicellular organism development. Table 3
shows the detailed data of the GO analysis results.

Table 3. The GO enrichment results of differentially methylated genes related to aging (based on
differentially methylated probes).

GO-Term Description Strength False Discovery Rate

Biological
Process

0007156
Homophilic cell adhesion

via plasma membrane
adhesion molecules

1.07 2.63 × 10−6

0001505 regulation of
neuro-transmitter levels 0.81 2.88 × 10−2

0007399 Nervous system
development 0.32 3.44 × 10−2

0007275 multicellular organism
development 0.23 3.35 × 10−2

Molecular
Function 0005509 calcium ion binding 0.58 5.20 × 10−4

There is an intriguing GO enrichment result that 10 of 140 genes we entered were
annotated in a biological process of regulation of neurotransmitter levels (Figure 3).
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genes based on the differential methylation probe method). The abbreviations in the figure is input
protein name and network nodes represent proteins and the splice isoforms or post-translational
modifications are collapsed, i.e., each node represents all the proteins produced by a single, protein-
coding gene locus. The white nodes represent the input proteins that interact with the red nodes.

Then, the intersection of 140 and 233 differentially methylated genes obtained by the
two methods used in the methylation analysis was obtained, and two genes were obtained
as UNC13A and OTOF genes. Therefore, we could be more confident in speculating that
UNC13A and OTOF genes show changes in methylation levels in response to supplementa-
tion ofω-3 fatty acids, both of which are upregulated. UNC13A and OTOF genes are both
clinically reversible, but the mechanism of disease reversal is still unclear. Genome-level
gene modification may be one of the explanations for the reversible nature of the disease.
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Moreover, UNC13A and OTOF are included in the ten annotated genes. Both the
UNC13A and OTOF genes are associated with neuropathy. OTOF: Mutations in this gene
are a cause of neurosensory nonsyndromic recessive deafness. The homology suggests
that this protein may be involved in vesicle membrane fusion. Several transcript variants
encoding multiple isoforms have been found for this gene (https://www.ncbi.nlm.nih.
gov/gene/9381, accessed on 28 September 2021). UNC13A: This gene encodes a member
of the UNC13 family. UNC13 proteins play important roles in neurotransmitter release
at synapses [14]. Single nucleotide polymorphisms in this gene may be associated with
sporadic Amyotrophic lateral sclerosis (ALS) (https://www.ncbi.nlm.nih.gov/gene/23025,
accessed on 28 September 2021).

3.2. Transcriptome Analysis

In this study, a total of 891 differentially expressed genes (adjusted p-value < 0.05)
were obtained by differential expression analysis between four experimental groups treated
with DHA-rich fish oil and eight control groups that were not treated with DHA-rich fish
oil. A volcano map was drawn (Figure 4), where the blue part shows down-regulated genes
and the red part shows up-regulated genes. After removing some unannotated genes, 793
differentially expressed genes were acquired.
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Figure 4. Differential gene volcano plot of transcriptome analysis. The blue part represents down-
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differential genes. The differentially expressed genes were obtained using GEO2R. There was a total
of 891 differentially expressed genes.

Then, we performed functional enrichment analysis of differentially expressed genes
in DAVID. GAD_DISEASE, GO and KEGG databases were used to conduct the enrichment
analysis of the differentially expressed genes. Significant outcomes related to aging were
summarized in Table 4. In the GAD_DISEASE database, two diseases probably associated
with aging were found: Alzheimer’s disease and longevity. According to GO analysis
results, one Cellular Component probably associated with aging was found: mitochondria.
As for KEGG, two pathways probably associated with aging were found: p53 and FoxO
signaling pathways, which are closely related to cell senescence. The KOBAS website was
used to visualize the KEGG enrichment analysis results. Figure 5 shows the bar chart and
the bubble chart of the KEGG enrichment analysis results.

https://www.ncbi.nlm.nih.gov/gene/9381
https://www.ncbi.nlm.nih.gov/gene/9381
https://www.ncbi.nlm.nih.gov/gene/23025
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Table 4. Enrichment analysis results of differentially expressed genes related to aging (based on
transcriptome analysis).

Category Term p-Value

GAD_DISEASE Alzheimer’s disease 3.38 × 10−3

GAD_DISEASE Alzheimer’s Disease 4.59 × 10−3

GAD_DISEASE longevity 6.88 × 10−3

GOTERM_CC_DIRECT mitochondrion 1.61 × 10−6

GOTERM_CC_DIRECT nucleolus 2.66 × 10−4

GOTERM_CC_DIRECT mitochondrial matrix 7.42 × 10−4

KEGG_PATHWAY p53 signaling pathway 4.75 × 10−3

KEGG_PATHWAY FoxO signaling pathway 1.71 × 10−2
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Figure 5. The enriched KEGG pathways of differentially expressed genes. (a) The enriched KEGG pathways of differentially
expressed genes visualized in the bar plot. Each row represents an enriched function, and the length of the bar represents
the enrich ratio, which is calculated as “input gene number”/”background gene number”. The color of the bar represents
different clusters. For each cluster, if there are more than 5 terms, the top 5 with the highest enrich ratio will be displayed.
The enrichment analysis was conducted using KOBAS. (b) The enriched KEGG pathways of differentially expressed genes
visualized in bubble plot. Each bubble represents an enriched function, and the size of the bubble is from small to large:
[0.05,1], [0.01,0.05], [0.001,0.01], [0.0001,0.001], [1 × 10−10, 0.0001] and [0,1 × 10−10]. The color of the bubble is the same as
the color of the bar above, which represents different clusters. For each cluster, if there are more than 5 terms, the top 5 with
the highest enrich ratio will be displayed. The enrichment analysis was conducted using KOBAS.

3.3. Mendelian Randomization Causal Association Analysis

In this section, the two-step Mendelian randomization (2-step MR) method was used
to explore the causal relationship between the effect of fish oil on blood lipid levels and
the influence of variation in the gut microbiome. SNP was used as the genetic instrumen-
tal variable. The gut microbiome we studied included Actinobacteria, Bifidobacteria and
Streptococcus, and the lipid types we studied included high-density lipoprotein (HDL),
low-density lipoprotein (LDL) and triacylglyceride (TAGs). The analysis consists of the
following three evaluation models: Inverse-Variance Weighted (IVW), Weighted Median
(WM) and MR Egger regression. The specific MR results are shown in Tables 5–7. The
result of the p-value that is less than 0.05 indicates that the two have a causal relation-
ship. The tables show the significant results. The corresponding scatter plots are shown
as Figures 6–8. For each gut microbiome, we chose one plot as an example. The OR value
shows the risk of raising blood lipids. An OR < 1 means that for each standard deviation
increase in a nutrient, the corresponding risk is reduced by a corresponding percentage of
the OR value and vice versa.
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Table 5. Mendelian randomization results of Actinobacteria and blood lipid levels.

Type Category Method p-Value OR

LDL Class MR Egger 7.47 × 10−3 6.94 × 10−1

LDL Class Inverse variance weighted 2.96 × 10−42 7.84 × 10−1

LDL Class Weighted median 1.90 × 10−25 7.80 × 10−1

TAGs Class MR Egger 9.87 × 10−1 9.98 × 10−1

TAGs Class Inverse variance weighted 2.51 × 10−22 1.19
TAGs Class Weighted median 1.11 × 10−12 1.18
LDL Phylum MR Egger 4.37 × 10−1 1.35
LDL Phylum Inverse variance weighted 8.11 × 10−14 7.70 × 10−1

LDL Phylum Weighted median 2.94 × 10−10 7.56 × 10−1

Table 6. Mendelian randomization results of Bifidobacteria and blood lipid levels.

Type Category Method p-Value OR

LDL Family MR Egger 2.32 × 10−2 7.14 × 10−1

LDL Family Inverse variance weighted 4.08 × 10−44 7.81 × 10−1

LDL Family Weighted median 7.77 × 10−26 7.75 × 10−1

LDL Genus MR Egger 1.48 × 10−1 8.11 × 10−1

LDL Genus Inverse variance weighted 9.57 × 10−43 7.84 × 10−1

LDL Genus Weighted median 4.07 × 10−23 7.80 × 10−1

TAGs Genus MR Egger 7.34 × 10−1 9.53 × 10−1

TAGs Genus Inverse variance weighted 3.75 × 10−22 1.18
TAGs Genus Weighted median 1.12 × 10−12 1.18

Table 7. Mendelian randomization results of Streptococcus and blood lipid levels.

Type Category Method p-Value OR

LDL Genus MR Egger 1.26 × 10−4 1.14 × 10−1

LDL Genus Inverse variance weighted 6.78 × 10−14 7.42 × 10−1

LDL Genus Weighted median 1.03 × 10−3 8.39 × 10−1
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According to the results in the table, we can infer that fish oil acts in part on three
types of the gut microbiome, Bifidobacteria, Streptococcus and Actinobacteria, thus causing
changes in the levels of LDL and TAGs. In addition, there is evidence that these three types
of gut microbiome may have a strong association with the aging of hosts.

4. Discussion

In our study, we used three bioinformatics methods (i.e., differential methylation
analysis, transcriptome analysis and Mendelian randomization analysis) to interpret the
anti-aging mechanisms ofω-3 fatty acids.

Analysis of the influence ofω-3 fatty acids on DNA methylation: Biological functions
and diseases related to early development include neurosensory nonsyndromic recessive
deafness caused by OTOF mutations, Lissencephaly and Nervous system development.
The biological processes and diseases associated with aging include Cellular senescence,
Parkinsonian syndrome and ALS. Human aging is closely related to diseases and the
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development of the nervous system. In the analysis of the effect of supplementing fish
oil rich inω-3 fatty acids on gene expression, we found the molecular mechanism behind
the development of the nervous system byω-3 fatty acids. It is worth proposing that the
supplementation ofω-3 fatty acids may have a therapeutic effect on ALS by modifying the
methylation level of the UNC13A gene. This discovery has certain significance to further
support the role of epigenetic modification in human developmental programming and to
point the direction for future research.

Protocadherin (Pcdh) cluster regulation has complex gene regulation mechanisms
that are important for the normal development of the nervous system. Pcdh cluster
genes encode calcium-related transmembrane proteins, which are mainly expressed in
the nervous system. These neural adhesion proteins most likely play a critical role in the
establishment and function of specific cell–cell connections in the brain (https://www.
ncbi.nlm.nih.gov/gene/5097, accessed on 28 September 2021). A large number of tandem
repeats are present in Pcdh clusters throughout vertebrate evolution. The transition of the
repeated 5′ Pcdh-αc2 from conformably expressed to random expression in the wild-type
brain, accompanied by increased DNA methylation, suggests that the tandem replication
and methylation modifications in the Pcdh cluster can broaden and modify the function
of gene types [15]. We speculated that the experimental conditions of ω-3 fatty acids
supplementation in this study could modify the methylation of Pcdh cluster genes; thus, it
has a positive effect on the development process of the nervous system. It is noteworthy
that among the GO enrichment results, 10 of the 140 genes (or proteins) we imported were
annotated in the biological GO Terms biological function network, among which OTOF
and UNC13A were included in the 10 genes. Both UNC3A and OTOF genes are associated
with neuropathy.

Amyotrophic lateral sclerosis (ALS) is a disease that results in the gradual deterioration
and loss of function in the brain and spinal motor neurons, which eventually results
in paralysis [16]. ALS of the prevalence and incidence increased with age [17]. The
pathogenesis of ALS worldwide included an average age of 62. The prognosis for survival
in patients with ALS is 2 to 5 years [16]. Symptoms of ALS may have a quite large reversal
within a few weeks to months, but the “reversal” of ALS symptoms is often fleeting [18],
and there is no reliable treatment for ALS. It is worth noting that a case-control study by
Harrison et al. described 36 patients with ALS classified as “ALS reversals” from the Pooled
Resource Open-Access ALS Clinical Trials (PRO-ACT) database; when compared with
the control group, patients with ALS reversal were more likely to take curcumin, copper,
azathioprine, fish oil, vitamin D and glutathione [18]. In previously existing studies, it was
known thatω-3 fatty acids have positive effects on nervous system development [19,20];
thus, we hypothesized thatω-3 fatty acids in fish oil may have a positive effect in treating
ALS through modifying the UNC13A gene’s methylation levels. This inference may guide
treatment regimens for ALS disease.

Both classes of neurological diseases involved in the UNC13A and OTOF genes are
reversible in clinical presentation [16,21], and the methylation levels of UNC13A and OTOF
both had variability in the controlled trial ofω-3 fatty acids supplementations. Although
the mechanism of the above disease reversal has not been defined, we reasoned that the
methylation modification of the DNA gene by supplementing fish oil may be one of the
causes or manifestations of neurological reversal.

In the transcriptome analysis, it can be observed from the differential gene enrichment
results of samples treated withω-3 fatty acids and unprocessed samples that these differen-
tial genes are significantly enriched in the genes associated with Alzheimer’s disease and
longevity in the GAD_DISEASE database, enriched in mitochondria in GO and enriched in
the p53 signaling pathway and FoxO signaling pathway in KEGG. These two pathways
are linked to the aging process. The p53 transcription factor is important for cellular stress
responses. When activated in response to DNA damage, it causes cell growth to stop,
allowing DNA repair to take place, or it causes cellular senescence or apoptosis, preserving
genome integrity [22]. The role of p53 in regulating cellular growth induced by strong

https://www.ncbi.nlm.nih.gov/gene/5097
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oncogenic signals or replicative stress has received a lot of attention recently [23]. p53
regulates the expression of a wide number of target genes involved in cell cycle arrest, DNA
repair, senescence and apoptosis when it is stimulated [24]. p53’s role in DNA damage
response has been shown in numerous studies to be crucial in the maintenance of genomic
integrity [25]. The loss of p53 function enhances chromosomal instability (directly and
indirectly), causing cells to enter senescence or apoptosis [26]. It has been proved that the
FoxO signaling pathway is a key factor in cell senescence mediated by Gas6 (growth stag-
nation specific protein) and plays a crucial multi-dimensional role in vascular aging and
sclerosis [27]. These results indicate thatω-3 fatty acids can affect diseases and metabolic
pathways related to human aging by affecting the expression of related genes. There is
also some evidence that the proportion of maternal dietary fat asω-3 PUFA, particularly
α-linolenic acid, may also be associated with lower epigenetic age acceleration in new-
borns. In adults, accelerated epigenetic age is associated with an increased risk of cancer,
cardiovascular disease and all-cause mortality [28]. In a new study recently published
by researchers at Marshall University, researchers noticed significant differences in the
offspring of mice whose mothers were fed a diet rich in canola oil, which is rich inω-3 fatty
acids, compared with mice whose mothers were fed a diet rich in corn oil, which is rich in
ω-6 fatty acids. Maternal ω 3-rich diets influence genome-wide epigenetic pattern changes
in offspring and may modulate gene expression patterns [29]. Therefore, we speculate that
the effect ofω-3 fatty acids on aging may also be realized by influencing gene expression
patterns. This genetic influence can be transmitted from early childhood to old age.

For the results of Mendelian randomization, currently, the study on the effect of Bifi-
dobacteria on aging has been relatively sufficient. There is evidence that Bifidobacteria can
regulate the treatment of specific age-related diseases and can be used as a treatment option
for anti-aging. Oral administration of substrains of Bifidobacterium isolated from healthy
centenarians can improve cell, body fluid and non-specific immune function and immune
barrier function in mouse intestines, reduce inflammation, improve adaptive immune
response and fight immune senescence [30]. Other regulatory mechanisms include regulat-
ing carbohydrate degradation, improving antioxidant activity, producing vitamin B and
conjugated linoleic acid [31], regulating fat generation deposition and metabolism [32] and
preventing insulin resistance [33]. In addition, these mechanisms also include improving
the intestinal barrier function, reducing the production of short-chain fatty acids, increasing
enzymes that have a significant impact on lipid metabolism and glucose homeostasis and
limiting caloric intake [34]. Calorie restriction (CR) is currently one of the most feasible and
effective anti-aging methods. CR can enrich genes that are positively related to longevity
and reduce genes that are negatively related to longevity [35]. In a mouse model, oral
administration of Bifidobacterium and Lactobacillus Plantarum can effectively prevent skin
photoaging caused by chronic ultraviolet radiation [36,37]. In experimental studies, Bifi-
dobacteria have also been shown to extend lifespan. It has been found in nematodes that
supplementation with probiotics represented by Bifidobacteria has a significant effect on
prolonging life. They promote longevity by stimulating an innate immune response [38],
improving oxidative stress [39] and reducing lipofuscin accumulation [39]. There is also
evidence that these probiotics can extend the lifespan of mice, possibly by inhibiting the
chronic inflammatory process in the colon [40]. In addition, Bifidobacteria can also affect the
senescence of the host by regulating the expression of some genes of the host [41].

For Actinobacteria, studies have shown that aging increases the number of actinobac-
teria [42]. For Streptococcus, Japanese researchers have proved that adding freeze-dried
Streptococcus to the diet can inhibit aging [43].

On the other hand, reasonable dietary supplements can effectively intervene in the
gut microbiome variation of humans and contribute to evaluating the causality between
the gut microbiome and diseases [44]. In this study, the Mendelian randomization analysis
for exploring the causal relationship between the influence of ω-3 fatty acids on blood
lipids and the effect of gut microbiome variation proved that ω-3 fatty acids could have an
impact on the gut microbiome, and the gut microbiome changing in group composition
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will have a direct impact on aging [45], indicating that part of the anti-aging mechanisms
ofω-3 fatty acids is achieved through the gut microbiome.

Based on the multi-omics data related to ω-3 fatty acids, we performed a series
of bioinformatics analyses, including methylation analysis, transcriptome analysis and
Mendelian randomization. Our results imply that it has the effect of anti-aging and
preventing aging-related disease. There are previous studies showing consistent results,
such as a significantly reduced risk of ischemic events, including cardiovascular death,
in patients with elevated triglyceride levels on statins compared with patients receiving
placebo at 2 grams eicosapentaenoic twice daily [46]. However, several studies have found
precisely the opposite, such as no significant difference in the compound outcome of major
adverse cardiovascular events associated with the addition of ω-3 CA to conventional
background therapy compared with corn oil in statin patients with high cardiovascular
risk [47]. In another study exploring the effects of Marine n-3 fatty acids on cardiovascular
disease and cancer, the supplementation of n-3 fatty acids did not reduce the incidence
of major cardiovascular events or cancer compared with placebo [48]. In another study,
dietary LA did play an important role in reducing cardiovascular risk. There is no evidence
for its potential role in diabetes prevention [49].

These conclusions seem contradictory, and we speculate that the reason for this
discrepancy is that there are differences in the types of people studied. Such differences may
result in confounding assumptions and, thus, bias the results [50]. From the perspective of
diseases, although some different types of diseases are associated with aging, the effects
of the same nutrient on different diseases or different nutrients on the same disease are
completely different [49]. Therefore, we recommend that in future studies of this kind,
select as many different populations as possible as samples and, where possible, replicate
the associations in databases with potentially confounding structures that differ from the
initial study. Finding the same correlation in different populations may prevent confusion
and misdirection [50].

In summary, our study provides deeper insights into the anti-aging mechanisms of
ω-3 fatty acids based on the multi-omics data. The possible anti-aging mechanism ofω-3
fatty acids was analyzed using methylation analysis, transcriptome analysis and Mendelian
randomization; these were supplemented with previous studies that focused on clinical
observation, providing an important reference for subsequent medical research and human
diet improvement.
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